CN116370701A - 一种抗冲击可促成骨分化极小曲面骨支架及其制备方法 - Google Patents

一种抗冲击可促成骨分化极小曲面骨支架及其制备方法 Download PDF

Info

Publication number
CN116370701A
CN116370701A CN202310388467.7A CN202310388467A CN116370701A CN 116370701 A CN116370701 A CN 116370701A CN 202310388467 A CN202310388467 A CN 202310388467A CN 116370701 A CN116370701 A CN 116370701A
Authority
CN
China
Prior art keywords
bone
tpms
curved surface
bone scaffold
impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310388467.7A
Other languages
English (en)
Inventor
黄河源
董志城
张宣佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202310388467.7A priority Critical patent/CN116370701A/zh
Publication of CN116370701A publication Critical patent/CN116370701A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/025Other specific inorganic materials not covered by A61L27/04 - A61L27/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • A61L27/105Ceramics or glasses containing Al2O3
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Veterinary Medicine (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明涉及高分子材料技术领域,具体涉及一种抗冲击可促成骨分化极小曲面骨支架及其制备方法,该极小曲面骨支架由ZrO2和Y2O3、HfO2、Nb2O5、Cao和Al2O3颗粒混合在特殊的液体中制成的打印材料经纳米粒子喷射3D打印技术打印所得。本发明的极小曲面骨具有较高的静压缩强度以及良好的抗冲击性能,并且能够有效促进成骨细胞的增殖,从而修复骨缺损,从而解决现有骨支架抗冲击性能差的问题,满足生物医学、组织工程等对材料的需求。

Description

一种抗冲击可促成骨分化极小曲面骨支架及其制备方法
技术领域
本发明涉及高分子材料技术领域,具体涉及一种抗冲击可促成骨分化极小曲面骨支架及其制备方法。
背景技术
极小曲面(TPMS)是一类由平均曲率为零的曲面生成的三维多孔结构,具有高比表面积和高承载特性等优异性能,使得TPMS支架在骨组织修复中具有广阔的应用前景。首先,在植入性能方面,TPMS骨支架可以消除应力屏蔽效应的影响,具有很好的承载特性。此外,TPMS结构有更高的压缩强度,并且TPMS相互连通的曲面利于细胞粘附,能够促进细胞的生长。然而目前所研究的TPMS骨支架微观特征尺寸(≥300μm)普遍大于真实骨骼,不能达到模仿真实骨组织尺寸的要求,严重限制了其生物功能的表达。
针对上述关键问题,近年来,一些学者和专家研究了一些具有改进力学性能的骨支架构筑材料和打印方法。传统金属去除支撑材料较为困难,同时由于其生物性能与骨骼不匹配,可能会引起过敏反应和炎症。相比之下,陶瓷硬度远高于高分子材料和金属,特别是氧化锆陶瓷具有良好的生物相容性、高机械强度和良好的化学稳定性。其次,以高分辨率(μm)和高精度(成型误差5%以内)实现超精细结构打印NPJ技术为制备与人体骨骼相似的超精细微型TPMS骨支架提供了可能。
此外,根据人的活动环境和机能极限,骨骼不仅需要承载人体自身重量带来的静压缩载荷,还会受到自身活动引起的频繁的低速冲击载荷。因此,开展骨支架结构相关力学性能研究就非常有必要。但是目前针对可植入TPMS骨支架的承载性能和失效模式的研究不够深入,尤其是对于氧化锆TPMS骨支架的低速冲击性能研究鲜有涉及。
发明内容
为解决上述问题,本发明提供了一种抗冲击可促成骨分化极小曲面骨支架及其制备方法,具有较高的静压缩强度以及良好的抗冲击性能,并且能够有效促进成骨细胞的增殖,从而修复骨缺损,从而解决现有骨支架抗冲击性能差的问题,满足生物医学、组织工程等对材料的需求。
为实现上述目的,本发明采取的技术方案为:
一种抗冲击可促成骨分化极小曲面骨支架,该极小曲面骨支架由ZrO2和Y2O3、HfO2、Nb2O5、Cao和Al2O3颗粒混合在特殊的液体中制成的打印材料经纳米粒子喷射3D打印技术打印所得。
进一步地,所述打印材料中,Y2O3、HfO2、Nb2O5、Cao和Al2O3的材料组分分别为4.64%(wt%)、1.47%(wt%)、0.739%(wt%)、0.47%(wt%)和0.38%(wt%)。
进一步地,ZrO2颗粒粒径为100nm-300nm,Y2O3、HfO2和Nb2O5颗粒粒径为50-150nm。
本发明还提供了上述一种抗冲击可促成骨分化极小曲面骨支架的制备方法,包括如下步骤:
S1、根据最有利于骨细胞生长原则,3D建模出常规结构Normal-A以及极小曲面骨支架TPMS-B和极小曲面骨支架TPMS-C;
S2、将ZrO2和Y2O3、HfO2和Nb2O5颗粒按比例混合在特殊的液体中,制成打印材料;
S2、经Carmel 1400打印设备将打印材料准确喷射在打印机托盘相应位置以得到半成品;随后,使用30℃的恒温水槽对半成品进行清洗,然后使用100℃的恒温干燥箱对半成品烘干处理2h,最后利用马弗炉在1200~1500℃下进行无压脱脂烧结,得到精密氧化锆TPMS骨支架成品。
进一步地,所述步骤S1中,Normal-A的孔直径恒定为750μm;TPMS-B的孔径范围设计为200μm~800μm;TPMS-C孔径范围设计为125μm~800μm。
本发明具有以下有益效果:
1)适量加入的Y2O3能够降低氧化锆t相(四方相)的化学自由能,从而抑制其相变,同时促进结构致密度使烧结后的t-ZrO2保持稳定。
2)少量的Nb2O5也能在一定程度上提升氧化锆陶瓷的致密度,还能在不影响结构力学性能的前提下降低烧结温度,在结构制备过程中更容易达到烧结的温度条件。
3)HfO2使t-ZrO2的晶界玻璃相软化,使得结构裂纹钝化和裂纹尖端应力集中削弱,从而提高结构韧性。
4)Normal-A的压缩强度为47.47MPa,压缩模量为1.83GPa。TPMS-B的压缩强度为39.08MPa,压缩模量为2.56GPa,TPMS-C的压缩强度为56.6MPa,压缩模量为2.05GPa,较Normal-A分别提升19.23%和12.02%。
5)Normal-A的冲击应力极限为61.47MPa。TPMS-B的冲击应力极限为44.93MPa。TPMS-C的冲击应力极限为61.47MPa,比Normal-A高14.27%。
6)所得的TPMS骨支架压缩强度高,抗冲击能力强,能够作为骨骼的替代性支架应用于生物医学材料领域。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为极小曲面骨支架制备原理示意图。
图2为TPMS-B骨支架。
图3为TPMS-C骨支架。
图4为准静态压缩实验结果;
图中:(a)Normal-A应力-应变;(b)TPMS-B应力-应变。
图5为TPMS-B抗冲击试验应力-应变。
图6为(a)TPMS-C准静态压缩试验应力-应变和(b)TPMS-C抗冲击试验应力-应变。
图7为(a)不同Y2O3与HfO2的质量比下TPMS的致密程度,(b)不同Y2O3含量下的TPMS的压缩强度。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
首先将粒径范围为50~300nm的ZrO2和Y2O3、HfO2、Nb2O5、Cao和Al2O3颗粒按浓度要求混合在特殊的液体中,所述特殊的液体购自3D打印机厂商XJET,制成打印材料墨水。然后将设计好的TPMS-B的stl.文件导入Carmel 1400打印设备中,经12288个喷嘴将制成的1.2*108滴墨水准确喷射在打印机托盘相应位置,逐层完成零件的打印,得到半成品,在完成上一层之后,打印平台会降低一层的厚度;将半成品用30℃的恒温水槽清洗以快速去除聚乙烯醇(PVA)水溶性支撑材料后,置于100℃的恒温干燥箱中烘干处理2小时。最后在1300℃的马弗炉内进行无压脱脂烧结,烧结过程中氧化锆晶粒重排,堆积的颗粒会向中心靠近。烧结完成后,氧化锆晶体由单斜晶相(m)转变为四方晶相(t),得到致密度高达99.5%的精密氧化锆骨支架成品(TPMS-B)。准静态压缩测试表明,极限载荷为39.08MPa,杨氏模量为2.56GPa,模量较Normal-A提升了1.4倍,测试结果如图4。对样品进行了抗冲击试验,结果显示TPMS-B冲击试验的平均强度为44.93MPa,比静力的抗压强度高14.95%,如图5所示。
实施例2
首先将粒径范围为50~300nm的ZrO2和Y2O3、HfO2、Nb2O5、Cao和Al2O3颗粒按浓度要求混合在特殊的液体中,制成打印材料墨水。然后将设计好的TPMS-C的stl.文件导入Carmel 1400打印设备中,经12288个喷嘴将制成的1.2*108滴墨水准确喷射在打印机托盘相应位置,逐层完成零件的打印,得到半成品,在完成上一层之后,打印平台会降低一层的厚度;将半成品用30℃的恒温水槽清洗以快速去除聚乙烯醇(PVA)水溶性支撑材料后,置于100℃的恒温干燥箱中烘干处理2小时。最后在1300℃的马弗炉内进行无压脱脂烧结,烧结过程中氧化锆晶粒重排,堆积的颗粒会向中心靠近。烧结完成后,氧化锆晶体由单斜晶相(m)转变为四方晶相(t),得到致密度高达99.5%的精密氧化锆骨支架成品(TPMS-C)。准静态压缩测试表明,极限载荷为56.6MPa,杨氏模量为2.05GPa,其压缩强度和模量分别比Normal-A高19.23%和12.02%,力学性能最优,并且TPMS-C骨支架2.05GPa的模量与人体松质骨等骨骼模量吻合良好。此外,对样品进行了抗冲击试验,结果显示TPMS-C冲击试验的平均强度为70.23MPa,比静力的抗压强度高24.09%,表明本专利描述的TPMS-C氧化锆骨支架有良好的抗冲击性能。上述测试结果如图7所示。此外,与现有研究中陶瓷材料、金属材料和高分子聚合物材料制备的交叉结构、堆叠结构、蜂窝结构等多孔骨支架相比,在压缩载荷下,氧化锆TPMS具有高达46.78kN·mm/g的比强度和4.37J/g的比吸能,在1m/s的冲击载荷下TPMS-C体现出更高的比强度和比吸能。
表1准静态压缩试验与抗冲击试验结果
Figure BDA0004174986170000051
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (5)

1.一种抗冲击可促成骨分化极小曲面骨支架,其特征在于:该极小曲面骨支架由ZrO2、Y2O3、HfO2、Nb2O5、Cao和Al2O3颗粒混合在特殊的液体中制成的打印材料经纳米粒子喷射3D打印技术打印所得。
2.如权利要求1所述的一种抗冲击可促成骨分化极小曲面骨支架,其特征在于:按质量百分比计,所述ZrO2、Y2O3、HfO2、Nb2O5、Cao和Al2O3颗粒的用量分别为4.64%(wt%)、1.47%(wt%)、0.739%(wt%)、0.47%(wt%)和0.38%(wt%)。
3.如权利要求1所述的一种抗冲击可促成骨分化极小曲面骨支架,其特征在于:ZrO2颗粒粒径为100nm-300nm,Y2O3、HfO2、Nb2O5、Cao和Al2O3颗粒粒径为50-150nm。
4.如权利要求1~3任一项所述的一种抗冲击可促成骨分化极小曲面骨支架的制备方法,其特征在于:包括如下步骤:
S1、根据最有利于骨细胞生长原则,3D建模出常规结构Normal-A以及极小曲面骨支架TPMS-B和极小曲面骨支架TPMS-C;
S2、将ZrO2和Y2O3、HfO2、Nb2O5、Cao和Al2O3颗粒按比例混合在特殊的液体中,制成打印材料;
S2、经Carmel1400打印设备将打印材料准确喷射在打印机托盘相应位置以得到半成品;随后,使用30℃的恒温水槽对半成品进行清洗,然后使用100℃的恒温干燥箱对半成品烘干处理2h,最后利用马弗炉在1200~1500℃下进行无压脱脂烧结,得到精密氧化锆TPMS骨支架成品。
5.如权利要求4所述的一种抗冲击可促成骨分化极小曲面骨支架的制备方法,其特征在于:所述步骤S1中,Normal-A的孔直径恒定为750μm;TPMS-B的孔径范围设计为200μm~800μm;TPMS-C孔径范围设计为125μm~800μm。
CN202310388467.7A 2023-04-12 2023-04-12 一种抗冲击可促成骨分化极小曲面骨支架及其制备方法 Pending CN116370701A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310388467.7A CN116370701A (zh) 2023-04-12 2023-04-12 一种抗冲击可促成骨分化极小曲面骨支架及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310388467.7A CN116370701A (zh) 2023-04-12 2023-04-12 一种抗冲击可促成骨分化极小曲面骨支架及其制备方法

Publications (1)

Publication Number Publication Date
CN116370701A true CN116370701A (zh) 2023-07-04

Family

ID=86972981

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310388467.7A Pending CN116370701A (zh) 2023-04-12 2023-04-12 一种抗冲击可促成骨分化极小曲面骨支架及其制备方法

Country Status (1)

Country Link
CN (1) CN116370701A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH688894A5 (de) * 1993-05-07 1998-05-15 Metoxit Ag Verwendung Yttrium stabilisierten Zirkonoxids zur Herstellung von Halbzeugen fuer Prothesen durch Dichtsinterung
US20100303722A1 (en) * 2006-06-23 2010-12-02 Sungho Jin Articles comprising large-surface-area bio-compatible materials and methods for making and using them
CN104193331A (zh) * 2014-07-30 2014-12-10 北京固圣生物科技有限公司 骨植入假体用氧化锆基复合陶瓷及由其制备的骨植入假体
CN112545712A (zh) * 2020-11-17 2021-03-26 华南理工大学 一种极小曲面骨修复植入体的生成方法
US20210308321A1 (en) * 2020-04-02 2021-10-07 The Trustees Of The Stevens Institute Of Technology Biodegradable polymer-ceramic bone grafts with open spiral structures and gradient porosity and methods for making thereof
US20230104993A1 (en) * 2021-09-30 2023-04-06 Chongqing Medical University Integrated 3d bioprinting method and application of hard materials and cells for preparing bone-repair functional modules and bone organoids

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH688894A5 (de) * 1993-05-07 1998-05-15 Metoxit Ag Verwendung Yttrium stabilisierten Zirkonoxids zur Herstellung von Halbzeugen fuer Prothesen durch Dichtsinterung
US20100303722A1 (en) * 2006-06-23 2010-12-02 Sungho Jin Articles comprising large-surface-area bio-compatible materials and methods for making and using them
CN104193331A (zh) * 2014-07-30 2014-12-10 北京固圣生物科技有限公司 骨植入假体用氧化锆基复合陶瓷及由其制备的骨植入假体
US20210308321A1 (en) * 2020-04-02 2021-10-07 The Trustees Of The Stevens Institute Of Technology Biodegradable polymer-ceramic bone grafts with open spiral structures and gradient porosity and methods for making thereof
CN112545712A (zh) * 2020-11-17 2021-03-26 华南理工大学 一种极小曲面骨修复植入体的生成方法
US20230104993A1 (en) * 2021-09-30 2023-04-06 Chongqing Medical University Integrated 3d bioprinting method and application of hard materials and cells for preparing bone-repair functional modules and bone organoids

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周阳: "氧化铪对锆基陶瓷力学性能与老化性能的影响研究", 内蒙古科技大学硕士论文, pages 47 *

Similar Documents

Publication Publication Date Title
Zhang et al. Additive manufacturing of zirconia ceramics: A state-of-the-art review
Sun et al. A comprehensive study of dense zirconia components fabricated by additive manufacturing
Dehestani et al. Phase stability and mechanical properties of zirconia and zirconia composites
Coppola et al. Designing alumina-zirconia composites by DLP-based stereolithography: Microstructural tailoring and mechanical performances
Li et al. Effects of solvent debinding on the microstructure and properties of 3D-printed alumina ceramics
Liu et al. The effect of graded glass–zirconia structure on the bond between core and veneer in layered zirconia restorations
CN110893123B (zh) 牙科切削加工用氧化锆被切削体及其制造方法
Zhang et al. Preparation, microstructure, and properties of ZrO2 (3Y)/Al2O3 bioceramics for 3D printing of all-ceramic dental implants by vat photopolymerization
Suominen et al. Three-dimensional printing of zirconia: characterization of early stage material properties
Yi et al. Direct 3‐D printing of Ti‐6Al‐4V/HA composite porous scaffolds for customized mechanical properties and biological functions
CN110105057A (zh) 陶瓷手臂及其制备方法、真空吸附机械手和晶圆传输装置
Biggemann et al. Automated 3D assembly of periodic alumina‐epoxy composite structures
Wang et al. Dual effects of acid etching on cell responses and mechanical properties of porous titanium with controllable open‐porous structure
Roedel et al. Production and characterization of zirconia structures with a porous surface
Ding et al. A simple solution to recycle and reuse dental CAD/CAM zirconia block from its waste residuals
Huang et al. Stereolithography 3D printing of Si3N4 cellular ceramics with ultrahigh strength by using highly viscous paste
CN116370701A (zh) 一种抗冲击可促成骨分化极小曲面骨支架及其制备方法
CN107285794A (zh) 一种层状复合表面压应力增韧陶瓷基复合材料及其制备方法
Zhang et al. Mechanical reinforcement of 3D printed cordierite-zirconia composites
Stastny et al. Gel-tape casting as a novel method for the production of flexible fine-grained alumina sheets
Arshad et al. Acid etching of glass-infiltrated zirconia and its biological response
CN109534792A (zh) 一种基于纳米织构增韧的仿生层状氧化铝形貌复合陶瓷材料及其制备方法
Fiume et al. Vat-photopolymerization of ceramic materials: exploring current applications in advanced multidisciplinary fields
JP2009067659A (ja) 表面硬化高強度セラミックス及びその製造方法
Mercadelli et al. Influence of carbon black on slurry compositions for tape cast porous piezoelectric ceramics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination