CN116341614A - 基于深层自编码网络的无线电干扰激发函数的预测方法 - Google Patents
基于深层自编码网络的无线电干扰激发函数的预测方法 Download PDFInfo
- Publication number
- CN116341614A CN116341614A CN202310377116.6A CN202310377116A CN116341614A CN 116341614 A CN116341614 A CN 116341614A CN 202310377116 A CN202310377116 A CN 202310377116A CN 116341614 A CN116341614 A CN 116341614A
- Authority
- CN
- China
- Prior art keywords
- self
- layer
- encoder
- training
- network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 230000005284 excitation Effects 0.000 title claims abstract description 33
- 238000012549 training Methods 0.000 claims abstract description 78
- 238000013528 artificial neural network Methods 0.000 claims abstract description 25
- 239000004576 sand Substances 0.000 claims abstract description 8
- 230000005540 biological transmission Effects 0.000 claims abstract description 7
- 230000006870 function Effects 0.000 claims description 44
- 230000008569 process Effects 0.000 claims description 24
- 230000004913 activation Effects 0.000 claims description 10
- 238000012360 testing method Methods 0.000 claims description 6
- 238000013507 mapping Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 4
- 238000010200 validation analysis Methods 0.000 claims description 4
- 239000000428 dust Substances 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 11
- 238000013527 convolutional neural network Methods 0.000 description 6
- 238000012795 verification Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000004590 computer program Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/08—Measuring electromagnetic field characteristics
- G01R29/0864—Measuring electromagnetic field characteristics characterised by constructional or functional features
- G01R29/0892—Details related to signal analysis or treatment; presenting results, e.g. displays; measuring specific signal features other than field strength, e.g. polarisation, field modes, phase, envelope, maximum value
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
- G06N3/0455—Auto-encoder networks; Encoder-decoder networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0499—Feedforward networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B15/00—Suppression or limitation of noise or interference
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310377116.6A CN116341614B (zh) | 2023-04-10 | 2023-04-10 | 基于深层自编码网络的无线电干扰激发函数的预测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310377116.6A CN116341614B (zh) | 2023-04-10 | 2023-04-10 | 基于深层自编码网络的无线电干扰激发函数的预测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116341614A true CN116341614A (zh) | 2023-06-27 |
CN116341614B CN116341614B (zh) | 2023-10-03 |
Family
ID=86885718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310377116.6A Active CN116341614B (zh) | 2023-04-10 | 2023-04-10 | 基于深层自编码网络的无线电干扰激发函数的预测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116341614B (zh) |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102509011A (zh) * | 2011-11-03 | 2012-06-20 | 国网电力科学研究院 | 特高压输电线路导线无线电干扰激发函数及其确定方法 |
CN104636985A (zh) * | 2013-11-08 | 2015-05-20 | 国家电网公司 | 一种改进bp神经网络的输电线路无线电干扰预测方法 |
CN104715151A (zh) * | 2015-03-20 | 2015-06-17 | 国家电网公司 | 一种高压输电线路无线电干扰激发函数确定方法 |
US20170328194A1 (en) * | 2016-04-25 | 2017-11-16 | University Of Southern California | Autoencoder-derived features as inputs to classification algorithms for predicting failures |
CN108446766A (zh) * | 2018-03-21 | 2018-08-24 | 北京理工大学 | 一种快速训练堆栈自编码深度神经网络的方法 |
CN108921343A (zh) * | 2018-06-26 | 2018-11-30 | 浙江工业大学 | 基于堆栈自编码器-支持向量回归的交通流量预测方法 |
CN109255469A (zh) * | 2018-08-07 | 2019-01-22 | 河海大学 | 融合栈式自编码器和支持向量回归的洪水预测方法 |
CN110456176A (zh) * | 2019-05-28 | 2019-11-15 | 武汉大学 | 一种高海拔地区高压输电线路无线电干扰水平的计算方法 |
CN111814878A (zh) * | 2020-07-09 | 2020-10-23 | 仲恺农业工程学院 | 基于ssda-helm-softmax的农业投入品实时分类预测方法 |
US20210132132A1 (en) * | 2019-10-31 | 2021-05-06 | State Grid Nanjing Supply Power Company | Method for calculating radio interference suffered by a communication device mounted on an electric power tower |
CN112861992A (zh) * | 2021-03-09 | 2021-05-28 | 三峡大学 | 基于独立稀疏堆叠自编码器的风电场超短期功率预测方法 |
CN112904092A (zh) * | 2021-01-19 | 2021-06-04 | 华北电力大学(保定) | 一种高海拔交流线路的无线电干扰预测方法及装置 |
WO2021170735A1 (en) * | 2020-02-28 | 2021-09-02 | Sensyne Health Group Limited | Semi-supervised machine learning method and system suitable for identification of patient subgroups in electronic healthcare records |
-
2023
- 2023-04-10 CN CN202310377116.6A patent/CN116341614B/zh active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102509011A (zh) * | 2011-11-03 | 2012-06-20 | 国网电力科学研究院 | 特高压输电线路导线无线电干扰激发函数及其确定方法 |
CN104636985A (zh) * | 2013-11-08 | 2015-05-20 | 国家电网公司 | 一种改进bp神经网络的输电线路无线电干扰预测方法 |
CN104715151A (zh) * | 2015-03-20 | 2015-06-17 | 国家电网公司 | 一种高压输电线路无线电干扰激发函数确定方法 |
US20170328194A1 (en) * | 2016-04-25 | 2017-11-16 | University Of Southern California | Autoencoder-derived features as inputs to classification algorithms for predicting failures |
CN108446766A (zh) * | 2018-03-21 | 2018-08-24 | 北京理工大学 | 一种快速训练堆栈自编码深度神经网络的方法 |
CN108921343A (zh) * | 2018-06-26 | 2018-11-30 | 浙江工业大学 | 基于堆栈自编码器-支持向量回归的交通流量预测方法 |
CN109255469A (zh) * | 2018-08-07 | 2019-01-22 | 河海大学 | 融合栈式自编码器和支持向量回归的洪水预测方法 |
CN110456176A (zh) * | 2019-05-28 | 2019-11-15 | 武汉大学 | 一种高海拔地区高压输电线路无线电干扰水平的计算方法 |
US20210132132A1 (en) * | 2019-10-31 | 2021-05-06 | State Grid Nanjing Supply Power Company | Method for calculating radio interference suffered by a communication device mounted on an electric power tower |
WO2021170735A1 (en) * | 2020-02-28 | 2021-09-02 | Sensyne Health Group Limited | Semi-supervised machine learning method and system suitable for identification of patient subgroups in electronic healthcare records |
CN111814878A (zh) * | 2020-07-09 | 2020-10-23 | 仲恺农业工程学院 | 基于ssda-helm-softmax的农业投入品实时分类预测方法 |
CN112904092A (zh) * | 2021-01-19 | 2021-06-04 | 华北电力大学(保定) | 一种高海拔交流线路的无线电干扰预测方法及装置 |
CN112861992A (zh) * | 2021-03-09 | 2021-05-28 | 三峡大学 | 基于独立稀疏堆叠自编码器的风电场超短期功率预测方法 |
Non-Patent Citations (7)
Title |
---|
AFAN ALI 等: "Automatic modulation classification of digital modulation signals with stacked autoencoders", 《DIGITAL SIGNAL PROCESSING》, vol. 71, pages 108 - 116, XP085215600, DOI: 10.1016/j.dsp.2017.09.005 * |
QIUSHENG WANG 等: "Noise Suppression of Corona Current Measurement From HVdc Transmission Lines", 《IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT》, vol. 65, no. 02, pages 264 - 275, XP011596327, DOI: 10.1109/TIM.2015.2485339 * |
万保权 等: "高海拔地区大截面导线束的无线电干扰特征研究", 《环境污染与防治》, vol. 43, no. 08, pages 933 - 936 * |
刘泫梓: "基于软件无线电平台和循环神经网络的电磁干扰采集与识别系统的研究与实现", 《中国优秀硕士学位论文全文数据库信息科技辑》, no. 2019, pages 136 - 438 * |
瓮佳良: "基于深度学习的玻璃缺陷识别方法研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》, no. 2017, pages 015 - 106 * |
谢辉春: "特高压交流输电线路无线电干扰统计特征及预测评估方法", 《中国博士学位论文全文数据库工程科技Ⅱ辑》, no. 2017, pages 042 - 149 * |
郑心仪 等: "交直流并行输电线路无线电干扰的预测算法", 《南方电网技术》, vol. 15, no. 10, pages 72 - 79 * |
Also Published As
Publication number | Publication date |
---|---|
CN116341614B (zh) | 2023-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10832123B2 (en) | Compression of deep neural networks with proper use of mask | |
CN108764539B (zh) | 一种梯级电站的上下游水位预测方法 | |
CN111860982A (zh) | 一种基于vmd-fcm-gru的风电场短期风电功率预测方法 | |
CN110322364B (zh) | 一种短期光伏发电预测方法及系统 | |
CN109599872B (zh) | 基于堆栈降噪自动编码器的电力系统概率潮流计算方法 | |
CN113554466A (zh) | 一种短期用电量预测模型构建方法、预测方法和装置 | |
CN112669168B (zh) | 一种风电功率短期预测方法 | |
CN106447133A (zh) | 一种基于深度自编码网络的短期电力负荷预测方法 | |
CN113255986A (zh) | 一种基于气象信息和深度学习算法的多步日径流预报方法 | |
CN111178585A (zh) | 基于多算法模型融合的故障接报量预测方法 | |
CN109754122A (zh) | 一种基于随机森林特征提取的bp神经网络的数值预测方法 | |
CN115907131B (zh) | 一种北方地区电采暖负荷预测模型搭建方法和系统 | |
CN114298140A (zh) | 一种考虑机组分类的风电短期功率预测校正方法 | |
CN113947182A (zh) | 基于双阶段堆叠图卷积网络的交通流预测模型构建方法 | |
CN110717581A (zh) | 一种基于温度模糊处理和dbn的短期负荷预测方法 | |
CN113537539B (zh) | 一种基于注意力机制的多时间步供热用气量预测模型 | |
CN116341717A (zh) | 一种基于误差补偿的风速预测方法 | |
CN115577748A (zh) | 一种集成挤压激励注意力机制的双通道风电预测方法 | |
CN111985711B (zh) | 一种风电功率概率预测模型建立方法 | |
CN116341614B (zh) | 基于深层自编码网络的无线电干扰激发函数的预测方法 | |
CN116306292A (zh) | 一种基于卷积神经网络的水电站物理场级数字孪生模型构建方法 | |
CN113722951B (zh) | 基于神经网络的散射体三维有限元网格优化方法 | |
Li et al. | A short-term wind power forecasting method based on NWP wind speed fluctuation division and clustering | |
CN115329937A (zh) | 一种风机运维数据驱动的lstm-sa神经网络超短期功率预测方法 | |
CN115293406A (zh) | 基于CatBoost和Radam-LSTM的光伏发电功率预测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231031 Address after: 071000 619 Yonghua North Street, lotus pool, Baoding, Hebei Patentee after: NORTH CHINA ELECTRIC POWER University (BAODING) Patentee after: STATE GRID CORPORATION OF CHINA Patentee after: CHINA ELECTRIC POWER RESEARCH INSTITUTE Co.,Ltd. Patentee after: STATE GRID SICHUAN ECONOMIC Research Institute Address before: 071000 619 Yonghua North Street, lotus pool, Baoding, Hebei Patentee before: NORTH CHINA ELECTRIC POWER University (BAODING) Patentee before: STATE GRID CORPORATION OF CHINA |