CN116376522A - 一种万米深井钻井液用抗超高温高承压堵漏剂及其应用 - Google Patents

一种万米深井钻井液用抗超高温高承压堵漏剂及其应用 Download PDF

Info

Publication number
CN116376522A
CN116376522A CN202310252117.8A CN202310252117A CN116376522A CN 116376522 A CN116376522 A CN 116376522A CN 202310252117 A CN202310252117 A CN 202310252117A CN 116376522 A CN116376522 A CN 116376522A
Authority
CN
China
Prior art keywords
temperature
particles
resistant
pressure
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310252117.8A
Other languages
English (en)
Inventor
暴丹
刘思源
桑宇彤
张鹏
贾振幅
周成裕
李小江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Science and Technology
Original Assignee
Chongqing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Science and Technology filed Critical Chongqing University of Science and Technology
Priority to CN202310252117.8A priority Critical patent/CN116376522A/zh
Publication of CN116376522A publication Critical patent/CN116376522A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/032Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/426Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells for plugging
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/08Fiber-containing well treatment fluids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/18Bridging agents, i.e. particles for temporarily filling the pores of a formation; Graded salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Abstract

本发明公开了一种万米深井钻井液用抗超高温高承压堵漏剂及其应用,涉及石油钻井防漏堵漏技术领域,其技术方案要点是:按重量百分含量计,包括以下组分:(1)10%‑30%的抗超高温高承压刚性架桥颗粒;(2)5%‑10%的抗超高温高强度合成纤维材料;(3)40%‑50%的维细填充颗粒;(4)10%‑20%的弹性变形颗粒;(5)片状填塞材料10%‑20%。本发明具有抗温能力强,温度大于260℃而不发生降解,粒度分布可调,密度低,悬浮稳定性好,高温下抗压强度高,耐酸碱不发生腐蚀,化学稳定性好,通过五种堵漏材料合理粒度级配优化控制,构成高温高压地层“强力链网络”的裂缝致密承压封堵层,承压能力>30MPa,可满足不同开度裂缝性漏失地层堵漏的需要的效果。

Description

一种万米深井钻井液用抗超高温高承压堵漏剂及其应用
技术领域
本发明涉及石油钻井防漏堵漏技术领域,更具体地说,它涉及一种万米深井钻井液用抗超高温高承压堵漏剂及其应用。
背景技术
井漏是指在钻井、固井、测试等井下作业过程中,井筒工作液(包括钻井液、水泥浆、完井液等)在压差作用下漏入地层的现象。国外统计资料表明,全球石油行业中井漏发生率约占总井数的20%~25%,每年因为井漏而耗费的资金高达30亿美元。在钻井过程中钻遇的裂缝性地层较易发生漏失。据统计,裂缝性漏失占总井漏的80%以上。裂缝性漏失的主要特征是封堵难度大、钻井液漏失量大。
随着油气资源勘探、开发程度不断提高,常规油气资源越来越少,钻探开发范围已逐步走向深层超深层、海洋深水等复杂地层。深井超深井、海洋深水井高温高压环境给钻井液防漏堵漏带来了更为严峻的挑战。四川盆地蓬深6井井深达到9026米,刷新亚洲最深直井纪录,面对超深(超过9000米)、超高温(超过200摄氏度)、超高压(超过150兆帕)等挑战,对堵漏材料抗温抗压性能提出要求。塔里木盆地油气井钻探具有以下特点:①施工井段深(>6000m),井底温度高(>260℃);②高压/超高压地层,钻井液密度大(>2.0g/cm3),90%以上复杂时效为溢流和井漏。莺歌海盆地和琼东南盆地是我国近海海域典型的高温高压型盆地,具有井底温度高、地层压力系数大的典型特征:高温高压井段长,地层温度(≥150℃)和井底压力高(地层压力系数≥2.0)。该盆地地温梯度最高达5.73℃/100m,主要储层温度范围为186~218℃;地层压力系数范围为1.6~2.4。
目前,在处理高温高压地层裂缝性漏失最常用的方法是桥塞堵漏法。桥塞堵漏法是将不同种类、不同尺寸的堵漏材料以合适的比例混合在钻井液中,进行堵漏的一种方法。桥塞堵漏材料通常分为颗粒状、片状、纤维状等三大类。随着中国万米深井钻探技术的发展,高温钻井液漏失问题接踵而至,而处理高温高压地层钻井液漏失最大的挑战是桥塞堵漏材料的抗/耐高温性能及承压强度。
现有高温高压井钻井液防漏堵漏技术缺少兼有抗高温不降解、高强度不破碎、低密度不沉降、耐酸碱不腐蚀、惰性不吸水等优点的抗超高温高承压刚性架桥颗粒;缺少抗高温不降解、高强度不断裂、强分散不团聚、耐酸碱不腐蚀等优点的抗高温高强度纤维材料。
发明内容
本发明的目的是为了解决上述问题,提供一种万米深井钻井液用抗超高温高承压堵漏剂及其应用,该堵漏剂包括刚性架桥颗粒、纤维材料、微细填充颗粒、弹性变形颗粒、片状填塞材料等组份,通过五种材料的合理复配,提高高温高压裂缝地层的承压能力,满足不同开度裂缝性漏失地层堵漏的需要。
本发明的上述技术目的是通过以下技术方案得以实现的:一种万米深井钻井液用抗超高温高承压堵漏剂,按重量百分含量计,包括以下组分:(1)10%~30%的抗超高温高承压刚性架桥颗粒;(2)5%~10%的抗超高温高强度合成纤维材料;(3)40%~50%的维细填充颗粒;(4)10%~20%的弹性变形颗粒;(5)片状填塞材料10%~20%。
本发明进一步设置为:所述抗超高温高承压刚性架桥颗粒的制备方法包括以下步骤:
S1:将含有杂环高分子的单体材料聚苯硫醚粒料作为基料和碳酸钙晶须在超高速混合机内共混,使基料熔融后与无机填料充分混合;
S2:用双螺杆挤出机熔融混合挤出,挤出成型的同时加入碳纤维,后造粒得到抗超高温高承压刚性架桥颗粒。
通过采用上述技术方案,分子链中含有元素高分子(如含氟高分子、有机硅高分子)和杂环高分子(如刚性苯环等),在热或热、氧同时作用下,不发生化学变化,具有抗/耐高温特性,但由于基料机械性能、力学性能等较差,且成本较高,而其与无机填料(如碳酸钙、石墨、纳米材料、碳纳米管等)和增强材料(如玻璃纤维、碳纤维、芳纶等)等具有良好的亲和能力,共混填充改性后可提高其耐温性、刚性、韧性、耐化学性能等,且大大降低成本;通过上述方法制备得到的抗超高温高承压刚性架桥颗粒具有抗高温不降解、高强度不破碎、低密度不沉降、耐酸碱不腐蚀、惰性不吸水、产品原料充足,易于加工,使用工艺简便,安全环保的特点
本发明进一步设置为:所述抗超高温高强度合成纤维材料的制备方法包括以下步骤:
S1:将石料和合金粉碎处理成细小颗粒,在超高速混合机中熔融混合均匀,所述石料可选用辉长岩、辉绿岩、橄榄石、角闪石和玄武岩;所述合金可选用铝、铜;
S2:将细小颗粒熔融后经过合金漏板快速拉丝,制成抗高温纤维基料;
S3:将抗高温纤维基料经过涂油器,利用硅烷偶联剂对抗高温纤维基料进行表面浸润;
S4:将浸润的抗高温纤维基料经过烘干器烘干得到抗高温合成纤维材料;
S5:将抗高温合成纤维材料经切割机加工成需要的长度。
通过采用上述技术方案,制备的抗超高温高强度合成纤维材料具有抗高温不降解、高强度不断裂、强分散不团聚、耐酸碱不腐蚀、化学惰性、不与钻井液反应,对钻井液体系性能影响较小,具有良好的配伍性、产品原料充足,易于加工,使用工艺简便,安全环保。
本发明进一步设置为:所述微细填充颗粒为20~40目、40~80目、80~160目的不同粒径级配的颗粒,所述微细填充颗粒可选用石灰石颗粒、方解石颗粒、石英砂颗粒。
通过采用上述技术方案,微细填充颗粒粒径级配合理,在钻井液中悬浮稳定性好,架桥颗粒在裂缝中成功架桥后,微细填充颗粒进一步充填架桥颗粒之间的孔隙,降低封堵层渗透率,进一步降低漏失量。
本发明进一步设置为:所述弹性变性颗粒为10~20目、20~40目、40~80目的不同粒径级配的颗粒,所述弹性变性颗粒为弹性石墨颗粒。
通过采用上述技术方案,弹性变形颗粒粒径级配合理,钻井液中悬浮稳定性好,弹性变形率高,在钻井作业中,裂缝开度随钻井液当量循环密度动态变化,且难以准确预测裂缝开度,弹性变形颗粒的加入使得封堵层自适应裂缝开度的变化;弹性颗粒由于弹性变形特征充填于微小孔隙之间,进一步降低封堵层渗透率,增加封堵层强力链数目,提高封堵层致密承压能力。
本发明进一步设置为:所述片状填塞材料为云母片。
通过采用上述技术方案,由于云母片具有良好的抗温、抗酸、抗碱性、抗压性能,在700℃摄氏度以内,其机械性能、物理化学性能均不发生任何改变。形状为片状,通过不同方向的填塞作用来提高封堵层的致密承压能力。
本发明还提供了一种万米深井钻井液用抗超高温高承压堵漏剂在石油钻井防漏堵漏上的应用。
综上所述,本发明具有以下有益效果:
本发明的钻井液用抗高温高承压堵漏剂通过研制和优选的刚性架桥颗粒、纤维材料、微细填充颗粒、弹性变形颗粒、片状填塞材料等合理的堵漏材料类型和粒度级配优化控制,构成“强力链网络”的裂缝致密承压封堵层,从而显著提高高温高压地层钻井液封堵承压能力,可针对不同裂缝开度钻井液漏失优化堵漏配方,形成“一袋化”高温高压地层防漏堵漏产品;
本发明的钻井液用抗高温高承压堵漏剂抗温能力强,温度大于260℃而不发生降解,粒度分布可调,密度低,悬浮稳定性好,高温下抗压强度高,耐酸碱不发生腐蚀,化学稳定性好。
附图说明
图1是本发明实施例中封堵域扫描电镜照片(260℃)。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明的实施例及附图,对本发明的技术方案进行进一步详细地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
实施例1:
一种万米深井钻井液用抗超高温高承压堵漏剂,由3%的20~40目石灰石颗粒,5%的40~80目石灰石颗粒,2%的20~40目弹性石墨,1%的40~80目弹性石墨,1%的80~160目弹性石墨,0.5%的3mm抗超高温高强度合成纤维材料组成,以上比例均是基于500mL堵漏基浆的质量占比;
实施例2:一种万米深井钻井液用抗超高温高承压堵漏剂,本实施例与实施例1的区别在于:由2%的10~20目抗超高温高承压刚性架桥颗粒,4%的石灰石颗粒20~40目,2%的石灰石颗粒40~80目,2%的10~20目弹性石墨,2%的20~40目弹性石墨,3%的40~80目弹性石墨,1%的6mm抗超高温高强度合成纤维材料组成。
实施例3:一种万米深井钻井液用抗超高温高承压堵漏剂,本实施例与实施例1的区别在于:由2%的8~10目的抗超高温高承压刚性架桥颗粒,2%的10~20目抗超高温高承压刚性架桥颗粒,4%的20~40目石灰石颗粒,3%的40~80目石灰石颗粒,2%的80~160目石灰石颗粒,2%的10~20目弹性石墨,1%的20~40目弹性石墨,2%的40~80目弹性石墨,1%的6mm抗超高温高强度合成纤维材料组成。
实施例4:一种万米深井钻井液用抗超高温高承压堵漏剂,本实施例与实施例1的区别在于:由3%的5~10目由抗超高温高承压刚性架桥颗粒,3%的10~20目抗超高温高承压刚性架桥颗粒,4%的20~40目石灰石颗粒,2%的40~80目石灰石颗粒,2%的80~160目石灰石颗粒,2%的10~20目弹性石墨,2%20~40目弹性石墨,1%的40~80目弹性石墨,2%的云母片,2%的12mm抗超高温高强度合成纤维材料组成。
实施例5:一种万米深井钻井液用抗超高温高承压堵漏剂,本实施例与实施例1的区别在于:由4%的4~6目的抗超高温高承压刚性架桥颗粒,2%的5~10目的抗超高温高承压刚性架桥颗粒,3%的10~20目抗超高温高承压刚性架桥颗粒,4%的20~40目的石灰石颗粒,2%的40~80目石灰石颗粒,2%的80~160目石灰石颗粒,2%的10~20目弹性石墨,2%的20~40目弹性石墨,1%的40~80目弹性石墨,2%的云母片,2%的12mm抗超高温高强度合成纤维材料组成。
实施例1-实施例5中,抗超高温高承压刚性架桥颗粒的制备方法:按重量份配比,聚苯硫醚粒料92份,碳酸钙晶须8份。将聚苯硫醚粒料和碳酸钙晶须加入超高速混合机内共混,在340℃温度下搅拌20分钟,在320℃下用双螺杆挤出机熔融混合挤出,挤出成型的同时,加入10%碳纤维,然后造粒得到900~6700μm的抗超高温高承压刚性架桥颗粒,其密度为1.3g/cm3,在钻井液中260℃/16h老化后质量损失率为0.85%,老化后30MPa下D(90)降级率为4.28%,30MPa下弹性变形率为14.30%。
抗超高温高强度合成纤维材料制备方法:按重量份配比,辉长岩32份、角闪石30份、玄武岩30份,铝合金4份、铜合金4份。将岩料和合金粉碎处理成6~10目的细小颗粒,1500℃下在超高速混合机中熔融混合30分钟,熔融后经过合金漏板快速拉丝,制成抗高温纤维基料,后经过涂油器,利用硅烷偶联剂对抗高温纤维基料进行表面浸润,经过烘干器烘干得到抗高温合成纤维材料,后经切割机加工成3~12mm长度,其在水中分散性良好,260℃/16h老化后质量损失率为13.84%,强度损失率为7.23%,120℃条件下pH=12氢氧化钠溶液和质量分数15%的盐酸溶液处理四小时后质量损失率分别为3.8%和2.4%,强度损失率分别为12.38%和10.23%。
上述抗超高温高承压刚性架桥颗粒及抗超高温高强度合成纤维材料的相关性能数据测试方法如下:
质量损失率:
配置基浆(4%膨润土浆+0.2%NaOH+0.2%XC+0.4%CMC-HV+1%FLO),重晶石加重至1.2g/cm3;分别向基浆中加入5%wt的评价样品,质量记为m1,高速搅拌均匀;将实验浆装入高温老化罐中,在260℃下热滚老化16h后,漂洗、烘干后称量样品质量,记为m2
Figure SMS_1
式中:
M——质量损失率,%;m1——老化前样品质量,g;m2——老化后样品质量,g。
D(90)降级率:
称取100g样品,通过筛分法确定受压前样品D(90)值,量取30mL样品转移至模具中,轻轻震荡压实,利用压力机加压30MPa模拟裂缝闭合应力,加压10min后释放压力,静置10min后取出样品,通过筛分法确定受压后堵漏材料的D(90)值,以粒度降级率SC为评价指标,评价堵漏材料的抗压强度。
Figure SMS_2
式中:
SC——颗粒粒度降级率,%;D(90)——颗粒受压前粒度特征参数,μm;D′(90)——颗粒受压后粒度特征参数,μm。
弹性变形率:
量取30mL样品转移至模具中,利用压力机加压30MPa模拟裂缝闭合应力,加压稳定后,测定样品压缩后高度HC,10min后泄压,静置30min后,测量样品高度HR;以弹性变形率RE为评价指标,评价样品的弹性特征。
Figure SMS_3
式中:RE——颗粒弹性变形率,%;HC——颗粒压缩高度,μm;HR——颗粒受压回弹高度,μm。
强度损失率:
采用LLY型电子单纤维强力仪,测试老化前纤维的强度S1,配置基浆(4%膨润土浆+0.2%NaOH+0.2%XC+0.4%CMC-HV+1%FLO),重晶石加重至1.2g/cm3。分别向基浆中加入1%wt的纤维样品,高速搅拌均匀。将实验浆装入高温老化罐中,在260℃下热滚老化16h后,漂洗、烘干后测试纤维样品的强度S2
Figure SMS_4
式中:
S——质量损失率,%;S1——老化前纤维样品强度,cN/dtex;S2——老化后纤维样品强度,cN/dtex。
耐酸碱性能:
分别配置10%盐酸溶液、PH=12的NaOH溶液各200mL,称取2%的样品倒入溶液中,充分搅拌均匀,放于120℃水浴锅中静止4h,取出后漂洗、干燥、称重,按照上述质量损失率、强度损失率方法测试样品化学稳定性。
工作原理:刚性架桥颗粒首先在孔喉或裂缝狭窄处稳定架桥,形成承压封堵层的骨架;纤维材料通过离散界面作用和密集成网作用提高封堵层剪切强度,有助于形成强力链网络结构,显著提高封堵层的致密承压能力;弹性变形颗粒在挤压变形及弹性膨胀双重作用下,自适应充填刚性架桥颗粒之间的孔隙空间,片状材料起到填塞作用提高封堵层整体结构稳定性。
抗高温高承压堵漏剂的裂缝封堵能力测试:配置抗高温钻井液体系,根据实施例1~5中的比例加入到钻井液中,搅拌均匀,利用高温高压(HTHP)堵漏模拟实验装置,裂缝模块加热至260℃,对于实施例分别采用不同缝宽的楔形裂缝模块进行裂缝封堵实验,包括1×0.5mm、2×1mm、3×2mm、4×3mm、5×4mm等五种不同规格,可以用来模拟不同漏失速度的漏层,调节氮气瓶阀门,使堵漏釜体内压力缓慢增加至1MPa,稳压10分钟后,重复上述实验步骤,直至漏失重新发生,记录承压能力和漏失量;
如表1所示的测试结果可知:本发明的钻井液用抗高温高承压堵漏剂能有效封堵5mm以内不同开度裂缝,在260℃条件下承压能力达到30MPa以上,通过刚性架桥颗粒、纤维材料、微细填充颗粒、弹性变形颗粒、片状填塞材料等协同作用,可构成“强力链网络”的裂缝致密承压封堵层,如图1所示,260℃条件下依然能形成封堵层,微观区域颗粒和纤维协同封堵,形成“一袋化”高温高压地层防漏堵漏产品,为中国万米深井钻井液漏失提供超高温堵漏材料。
表1钻井液用抗高温高承压堵漏剂裂缝封堵实验结果
Figure SMS_5
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。

Claims (7)

1.一种万米深井钻井液用抗超高温高承压堵漏剂,其特征是:按重量百分含量计,包括以下组分:(1)10%~30%的抗超高温高承压刚性架桥颗粒;(2)5%~10%的抗超高温高强度合成纤维材料;(3)40%~50%的维细填充颗粒;(4)10%~20%的弹性变形颗粒;(5)片状填塞材料10%~20%。
2.根据权利要求1所述的一种万米深井钻井液用抗超高温高承压堵漏剂,其特征是:所述抗超高温高承压刚性架桥颗粒的制备方法包括以下步骤:
S1:将含有杂环高分子的单体材料聚苯硫醚粒料作为基料和碳酸钙晶须在超高速混合机内共混,使基料熔融后与无机填料充分混合;
S2:用双螺杆挤出机熔融混合挤出,挤出成型的同时加入碳纤维,后造粒得到抗超高温高承压刚性架桥颗粒。
3.根据权利要求1所述的一种万米深井钻井液用抗超高温高承压堵漏剂,其特征是:所述抗超高温高强度合成纤维材料的制备方法包括以下步骤:
S1:将石料和合金粉碎处理成细小颗粒,在超高速混合机中熔融混合均匀,所述石料可选用辉长岩、辉绿岩、橄榄石、角闪石和玄武岩;所述合金可选用铝、铜;
S2:将细小颗粒熔融后经过合金漏板快速拉丝,制成抗高温纤维基料;
S3:将抗高温纤维基料经过涂油器,利用硅烷偶联剂对抗高温纤维基料进行表面浸润;
S4:将浸润的抗高温纤维基料经过烘干器烘干得到抗高温合成纤维材料;
S5:将抗高温合成纤维材料经切割机加工成需要的长度。
4.根据权利要求1所述的一种万米深井钻井液用抗超高温高承压堵漏剂,其特征是:所述微细填充颗粒为20~40目、40~80目、80~160目的不同粒径级配的颗粒,所述微细填充颗粒可选用石灰石颗粒、方解石颗粒、石英砂颗粒。
5.根据权利要求1所述的一种万米深井钻井液用抗超高温高承压堵漏剂,其特征是:所述弹性变性颗粒为10~20目、20~40目、40~80目的不同粒径级配的颗粒,所述弹性变性颗粒为弹性石墨颗粒。
6.根据权利要求1所述的一种万米深井钻井液用抗超高温高承压堵漏剂,其特征是:所述片状填塞材料为云母片。
7.根据权利要求1所述的一种万米深井钻井液用抗超高温高承压堵漏剂在石油钻井防漏堵漏上的应用。
CN202310252117.8A 2023-03-15 2023-03-15 一种万米深井钻井液用抗超高温高承压堵漏剂及其应用 Pending CN116376522A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310252117.8A CN116376522A (zh) 2023-03-15 2023-03-15 一种万米深井钻井液用抗超高温高承压堵漏剂及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310252117.8A CN116376522A (zh) 2023-03-15 2023-03-15 一种万米深井钻井液用抗超高温高承压堵漏剂及其应用

Publications (1)

Publication Number Publication Date
CN116376522A true CN116376522A (zh) 2023-07-04

Family

ID=86977951

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310252117.8A Pending CN116376522A (zh) 2023-03-15 2023-03-15 一种万米深井钻井液用抗超高温高承压堵漏剂及其应用

Country Status (1)

Country Link
CN (1) CN116376522A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117186852A (zh) * 2023-11-06 2023-12-08 中石化西南石油工程有限公司 适用于深层页岩气破碎地层的防塌油基钻井液及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117186852A (zh) * 2023-11-06 2023-12-08 中石化西南石油工程有限公司 适用于深层页岩气破碎地层的防塌油基钻井液及其制备方法
CN117186852B (zh) * 2023-11-06 2024-02-27 中石化西南石油工程有限公司 适用于深层页岩气破碎地层的防塌油基钻井液及其制备方法

Similar Documents

Publication Publication Date Title
Esfahlan et al. Comprehensive review on the research and field application of preformed particle gel conformance control technology
US10036239B2 (en) Graphene enhanced polymer composites and methods thereof
US8132623B2 (en) Methods of using lost circulation compositions
Jia et al. Development of a highly elastic composite gel through novel intercalated crosslinking method for wellbore temporary plugging in high-temperature reservoirs
Ma et al. Core–shell structure acrylamide copolymer grafted on nano-silica surface as an anti-calcium and anti-temperature fluid loss agent
CN114672289B (zh) 一种用于裂缝漏层的延迟膨胀防漏堵漏工作液及制备方法
Zhao et al. Experimental investigation of the effect of drilling fluid on wellbore stability in shallow unconsolidated formations in deep water
CN116376522A (zh) 一种万米深井钻井液用抗超高温高承压堵漏剂及其应用
Yan et al. Wellbore instability induced by the coupling of high-pH fluid–shale reaction and fracture surface sliding in shale gas wells: Experimental and field studies
AU2011234256A1 (en) Methods for strengthening fractures in subterannean formations
Haque et al. Nano-composite resin coated proppant for hydraulic fracturing
Barani et al. Effect of xanthan gum biopolymer on fracture properties of clay
Ay et al. An experimental study of silicate–polymer gel systems to seal shallow water flow and lost circulation zones in top hole drilling
CN111363527A (zh) 一种低温高强油气井封堵剂
Magzoub et al. Evaluating sealability of blended smart polymer and fiber additive for geothermal drilling with the effect of fracture opening size
Luo et al. Development of in-situ starch grafted copolymerized gels for conglomerate reservoir conformance control and oil recovery improvement
Davoodi et al. Recent advances in polymers as additives for wellbore cementing applications: A review
Mohammed Characterization and modeling of polymer-treated and nano particle modified sulfate contaminated soils, drilling muds, and hydraulic fracturing fluids under groundwater
CN113004879A (zh) 一种井壁承压封堵剂及其制备方法
Olayiwola et al. The application of Nano-silica gel in sealing well micro-annuli and cement channeling
Bai et al. Use of a polymer gel for killing a high-temperature and high-pressure gas well
Lalji et al. Experimental Effect of Biopolymers, Synthetic and Modified Polymers on Western Pakistan Shale (GHAZIJ) Stability
CN109206109A (zh) 一种堵漏剂及其制备方法和应用
CN116083063B (zh) 一种延迟膨胀堵漏体系及其制备方法
Lu et al. The study and application of intelligent thixotropic cement slurry based on nanotechnology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination