CN116343099A - 一种基于机器视觉的计算机屏幕信息防窃照系统 - Google Patents
一种基于机器视觉的计算机屏幕信息防窃照系统 Download PDFInfo
- Publication number
- CN116343099A CN116343099A CN202310602414.0A CN202310602414A CN116343099A CN 116343099 A CN116343099 A CN 116343099A CN 202310602414 A CN202310602414 A CN 202310602414A CN 116343099 A CN116343099 A CN 116343099A
- Authority
- CN
- China
- Prior art keywords
- computer screen
- image
- module
- recognition
- video stream
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims abstract description 77
- 238000004364 calculation method Methods 0.000 claims abstract description 23
- 230000008859 change Effects 0.000 claims abstract description 9
- 238000012545 processing Methods 0.000 claims description 9
- 230000009471 action Effects 0.000 claims description 6
- 230000035484 reaction time Effects 0.000 abstract description 6
- 238000000034 method Methods 0.000 description 22
- 230000008569 process Effects 0.000 description 18
- 238000012417 linear regression Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 5
- 230000003044 adaptive effect Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/41—Higher-level, semantic clustering, classification or understanding of video scenes, e.g. detection, labelling or Markovian modelling of sport events or news items
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Burglar Alarm Systems (AREA)
Abstract
本发明属于信息保护领域,公开了一种基于机器视觉的计算机屏幕信息防窃照系统,包括包括摄像模块、计算模块和提示模块;摄像模块用于对计算机屏幕前方进行拍摄,得到视频流;计算模块用于对视频流进行分析,判断是否出现窃照行为,包括先通过自适应变化的检测距离来得到检测图像,然后基于检测图像得到识别系数,通过识别系数来判断是否需要进行图像识别,并获取需要进行图像识别的图像的连通域,对连通域进行识别优先级的计算,基于识别优先级进行图像识别;提示模块用于在出现窃照行为时,发出提示。本发明能够使用性能更低,成本更低的硬件成本来满足反应时间要求。
Description
技术领域
本发明涉及信息保护领域,尤其涉及一种基于机器视觉的计算机屏幕信息防窃照系统。
背景技术
现有技术中,出现了利用摄像头来拍摄屏幕前方的图像,根据图像识别拍摄行为的装置,这种装置被用来防止电脑屏幕被窃照。但是现有的防窃照装置,在防窃照的过程中一般是针对摄像头获得的整幅图像中的所有像素点进行识别,而由于窃照的行为一般都比较快速,那么识别反应时间就会要求比较短,为了满足防窃照的反应时间要求,则需要性能更好,价格更高的计算硬件,从而提高了防窃照的成本。
发明内容
本发明的目的在于公开一种基于机器视觉的计算机屏幕信息防窃照系统,解决利用摄像头进行防窃照过程中,如何在满足反应时间要求的前提下,降低硬件成本的问题。
为了达到上述目的,本发明采用如下技术方案:
一种基于机器视觉的计算机屏幕信息防窃照系统,包括摄像模块、计算模块和提示模块;
摄像模块用于对计算机屏幕前方进行拍摄,得到视频流;
计算模块用于对视频流进行分析,判断是否出现窃照行为,具体包括:
S34,计算连通域的识别优先级,根据识别优先级分别对每个连通域进行图像识别,判断是否出现窃照行为;
提示模块用于在出现窃照行为时,发出提示。
S11,获取第k次获取的检测图像的序号j;
可选的,基于机器视觉的计算机屏幕信息防窃照系统还包括控制模块;
控制模块用于在出现窃照行为时,断开计算机屏幕的输入信号。
可选的,基于机器视觉的计算机屏幕信息防窃照系统还包括存储模块;
存储模块用于存储摄像模块得到的视频流。
可选的,基于机器视觉的计算机屏幕信息防窃照系统还包括遮挡识别模块;
遮挡识别模块用于根据视频流判断是否存在遮挡摄像头的行为;
提示模块用于在存在遮挡摄像头的行为时,发出提示。
可选的,存储模块还用于存储白名单信息;
白名单信息包括具有观看计算机屏幕的权限的人员的名称以及对应的脸部图像。
可选的,基于机器视觉的计算机屏幕信息防窃照系统还包括白名单检测模块;
白名单检测模块用于根据视频流判断计算机屏幕前方是否仅存在白名单信息中的脸部图像;
提示模块用于在计算机屏幕前方存在不属于白名单信息中的脸部图像时,发出提示。
本发明在基于视频流进行防窃照识别的过程中,先通过自适应变化的检测距离来得到检测图像,然后基于检测图像得到识别系数,通过识别系数来判断是否需要进行图像识别,从而有效减少了视频流中参与图像识别的图像的数量,降低了单位时间内需要进行图像识别计算的数据量。而在图像识别之前,本发明通过获取无效像素点,有效地减少了参与范围扩大处理的过程的像素点的数量,进一步降低了单位时间内需要进行图像识别计算的数据量。而在得到连通域之后,本发明通过对连通域进行识别优先级的计算,基于识别优先级进行图像识别,提高了对窃照行为的识别速度。进行了上述的步骤之后,本发明仅对可能包含偷拍行为的区域进行图像识别,不需要对所有的像素点进行图像识别,则单位时间内需要进行图像识别计算的数据量得到了有效的降低,能够使用性能更低,成本更低的硬件成本来满足反应时间要求。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本发明一种基于机器视觉的计算机屏幕信息防窃照系统的第一种示意图。
图2为本发明一种基于机器视觉的计算机屏幕信息防窃照系统的第二种示意图。
图3为本发明一种基于机器视觉的计算机屏幕信息防窃照系统的第三种示意图。
图4为本发明一种基于机器视觉的计算机屏幕信息防窃照系统的第四种示意图。
图5为本发明一种基于机器视觉的计算机屏幕信息防窃照系统的第五种示意图。
具体实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
如图1所示的一种实施例,本发明提供了一种基于机器视觉的计算机屏幕信息防窃照系统,包括摄像模块101、计算模块201和提示模块301;
摄像模块101用于对计算机屏幕前方进行拍摄,得到视频流;
计算模块201用于对视频流进行分析,判断是否出现窃照行为,具体包括:
S34,计算连通域的识别优先级,根据识别优先级分别对每个连通域进行图像识别,判断是否出现窃照行为;
提示模块301用于在出现窃照行为时,发出提示。
本发明在基于视频流进行防窃照识别的过程中,先通过自适应变化的检测距离来得到检测图像,然后基于检测图像得到识别系数,通过识别系数来判断是否需要进行图像识别,从而有效减少了视频流中参与图像识别的图像的数量,降低了单位时间内需要进行图像识别计算的数据量。
而在图像识别之前,本发明通过获取无效像素点,有效地减少了参与范围扩大处理的过程的像素点的数量,进一步降低了单位时间内需要进行图像识别计算的数据量。
而在得到连通域之后,本发明通过对连通域进行识别优先级的计算,基于识别优先级进行图像识别,提高了对窃照行为的识别速度。
进行了上述的步骤之后,本发明仅对可能包含偷拍行为的区域进行图像识别,不需要对所有的像素点进行图像识别,则单位时间内需要进行图像识别计算的数据量得到了有效的降低,能够使用性能更低,成本更低的硬件成本来满足反应时间要求。
具体的,对连通域进行图像识别,可以由预先训练得到的神经网络模型来进行识别。
由于视频流的获取过程以及连通域的获取过程中均大幅度减少了参与最终图像识别的像素点的数量,因此,本发明虽然加入了连通域的获取过程,但是依然比直接对视频流中的每张图像的所有像素点进行图像识别的效率要高很多。
具体的,提示模块301可以是蜂鸣器。
S11,获取第k次获取的检测图像的序号j;
在上述实施例中,获取从视频流中获取检测图像并不是按序号将视频流中的每张图像依次作为检测图像,而是通过前一次获得的检测图像计算下一次的获取检测图像的检测距离,然后基于前一次获得的检测图像的序号和对应的检测距离来计算本次的检测图像的序号。上述实施例能够在避免对每张图像进行图像识别的同时,保证了防窃照行为的检测准确率。
在上述实施例中,检测距离根据识别系数与识别阈值之间的大小关系而自适应地在设定的最大值和最小值之间变化。当识别系数大于识别阈值时,表示检测图像中与其前一张图像相比,像素点出现了有效的变化,存在窃照的可能,因此,本发明会缩小下一次进行检测图像获取的检测距离,增大检测图像的获取频率,反之,则降低检测图像的获取频率,从而降低计算量。
在上述实施例中,识别系数通过检测图像与视频流中检测图像的前一张图像之间的像素点的像素值变化量大于差值阈值的像素点的数量进行计算。像素值的变化程度越大,则识别系数的数值越大,从而识别出视频流中存在窃照的可能的图像。
可选的,如图2所示,基于机器视觉的计算机屏幕信息防窃照系统还包括控制模块401;
控制模块401用于在出现窃照行为时,断开计算机屏幕的输入信号。
具体的,计算机主机的输出的视频信号先与控制模块401连接,然后再由控制模块401输出至计算机屏幕,这样,便能够在发现窃照行为时,关闭计算机屏幕的显示。
可选的,如图3所示,基于机器视觉的计算机屏幕信息防窃照系统还包括存储模块501;
存储模块501用于存储摄像模块101得到的视频流。
可选的,如图4所示,基于机器视觉的计算机屏幕信息防窃照系统还包括遮挡识别模块601;
遮挡识别模块601用于根据视频流判断是否存在遮挡摄像头的行为;
提示模块301用于在存在遮挡摄像头的行为时,发出提示。
可选的,控制模块401还用于存在遮挡摄像头的行为时,断开计算机屏幕的输入信号。
遮挡行为可以通过对视频流中的画面亮度进行判断。当摄像头被遮挡后,画面的亮度与摄像头未被遮挡时的亮度之间存在较大的差异。
可选的,存储模块501还用于存储白名单信息;
白名单信息包括具有观看计算机屏幕的权限的人员的名称以及对应的脸部图像。
可选的,如图5所示,基于机器视觉的计算机屏幕信息防窃照系统还包括白名单检测模块701;
白名单检测模块701用于根据视频流判断计算机屏幕前方是否仅存在白名单信息中的脸部图像;
提示模块301用于在计算机屏幕前方存在不属于白名单信息中的脸部图像时,发出提示。
可选的,控制模块401还用于在计算机屏幕前方存在不属于白名单信息中的脸部图像时,断开计算机屏幕的输入信号。
具体的,可以通过对视频流中的图像进行人脸检测,然后对人脸进行识别,判断是否为白名单信息中的脸部图像。
自适应数量的计算函数为:
S324,将检测半径的数值加1,进入S325;
而传统的判断方式一般都是直接判断以为圆心,最大的半径的范围内,属于集合/>的像素点的数量是否满足设定的要求,这种判断则需要直接对最大的半径内的所有像素点都进行判断,显然增加了判断的计算量。而在本发明中,相互连接的零散的像素点的数量越少,则越快能够将其识别为无效像素点,当检测半径增加时,仅需要对检测区域新增的像素点进行判断,只有在最大的半径内的所有像素点都属于/>中的像素点时,才需要对最大的半径内的所有像素点都进行判断。因此,上述实施例能够大幅度提高无效像素点的识别效率。
S334,若中的元素不为0,则分别计算/>中的每个像素点与/>之间的像素值差值,获取最小的像素值差值/>,用/>表示/>中取得/>的像素点 ,若/>小于设置的扩大阈值,则将/>作为集合/>中的元素,/>表示第v个连通域的像素点的集合,将/>表示的像素点更改为/>表示的像素点,将/>从/>中删除,进入S333;
扩大处理主要是利用前景物体的像素值变化的连贯性来进行范围的扩大,前景物体,例如进行偷拍的设备,其像素点值的变化不会剧烈变化,因此,通过上述实施例的范围扩大过程,便能够得到更为完整的表示前景物体的连通域。
在扩大处理的过程中,本发明先判断中的像素点/>的8邻域中是否均为/>中的像素点,如果是,则表示/>已经被像素值变化连贯的像素点所包围,那么便不需要对/>进行范围扩大处理,如果不是,则表示/>位于一个连通域的边缘,通过/>进行后续的扩大处理步骤,便能够准确地扩大连通域的范围。
可选的,计算连通域的识别优先级,包括:
使用如下函数计算识别优先级:
在识别优先级的计算过程中,使用了连通域边缘的像素点的线性回归直线的斜率,对于手机、相机等物体,当得到这些物体的连通域时,通过检测边缘的斜率之间的差异来进行识别优先级的计算,从而使得边缘越规则的物体的计算优先级越高,从而能够更快地识别出用于偷拍的设备。具体的,利用横坐标得到的两条线性回归直线之间的斜率差异越小,利用纵坐标得到的两条线性回归直线之间的斜率差异越小,则识别优先级的数值越大。
可选的,根据识别优先级分别对每个连通域进行图像识别,包括:
根据识别优先级从大到小的顺序分别对每个连通域进行图像识别。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims (10)
1.一种基于机器视觉的计算机屏幕信息防窃照系统,其特征在于,包括摄像模块、计算模块和提示模块;
摄像模块用于对计算机屏幕前方进行拍摄,得到视频流;
计算模块用于对视频流进行分析,判断是否出现窃照行为,具体包括:
S34,计算连通域的识别优先级,根据识别优先级分别对每个连通域进行图像识别,判断是否出现窃照行为;
提示模块用于在出现窃照行为时,发出提示。
6.根据权利要求1所述的一种基于机器视觉的计算机屏幕信息防窃照系统,其特征在于,还包括控制模块;
控制模块用于在出现窃照行为时,断开计算机屏幕的输入信号。
7.根据权利要求1所述的一种基于机器视觉的计算机屏幕信息防窃照系统,其特征在于,还包括存储模块;
存储模块用于存储摄像模块得到的视频流。
8.根据权利要求1所述的一种基于机器视觉的计算机屏幕信息防窃照系统,其特征在于,还包括遮挡识别模块;
遮挡识别模块用于根据视频流判断是否存在遮挡摄像头的行为;
提示模块用于在存在遮挡摄像头的行为时,发出提示。
9.根据权利要求7所述的一种基于机器视觉的计算机屏幕信息防窃照系统,其特征在于,存储模块还用于存储白名单信息;
白名单信息包括具有观看计算机屏幕的权限的人员的名称以及对应的脸部图像。
10.根据权利要求9所述的一种基于机器视觉的计算机屏幕信息防窃照系统,其特征在于,还包括白名单检测模块;
白名单检测模块用于根据视频流判断计算机屏幕前方是否仅存在白名单信息中的脸部图像;
提示模块用于在计算机屏幕前方存在不属于白名单信息中的脸部图像时,发出提示。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310602414.0A CN116343099B (zh) | 2023-05-26 | 2023-05-26 | 一种基于机器视觉的计算机屏幕信息防窃照系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310602414.0A CN116343099B (zh) | 2023-05-26 | 2023-05-26 | 一种基于机器视觉的计算机屏幕信息防窃照系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116343099A true CN116343099A (zh) | 2023-06-27 |
CN116343099B CN116343099B (zh) | 2023-07-25 |
Family
ID=86884366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310602414.0A Active CN116343099B (zh) | 2023-05-26 | 2023-05-26 | 一种基于机器视觉的计算机屏幕信息防窃照系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116343099B (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111985305A (zh) * | 2020-07-03 | 2020-11-24 | 中国长城科技集团股份有限公司 | 防窥屏方法、装置及终端设备 |
CN113628091A (zh) * | 2021-10-09 | 2021-11-09 | 杭州海康威视数字技术股份有限公司 | 面向电子显示屏内容翻拍场景的安全信息提取方法及装置 |
CN113987603A (zh) * | 2021-11-08 | 2022-01-28 | 浙江大学 | 一种基于摩尔纹的防摄屏方法及系统 |
CN114863337A (zh) * | 2022-05-07 | 2022-08-05 | 成都天奥集团有限公司 | 一种新型屏幕防拍照识别方法 |
WO2022241948A1 (zh) * | 2021-05-18 | 2022-11-24 | 上海擎感智能科技有限公司 | 车载显示屏的显示控制方法、系统、电子设备及存储介质 |
CN116094811A (zh) * | 2023-01-15 | 2023-05-09 | 西安热工研究院有限公司 | 保密信息防拍告警方法、系统、设备及可读存储介质 |
-
2023
- 2023-05-26 CN CN202310602414.0A patent/CN116343099B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111985305A (zh) * | 2020-07-03 | 2020-11-24 | 中国长城科技集团股份有限公司 | 防窥屏方法、装置及终端设备 |
WO2022241948A1 (zh) * | 2021-05-18 | 2022-11-24 | 上海擎感智能科技有限公司 | 车载显示屏的显示控制方法、系统、电子设备及存储介质 |
CN113628091A (zh) * | 2021-10-09 | 2021-11-09 | 杭州海康威视数字技术股份有限公司 | 面向电子显示屏内容翻拍场景的安全信息提取方法及装置 |
CN113987603A (zh) * | 2021-11-08 | 2022-01-28 | 浙江大学 | 一种基于摩尔纹的防摄屏方法及系统 |
CN114863337A (zh) * | 2022-05-07 | 2022-08-05 | 成都天奥集团有限公司 | 一种新型屏幕防拍照识别方法 |
CN116094811A (zh) * | 2023-01-15 | 2023-05-09 | 西安热工研究院有限公司 | 保密信息防拍告警方法、系统、设备及可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN116343099B (zh) | 2023-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112287868B (zh) | 一种人体动作识别方法及装置 | |
CN112287866A (zh) | 一种基于人体关键点的人体动作识别方法及装置 | |
CN111444555B (zh) | 一种测温信息显示方法、装置及终端设备 | |
CN109815787B (zh) | 目标识别方法、装置、存储介质及电子设备 | |
CN108564550B (zh) | 图像处理方法、装置及终端设备 | |
CN113158773B (zh) | 一种活体检测模型的训练方法及训练装置 | |
CN111415373A (zh) | 基于孪生卷积网络的目标跟踪与分割方法、系统及介质 | |
WO2022237902A1 (zh) | 对象检测方法、装置、设备及计算机存储介质 | |
CN105469054A (zh) | 正常行为的模型构建方法及异常行为的检测方法 | |
CN111428740A (zh) | 网络翻拍照片的检测方法、装置、计算机设备及存储介质 | |
WO2024159888A1 (zh) | 复原图像的方法、装置、计算机设备、程序产品及存储介质 | |
CN111126147A (zh) | 图像处理方法、装置和电子系统 | |
CN112633218B (zh) | 人脸检测方法、装置、终端设备及计算机可读存储介质 | |
CN116343099B (zh) | 一种基于机器视觉的计算机屏幕信息防窃照系统 | |
CN114882576B (zh) | 人脸识别方法、电子设备、计算机可读介质和程序产品 | |
CN114240843B (zh) | 图像检测方法、装置、计算机可读存储介质以及电子设备 | |
CN114550288B (zh) | 基于事件数据的动作识别方法及装置 | |
CN115223221A (zh) | 人脸检测方法、装置、电子设备和存储介质 | |
CN112232113B (zh) | 人员识别方法、人员识别装置、存储介质与电子设备 | |
CN115393755A (zh) | 视觉目标跟踪方法、装置、设备以及存储介质 | |
CN107071231A (zh) | 图像变化识别方法及装置 | |
CN112052729B (zh) | 一种基于人脸识别的智能动态高清视频检测方法及系统 | |
CN116939171B (zh) | 输电线路监控方法、装置和计算机设备 | |
CN116228715B (zh) | 息肉检测模型的训练方法、息肉检测方法及相关装置 | |
CN109885771B (zh) | 一种应用软件的筛选方法及服务设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |