CN116375422B - 一种抗侵蚀海工混凝土及其制备方法 - Google Patents

一种抗侵蚀海工混凝土及其制备方法 Download PDF

Info

Publication number
CN116375422B
CN116375422B CN202310333670.4A CN202310333670A CN116375422B CN 116375422 B CN116375422 B CN 116375422B CN 202310333670 A CN202310333670 A CN 202310333670A CN 116375422 B CN116375422 B CN 116375422B
Authority
CN
China
Prior art keywords
concrete
fiber
mass ratio
fibers
whisker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310333670.4A
Other languages
English (en)
Other versions
CN116375422A (zh
Inventor
金生林
倪荣凤
纪小敏
李云杰
蒋文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yancheng Fuqi Concrete Co ltd
Original Assignee
Yancheng Fuqi Concrete Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yancheng Fuqi Concrete Co ltd filed Critical Yancheng Fuqi Concrete Co ltd
Priority to CN202310333670.4A priority Critical patent/CN116375422B/zh
Publication of CN116375422A publication Critical patent/CN116375422A/zh
Application granted granted Critical
Publication of CN116375422B publication Critical patent/CN116375422B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/383Whiskers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/386Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • C04B18/142Steelmaking slags, converter slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • C04B18/167Recycled materials, i.e. waste materials reused in the production of the same materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/023Chemical treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/24Sea water resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • C04B2111/343Crack resistant materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/20Mortars, concrete or artificial stone characterised by specific physical values for the density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

本发明公开了一种抗侵蚀海工混凝土及其制备方法,涉及混凝土技术领域。本发明以碳纤维为基底,依次沉积生长碳化硅晶须、氧化镁,能够在混凝土中相互缠结,使混凝土结构更加致密,并且随着水化程度的加深,和碳纤维、玄武岩纤维构建“网中网”空间结构,提高混凝土的抗裂、抗侵蚀性,再利用等离子活化、溴丁基三甲氧基硅烷、三甲基氯硅烷接枝改性,能够与水化产物反应,填充在混凝土表面的微裂缝和微孔中,阻止水分及离子渗透扩散。本发明合理匹配各原料,产生交互叠加效应,在水化过程中相互填充,使得海工混凝土具有很好的抗裂、抗侵蚀性能。

Description

一种抗侵蚀海工混凝土及其制备方法
技术领域
本发明涉及混凝土技术领域,具体为一种抗侵蚀海工混凝土及其制备方法。
背景技术
随着国民经济的快速发展和海洋强国战略的提出,许多基础设施建设工程项目从近海走向远海甚至深海,工程对混凝土材料及结构的抗侵蚀能力和耐久性要求越来越高。处于海洋环境下的混凝土长期受盐雾、侵蚀介质、海浪冲刷、大气、水、温度等多种因素作用,会极大地降低其使用寿命。同时,当混凝土长期使用后,其内部和表面会发生开裂现象,从而影响混凝土的正常使用功能和耐久性,当裂缝宽度超过一定的限度后会影响到混凝土构件的承载力、刚度和正常使用功能。因此,研究出一种具有较好的抗裂性能、抗侵蚀的混凝土具有十分重要意义。
发明内容
本发明的目的在于提供一种抗侵蚀海工混凝土及其制备方法,以解决现有技术中存在的问题。
为了解决上述技术问题,本发明提供如下技术方案:一种抗侵蚀海工混凝土,所述抗侵蚀海工混凝土包括增强纤维、玄武岩纤维、粉煤灰、矿渣粉、石灰石粉、硅灰、再生微粉、钢渣、镍渣、硅酸盐水泥、聚羧酸减水剂、水、轻骨料。
进一步的,所述增强纤维经过二次沉积、二次改性制得。
进一步的,所述第一次沉积为:将碳纤维经氢氟酸、去离子水浸泡处理后,在沉积液中液相沉积一段时间,取出,高温处理得晶须纤维;所述第二次沉积为:向晶须纤维离子束沉积氧化镁,得含镁晶须纤维;所述二次改性为:含镁晶须纤维经氧等离子预改性后,溴丁基三甲氧基硅烷、三甲基氯硅烷接枝改性。
进一步的,所述玄武岩纤维为5~20mm长、直径为10~20μm的短切玄武岩纤维;所述粉煤灰为Ⅰ级粉煤灰;所述矿渣粉为S95级矿渣粉或S105级矿渣粉,比面积为400~800m2/kg;所述石灰石粉比表面积为600~900m2/kg;所述再生微粉为混凝土预拌厂内含固废弃浆体经砂石分离后的废渣,比表面为400~800m2/kg;所述钢渣比表面积为390~440m2/kg;所述镍渣比表面积为400~500m2/kg。
进一步的,一种抗侵蚀海工混凝土的制备方法,包括以下制备步骤:
(1)将粉煤灰、矿渣粉、石灰石粉、硅灰、再生微粉、钢渣、镍渣、硅酸盐水泥、轻骨料按质量比88:78:42:25:79:70:70:200:250~160:102:70:40:90:100:98:300:380混合,搅拌均匀;
(2)向步骤(1)加入硅酸盐水泥质量0.4~0.5倍的增强纤维、硅酸盐水泥质量0.3倍的玄武岩纤维,搅拌均匀;
(3)将聚羧酸减水剂、水搅拌均匀得混合液,再向步骤(2)加入混合液,搅拌均匀得抗侵蚀海工混凝土。
进一步的,步骤(2)所述增强纤维的制备方法为:
A、将直径为10~20μm的碳纤维按料液比1:10~1:20浸于质量分数为4%的氢氟酸,浸泡4~8min后,取出,按料液比1:10浸于去离子水,浸泡50~60min后,按料液比1:10~1:20浸于沉积液中,40℃、600W超声沉积3~4h后,过滤,120℃烘干4h,再置于石墨坩埚,石墨坩埚内壁涂刷一层氮化硼隔离剂,然后置于加热设备中,升温至650~700℃,保温反应3~5h后,氩气保护下,升温至1450~1500℃,保温2~4h得晶须纤维;
B、将晶须纤维置于离子束设备中,抽真空至2×10-3~5×10-3Pa,采用氧化镁为蒸发材料,氩离子束的入射角和晶须纤维呈45°,离子能量为1~5keV、300~350℃沉积20~30min后,450~500℃退火40min得含镁晶须纤维;
C、将含镁晶须纤维置于等离子体发生器中,氧气氛围下,200~300W处理10min得预改性纤维;将预改性纤维、无水乙醇、溴丁基三甲氧基硅烷按质量比1:12:0.2~1:12:0.3混合,500W超声1~3h后,8000rpm离心5min,60℃、真空度-0.09MPa下干燥72h得中间物A;冰水浴下,将中间物A、四氢呋喃、三甲基氯硅烷按质量比1:7:2~1:11:3混合,移至室温,80℃加热3~4h后,冷却至室温,加入中间物A质量10.2倍的质量分数为4.4%的盐酸,搅拌均匀,抽滤,用甲苯洗涤6次,60℃干燥12h得增强纤维
进一步的,步骤A所述沉积液的制备方法为:向氟硅酸溶液加入高纯硅酸至饱和,氟硅酸溶液中氟硅酸和去离子水的质量比为1:1.9~1:2.3,溶液饱和状态为加入过氧化氢呈橙黄色。
进一步的,步骤(3)所述聚羧酸减水剂与硅酸盐水泥的质量比为6:200~9:300,水与硅酸盐水泥的质量比为110:200~140:300。
与现有技术相比,本发明所达到的有益效果是:
本发明通过增强纤维、玄武岩纤维、粉煤灰、矿渣粉、石灰石粉、硅灰、再生微粉、废弃钢渣、镍渣合理匹配,产生交互叠加效应,在水化过程中相互填充,使得海工混凝土孔隙率降低,密实度提高,有效抵抗有害介质渗透的能力,具有很好的抗裂、抗侵蚀性能。
本发明进行第一次沉积处理,以碳纤维为基底,电沉积二氧化硅层,再以碳纤维为碳源,在高温环境下,二氧化硅受热优先分解,生成气态的一氧化硅的同时,暴露出碳纤维,气态的一氧化硅与碳纤维表面被高温活化的碳原子反应,形成碳化硅纳米颗粒,并外延生长成晶须,能够在混凝土中相互缠结,并通过缠结应力,阻止混凝土裂缝扩大,同时碳纤维与玄武岩纤维共同搭接,形成网状结构,承受裂缝发展传来的一部分拉应力,且碳纤维表面的晶须切断毛细管通道,使混凝土结构更加致密,提高抗裂性;接着进行第二次沉积处理,离子束沉积氧化镁,包裹碳化硅晶须,能够改善纤维与水泥浆体的界面,且氧化镁可水化形成疏水作用的氢氧化镁,减少海水侵蚀,同时还能和碳纤维、玄武岩纤维构建“网中网”空间结构,提高混凝土的抗裂性能;然后进行第一次改性处理,等离子活化纤维,增加反应活性位点,同时增加与水泥的胶结性;接着进行第二次改性处理,溴丁基三甲氧基硅烷的硅氧键接枝于纤维表面,溴离子再与三甲基氯硅烷的氯离子反应,在纤维表面引入硅氧烷基团,能够水解形成高反应活性的硅烷醇基团,硅烷醇基团继续与水化产物中的羟基发生不可逆反应,形成化学结合,反应产物填充在混凝土表面的微裂缝和微孔中,使混凝土更加密实,阻止水分及离子渗透扩散。
其次,本发明利用再生微粉、废弃钢渣、镍渣代替部分水泥,能降低水化热,提高混凝土的力学性能和工作性能,提高耐磨性和耐久性,还能降低混凝土的生产成本,节约能耗,且遇水后水化活性得到激活;再生微粉中的活性二氧化硅、氧化铝与氢氧化钙发生火山灰反应,生成二次水化产物,再生微粉中非活性成分发挥微集料效应,分别填充混凝土内部尺寸较大的毛细孔,使孔径细化,降低氯离子的扩散和迁移,提高海工混凝土的抗氯盐侵蚀性能。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了更清楚的说明本发明提供的方法通过以下实施例进行详细说明,在以下实施例中制作的抗侵蚀海工混凝土的各指标测试方法如下:
取相同质量的实施例与对比例参照GB50081人工捣实制备得到边长为150mm的立方体标准试块,置于标准养护箱内,25℃、湿度为95%条件下养护48h后脱模,在20℃、湿度为95%条件下养护至28d,得到标准试块,进行抗侵蚀、抗裂效果测试
抗侵蚀:参照GB/T 749测量侵蚀系数;
抗裂:参照GB/T 50081测试混凝土抗压强度和劈裂抗拉强度,观察试块是否产生裂缝,并记录裂缝长度。
实施例1
(1)将粉煤灰、矿渣粉、石灰石粉、硅灰、再生微粉、钢渣、镍渣、硅酸盐水泥、轻骨料按质量比88:78:42:25:79:70:70:200:250混合,搅拌均匀;
(2)向氟硅酸溶液加入高纯硅酸至饱和,氟硅酸溶液中氟硅酸和去离子水的质量比为1:1.9,溶液饱和状态为加入过氧化氢呈橙黄色,得沉积液;将直径为10μm的碳纤维按料液比1:10浸于质量分数为4%的氢氟酸,浸泡4min后,取出,按料液比1:10浸于去离子水,浸泡50min后,按料液比1:10浸于沉积液中,40℃、600W超声沉积3h后,过滤,120℃烘干4h,再置于石墨坩埚,石墨坩埚内壁涂刷一层氮化硼隔离剂,然后置于加热设备中,升温至650℃,保温反应3h后,氩气保护下,升温至1450℃,保温2h得晶须纤维;
(3)将晶须纤维置于离子束设备中,抽真空至2×10-3Pa,采用氧化镁为蒸发材料,氩离子束的入射角和晶须纤维呈45°,离子能量为1keV、300℃沉积20min后,450℃退火40min得含镁晶须纤维;
(4)将含镁晶须纤维置于等离子体发生器中,氧气氛围下,200W处理10min得预改性纤维;将预改性纤维、无水乙醇、溴丁基三甲氧基硅烷按质量比1:12:0.2混合,500W超声1h后,8000rpm离心5min,60℃、真空度-0.09MPa下干燥72h得中间物A;冰水浴下,将中间物A、四氢呋喃、三甲基氯硅烷按质量比1:7:2混合,移至室温,80℃加热3h后,冷却至室温,加入中间物A质量10.2倍的质量分数为4.4%的盐酸,搅拌均匀,抽滤,用甲苯洗涤6次,60℃干燥12h得增强纤维;
(5)向步骤(1)加入硅酸盐水泥质量0.4倍的增强纤维、硅酸盐水泥质量0.3倍的玄武岩纤维,搅拌均匀;
(6)将聚羧酸减水剂、水搅拌均匀得混合液,聚羧酸减水剂与硅酸盐水泥的质量比为6:200,水与硅酸盐水泥的质量比为110:200,再向步骤(5)加入混合液,搅拌均匀得抗侵蚀海工混凝土。
实施例2
(1)将粉煤灰、矿渣粉、石灰石粉、硅灰、再生微粉、钢渣、镍渣、硅酸盐水泥、轻骨料按质量比124:90:56:32.5:84.5:85:84:250:315混合,搅拌均匀;
(2)向氟硅酸溶液加入高纯硅酸至饱和,氟硅酸溶液中氟硅酸和去离子水的质量比为1:2.1,溶液饱和状态为加入过氧化氢呈橙黄色,得沉积液;将直径为15μm的碳纤维按料液比1:15浸于质量分数为4%的氢氟酸,浸泡6min后,取出,按料液比1:10浸于去离子水,浸泡55min后,按料液比1:15浸于沉积液中,40℃、600W超声沉积3.5h后,过滤,120℃烘干4h,再置于石墨坩埚,石墨坩埚内壁涂刷一层氮化硼隔离剂,然后置于加热设备中,升温至675℃,保温反应4h后,氩气保护下,升温至1475℃,保温3h得晶须纤维;
(3)将晶须纤维置于离子束设备中,抽真空至3.5×10-3Pa,采用氧化镁为蒸发材料,氩离子束的入射角和晶须纤维呈45°,离子能量为3keV、325℃沉积25min后,475℃退火40min得含镁晶须纤维;
(4)将含镁晶须纤维置于等离子体发生器中,氧气氛围下,250W处理10min得预改性纤维;将预改性纤维、无水乙醇、溴丁基三甲氧基硅烷按质量比1:12:0.25混合,500W超声2h后,8000rpm离心5min,60℃、真空度-0.09MPa下干燥72h得中间物A;冰水浴下,将中间物A、四氢呋喃、三甲基氯硅烷按质量比1:9:2.5混合,移至室温,80℃加热3.5h后,冷却至室温,加入中间物A质量10.2倍的质量分数为4.4%的盐酸,搅拌均匀,抽滤,用甲苯洗涤6次,60℃干燥12h得增强纤维;
(5)向步骤(1)加入硅酸盐水泥质量0.45倍的增强纤维、硅酸盐水泥质量0.3倍的玄武岩纤维,搅拌均匀;
(6)将聚羧酸减水剂、水搅拌均匀得混合液,聚羧酸减水剂与硅酸盐水泥的质量比为7.5:250,水与硅酸盐水泥的质量比为125:250,再向步骤(5)加入混合液,搅拌均匀得抗侵蚀海工混凝土。
实施例3
(1)将粉煤灰、矿渣粉、石灰石粉、硅灰、再生微粉、钢渣、镍渣、硅酸盐水泥、轻骨料按质量比160:102:70:40:90:100:98:300:380混合,搅拌均匀;
(2)向氟硅酸溶液加入高纯硅酸至饱和,氟硅酸溶液中氟硅酸和去离子水的质量比为1:2.3,溶液饱和状态为加入过氧化氢呈橙黄色,得沉积液;将直径为20μm的碳纤维按料液比1:20浸于质量分数为4%的氢氟酸,浸泡8min后,取出,按料液比1:10浸于去离子水,浸泡60min后,按料液比1:20浸于沉积液中,40℃、600W超声沉积4h后,过滤,120℃烘干4h,再置于石墨坩埚,石墨坩埚内壁涂刷一层氮化硼隔离剂,然后置于加热设备中,升温至700℃,保温反应5h后,氩气保护下,升温至1500℃,保温4h得晶须纤维;
(3)将晶须纤维置于离子束设备中,抽真空至5×10-3Pa,采用氧化镁为蒸发材料,氩离子束的入射角和晶须纤维呈45°,离子能量为5keV、350℃沉积30min后,500℃退火40min得含镁晶须纤维;
(4)将含镁晶须纤维置于等离子体发生器中,氧气氛围下,300W处理10min得预改性纤维;将预改性纤维、无水乙醇、溴丁基三甲氧基硅烷按质量比1:12:0.3混合,500W超声3h后,8000rpm离心5min,60℃、真空度-0.09MPa下干燥72h得中间物A;冰水浴下,将中间物A、四氢呋喃、三甲基氯硅烷按质量比1:11:3混合,移至室温,80℃加热4h后,冷却至室温,加入中间物A质量10.2倍的质量分数为4.4%的盐酸,搅拌均匀,抽滤,用甲苯洗涤6次,60℃干燥12h得增强纤维;
(5)向步骤(1)加入硅酸盐水泥质量0.5倍的增强纤维、硅酸盐水泥质量0.3倍的玄武岩纤维,搅拌均匀;
(6)将聚羧酸减水剂、水搅拌均匀得混合液,聚羧酸减水剂与硅酸盐水泥的质量比为9:300,水与硅酸盐水泥的质量比为140:300,再向步骤(5)加入混合液,搅拌均匀得抗侵蚀海工混凝土。
对比例1
对比例1与实施例2的区别在于无步骤(2),步骤(3)改为:将直径为15μm的碳纤维置于离子束设备中,抽真空至3.5×10-3Pa,采用氧化镁为蒸发材料,氩离子束的入射角和晶须纤维呈45°,离子能量为3keV、325℃沉积25min后,475℃退火40min得含镁晶须纤维。其余步骤同实施例2。
对比例2
对比例2与实施例2的区别在于无步骤(3),步骤(4)改为:将晶须纤维置于等离子体发生器中,氧气氛围下,250W处理10min得预改性纤维;将预改性纤维、无水乙醇、溴丁基三甲氧基硅烷按质量比1:12:0.25混合,500W超声2h后,8000rpm离心5min,60℃、真空度-0.09MPa下干燥72h得中间物A;冰水浴下,将中间物A、四氢呋喃、三甲基氯硅烷按质量比1:9:2.5混合,移至室温,80℃加热3.5h后,冷却至室温,加入中间物A质量10.2倍的质量分数为4.4%的盐酸,搅拌均匀,抽滤,用甲苯洗涤6次,60℃干燥12h得增强纤维。其余步骤同实施例2。
对比例3
对比例3与实施例2的区别在于步骤(4)的不同,将步骤(4)改为:将含镁晶须纤、无水乙醇、溴丁基三甲氧基硅烷按质量比1:12:0.25混合,500W超声2h后,8000rpm离心5min,60℃、真空度-0.09MPa下干燥72h得中间物A;冰水浴下,将中间物A、四氢呋喃、三甲基氯硅烷按质量比1:9:2.5混合,移至室温,80℃加热3.5h后,冷却至室温,加入中间物A质量10.2倍的质量分数为4.4%的盐酸,搅拌均匀,抽滤,用甲苯洗涤6次,60℃干燥12h得增强纤维。其余步骤同实施例2。
对比例4
对比例4与实施例2的区别在于步骤(4)的不同,将步骤(4)改为:将含镁晶须纤维置于等离子体发生器中,氧气氛围下,250W处理10min得增强纤维。其余步骤同实施例2。
效果例
下表1中给出了采用本发明实施例1至3与对比例1至4的抗侵蚀海工混凝土的性能分析结果。
表1
从实施例与对比例的侵蚀系数、裂缝、强度实验数据比较可发现,本发明以碳纤维为基底,依次沉积生长碳化硅晶须、氧化镁,能够在混凝土中相互缠结,阻止混凝土裂缝扩大,切断毛细管通道,使混凝土结构更加致密,提高抗裂性,同时氧化镁可水化形成疏水作用的氢氧化镁,减少海水侵蚀,和碳纤维、玄武岩纤维构建“网中网”空间结构,提高混凝土的抗裂性能,再利用等离子活化、溴丁基三甲氧基硅烷、三甲基氯硅烷接枝改性,引入硅氧烷基团,能够水解形成高反应活性的硅烷醇基团,与水化产物反应,填充在混凝土表面的微裂缝和微孔中,使混凝土更加密实,阻止水分及离子渗透扩散,此外,本发明合理匹配各原料,产生交互叠加效应,在水化过程中相互填充,使得海工混凝土孔隙率降低,密实度提高,有效抵抗有害介质渗透的能力。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何标记视为限制所涉及的权利要求。

Claims (3)

1.一种抗侵蚀海工混凝土的制备方法,其特征在于,包括以下制备步骤:
(1)将粉煤灰、矿渣粉、石灰石粉、硅灰、再生微粉、钢渣、镍渣、硅酸盐水泥、轻骨料按质量比88:78:42:25:79:70:70:200:250~160:102:70:40:90:100:98:300:380混合,搅拌均匀;
(2)向氟硅酸溶液加入高纯硅酸至饱和,氟硅酸溶液中氟硅酸和去离子水的质量比为1:1.9~1:2.3,溶液饱和状态为加入过氧化氢呈橙黄色,得沉积液;将直径为10~20μm的碳纤维按料液比1:10~1:20浸于质量分数为4%的氢氟酸,浸泡4~8min后,取出,按料液比1:10浸于去离子水,浸泡50~60min后,按料液比1:10~1:20浸于沉积液中,40℃、600W超声沉积3~4h后,过滤,120℃烘干4h,再置于石墨坩埚,石墨坩埚内壁涂刷一层氮化硼隔离剂,然后置于加热设备中,升温至650~700℃,保温反应3~5h后,氩气保护下,升温至1450~1500℃,保温2~4h得晶须纤维;
(3)将晶须纤维置于离子束设备中,抽真空至2×10-3~5×10-3Pa,采用氧化镁为蒸发材料,氩离子束的入射角和晶须纤维呈45°,离子能量为1~5keV、300~350℃沉积20~30min后,450~500℃退火40min得含镁晶须纤维;
(4)将含镁晶须纤维置于等离子体发生器中,氧气氛围下,200~300W处理10min得预改性纤维;将预改性纤维、无水乙醇、溴丁基三甲氧基硅烷按质量比1:12:0.2~1:12:0.3混合,500W超声1~3h后,8000rpm离心5min,60℃、真空度-0.09MPa下干燥72h得中间物A;冰水浴下,将中间物A、四氢呋喃、三甲基氯硅烷按质量比1:7:2~1:11:3混合,移至室温,80℃加热3~4h后,冷却至室温,加入中间物A质量10.2倍的质量分数为4.4%的盐酸,搅拌均匀,抽滤,用甲苯洗涤6次,60℃干燥12h得增强纤维;
(5)向步骤(1)加入硅酸盐水泥质量0.4~0.5倍的增强纤维、硅酸盐水泥质量0.3倍的玄武岩纤维,搅拌均匀;
(6)将聚羧酸减水剂、水搅拌均匀得混合液,再向步骤(5)加入混合液,搅拌均匀得抗侵蚀海工混凝土。
2.根据权利要求1所述的一种抗侵蚀海工混凝土的制备方法,其特征在于,步骤(6)所述聚羧酸减水剂与硅酸盐水泥的质量比为6:200~9:300,水与硅酸盐水泥的质量比为110:200~140:300。
3.根据权利要求1所述的一种抗侵蚀海工混凝土的制备方法,其特征在于,所述玄武岩纤维为5~20mm长、直径为10~20μm的短切玄武岩纤维;所述粉煤灰为Ⅰ级粉煤灰;所述矿渣粉为S95级矿渣粉或S105级矿渣粉,比表面积为400~800m2/kg;所述石灰石粉比表面积为600~900m2/kg;所述再生微粉为混凝土预拌厂内含固废弃浆体经砂石分离后的废渣,比表面积为400~800m2/kg;所述钢渣比表面积为390~440m2/kg;所述镍渣比表面积为400~500m2/kg。
CN202310333670.4A 2023-03-31 2023-03-31 一种抗侵蚀海工混凝土及其制备方法 Active CN116375422B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310333670.4A CN116375422B (zh) 2023-03-31 2023-03-31 一种抗侵蚀海工混凝土及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310333670.4A CN116375422B (zh) 2023-03-31 2023-03-31 一种抗侵蚀海工混凝土及其制备方法

Publications (2)

Publication Number Publication Date
CN116375422A CN116375422A (zh) 2023-07-04
CN116375422B true CN116375422B (zh) 2024-02-13

Family

ID=86976323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310333670.4A Active CN116375422B (zh) 2023-03-31 2023-03-31 一种抗侵蚀海工混凝土及其制备方法

Country Status (1)

Country Link
CN (1) CN116375422B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103664025A (zh) * 2012-08-28 2014-03-26 盐城工学院 一种改善纤维束与磷酸钾镁水泥基材料粘结性能的方法
CN113860841A (zh) * 2021-11-19 2021-12-31 山东港基建设集团有限公司 一种蒸压加气混凝土自保温墙板及其制备方法
CN115745525A (zh) * 2022-12-09 2023-03-07 江苏中鼎建材集团有限公司 一种高强度再生骨颗粒混凝土及其制备方法
CN115784667A (zh) * 2022-12-01 2023-03-14 西南科技大学 一种高氯提钛尾渣基复合材料制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103664025A (zh) * 2012-08-28 2014-03-26 盐城工学院 一种改善纤维束与磷酸钾镁水泥基材料粘结性能的方法
CN113860841A (zh) * 2021-11-19 2021-12-31 山东港基建设集团有限公司 一种蒸压加气混凝土自保温墙板及其制备方法
CN115784667A (zh) * 2022-12-01 2023-03-14 西南科技大学 一种高氯提钛尾渣基复合材料制备方法
CN115745525A (zh) * 2022-12-09 2023-03-07 江苏中鼎建材集团有限公司 一种高强度再生骨颗粒混凝土及其制备方法

Also Published As

Publication number Publication date
CN116375422A (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
CN111039624A (zh) 一种再生混凝土及其制备方法
CN109694224B (zh) 一种梯度结构高耐久混凝土制品及其制备方法
CN111978056A (zh) 一种低品质骨料的改性材料及处理方法
CN110563368A (zh) 一种混凝土再生骨料及其制备工艺
CN114315185A (zh) 一种电石渣基碳化硬化体材料及其制备方法和应用
CN112062515B (zh) 一种利用碳化硅制备的高强地聚合物闭孔发泡材料及其制备方法
CN114105561A (zh) 一种基于无机纤维的再生混凝土及其制备方法
CN111908864A (zh) 一种抗冻混凝土及其生产工艺
CN112679190A (zh) 一种用于混凝土底部空腔填充的补强防水砂浆
CN116375422B (zh) 一种抗侵蚀海工混凝土及其制备方法
KR20200070701A (ko) 지오폴리머성 하이브리드 제올라이트-ldh 복합체 및 그 제조 방법
Wang et al. Physical and high temperature properties of basalt fiber-reinforced geopolymer foam with hollow microspheres
CN103449842B (zh) 一种改善混凝土渗透性的表面处理方法
CN116003039B (zh) 一种包含改性聚丙烯纤维的透水混凝土及其制备方法
CN115477503B (zh) 一种再生环保型混凝土及其制备工艺
CN113912373B (zh) 一种高含水率软土快速固化为路基填料的高性能固化剂
CN115159943B (zh) 防火型轻质保温材料及其制备方法与应用
CN114853417A (zh) 一种高韧性低碳型抗爆水泥基复合材料及其制备方法
CN115028400A (zh) 一种再生混凝土及其制备方法
CN114956733A (zh) 一种高强度抗侵蚀海工混凝土及其制备方法
CN112551973A (zh) 一种抗裂自修复混凝土及其制备方法
CN114163132B (zh) 一种泡沫玻璃及其制备方法
CN113666680A (zh) 一种混凝土浆料及其制备方法
CN113636772B (zh) 一种钢渣基保温填料及其制备方法和应用
CN115368068B (zh) 抗泛碱焚烧垃圾底灰地聚物实心砖的制备方法及实心砖

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant