CN116332862A - 一种具有超高比容量的配合物基超级电容器材料的制备方法 - Google Patents

一种具有超高比容量的配合物基超级电容器材料的制备方法 Download PDF

Info

Publication number
CN116332862A
CN116332862A CN202310327605.0A CN202310327605A CN116332862A CN 116332862 A CN116332862 A CN 116332862A CN 202310327605 A CN202310327605 A CN 202310327605A CN 116332862 A CN116332862 A CN 116332862A
Authority
CN
China
Prior art keywords
specific capacity
complex
mixed solution
uranyl
super capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310327605.0A
Other languages
English (en)
Inventor
董云
周玉生
陈亮亭
张孝亮
赵建社
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Caiyun New Material Ecological Technology Co ltd
Original Assignee
Shaanxi Caiyun New Material Ecological Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Caiyun New Material Ecological Technology Co ltd filed Critical Shaanxi Caiyun New Material Ecological Technology Co ltd
Priority to CN202310327605.0A priority Critical patent/CN116332862A/zh
Publication of CN116332862A publication Critical patent/CN116332862A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种具有超高比容量的配合物基超级电容器材料的制备方法,涉及超级电容器技术领域,具体步骤如下:S1、前驱体溶液的制备:将H3TATB与铀酰金属盐加入到DMF中,通过机械搅拌的方式得到混合溶液;随后加入的甲醇和甲酸溶液,继续搅拌30min得到混合液。通过平面π共轭三羧酸有机配体与铀酰离子构建具有类石墨烯结构的二维金属有机框架,其层与层之间的ππ相互作用可以维持配合物在水和酸碱条件下的稳定性,并有利于电子的传导以获得具有高比容量的超级电容器材料,且对材料的比容量的计算结果表明该超级电容器材料呈现出了超高的比容量值,该值在已公开的MOFs基材料应用作超级电容器的比容量值中处于绝对领先地位。

Description

一种具有超高比容量的配合物基超级电容器材料的制备方法
技术领域
本发明涉及超级电容器技术领域,尤其涉及一种具有类石墨烯结构的二维层状配合物作为超级电容器材料。
背景技术
超级电容器(Supercapacitors,SCs),是一种极具潜力的电化学储能器件,它具有功率密度高,可用环境温度范围广,使用寿命长等优点。相比于传统锂电池等二次电池,超级电容器成本相对低廉,可承受瞬时脉冲电压极高且功率密度极高,在诸如大电流快速充放电应用场景中(如矿车、电网整流和列车启动等)有极大的优势。相比于传统电介质电容器,超级电容器具有较高的能量密度,其比容量值较高。
由于主要限制超级电容器的因素是其能量密度,目前研究人员通过对其器件组分进行调节应对这一挑战,在超级电容器器件组分中,对材料综合性能影响最大的是电极材料,电极材料因其本征结构特性的不同(如比表面积、导电率、孔隙率以及成份组成等),电化学性能通常有极大差异。通过对传统电极材料诸如碳材料、氧化物材料以及聚合物材料的构效关系进行了深入的研究和探讨之后,现阶段研究人员总结了构筑优异超级电容器电极材料需要具备的特征:高比表面积,丰富的氧化还原活性位点,可在电解质中稳定存在的材料结构以及高导电性。金属有机框架由于具有化学组分可调节性,大比表面积,高孔隙率以及丰富的活性位点等优势,成为超级电容器电极材料的绝佳候选材料。
MOFs作为一种配位聚合物,其电子导电率相对较低甚至通常呈现绝缘的物理状态,不同于三维MOFs,由平面π共轭的配体堆积构成的二维MOFs通常具有良好的导电性,这是因为电子在MOFs中通常有三种传输路径,包括:“通过键”、“通过空间”以及“扩展共轭途径”,在这些途径中,“通过空间”是效率最高的传导方式,而此种传导路径受到层与层之间距离的限制,只有距离很近的时候才可发生,因此,二维MOFs通常具有较高的电子导电率,但由于其主要框架由金属与配体形成的配位键构成所以它的稳定性一直不尽如人意,因为这种类型的配位键通常容易受到环境的侵蚀,以MOF-5为例,它在水或者水蒸气存在的状态下会快速分解,这意味者MOFs基电极在水溶液电解质中通常无法应用,水溶液电解质相比于传统有机电解质而言,成本相对低廉且对环境极为友好,因此,水基超级电容器是目前储能学发展的重要方向之一,需要一种类石墨烯结构的超级电容器材料的制备方法解决上述问题。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种具有超高比容量的配合物基超级电容器材料的制备方法,解决了上述背景中提出的配合物作为超级电容器的稳定性差的问题,同时解决比容量低的问题。
(二)技术方案
为达到以上目的,本发明采取的技术方案是:一种具有超高比容量的配合物基超级电容器材料的制备方法,具体步骤如下:
S1、前驱体溶液的制备:将H3TATB与铀酰金属盐加入到DMF中,通过机械搅拌的方式得到混合溶液;随后加入的甲醇和甲酸溶液,继续搅拌30min得到混合液;
S2、溶剂热反应:将步骤S1所制备的混合溶液加入到聚四氟乙烯衬底的水热反应釜中,并在固定升温速率下升至固定反应温度反应一定时长;降温至室温,经过滤、洗涤、干燥后,得到黄色片状晶体。
优选的,所述S1步骤中铀酰金属盐为UO2(NO3)3·6H2O、UO2(CH3COO)2·2H2O和ZnUO2(CH3COO)4溶剂比例为10:6:7.5。
优选的,所述S2步骤中固定升温速率为2~5℃/min,所述固定反应温度为135℃,所述反应时间为3天,所述的降温速率为2~3℃/h。
(三)有益效果
本发明的有益效果在于:
该具有超高比容量的配合物基超级电容器材料的制备方法,通过平面π共轭三羧酸有机配体与铀酰离子构建具有类石墨烯结构的二维金属有机框架,其层与层之间的ππ相互作用可以维持配合物在水和酸碱条件下的稳定性,并有利于电子的传导以获得具有高比容量的超级电容器材料,且对材料的比容量的计算结果表明该超级电容器材料呈现出了超高的比容量值,该值在已公开的MOFs基材料应用作超级电容器的比容量值中处于绝对领先地位,有效的解决了背景技术中提出的配合物作为超级电容器的稳定性差的问题,同时解决了比容量低的问题。
附图说明
图1为本发明类石墨烯结构超级电容器材料的合成路线图;
图2为本发明类石墨烯结构超级电容器材料的二维类石墨烯层状结构;
图3为本发明类石墨烯结构超级电容器材料的表征(红外、紫外和热重);
图4为本发明类石墨烯结构超级电容器材料在不同条件下的循环伏安和GCD曲线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
类石墨烯结构的超级电容器材料的合成:
将UO2(NO3)2·6H2O(0.05mmol,25mg)和H3TATB(0.025mmol,11mg)溶于3.3mL的DMF溶液中,随后加入2.0mL的甲醇和2.5mL的甲酸溶液,转移至带有8mL玻璃瓶的聚四氟乙烯内衬不锈钢高压釜中,135℃反应3天,洗涤干燥得到黄色片状晶体。
实施例二
类石墨烯结构的超级电容器材料的结构分析:
以单晶X-射线衍射手段对所制备的电容材料进行测试,结果表明,该超级电容器材料的具有类石墨烯的二维层状结构,其孔径大小大约为
Figure BDA0004153755760000041
Figure BDA0004153755760000042
层与层之间通过π-π堆积,其距离为/>
Figure BDA0004153755760000043
层与层之间发生平行滑移,无相互交联,二维类石墨烯层状结构如图2所示。
实施例三
类石墨烯结构的超级电容器材料的表征:
红外光谱中,相比原料H3TATB的红外光谱,归因于C=O的不对称伸缩振动(υasCOO-)和对称伸缩振动(υsCOO-)从1703cm-1和1581cm-1红移到1664cm-1和1541cm-1,同时在920cm-1处出现了U=O伸缩振动峰,这与实验所得结构相符。
电子吸收光谱中,配体在324nm处出现了明显的π-π*跃迁吸收峰红移至350nm,这是发生配位的结果;在385nm-493nm较宽的吸收峰归属为配体-金属电荷转移跃迁(LMCT)。
对类石墨烯结构的电容材料UTATB进行了热稳定性分析,150℃之前发生了材料孔道内的抗衡离子和水分子的失去;150℃-360℃二维类石墨烯结构保持稳定;360℃之后可以观察到类石墨烯结构开始发生坍塌,说明该电容材料可在高温下使用,类石墨烯结构超级电容器材料的表征如图3所示。
实施例四
类石墨烯结构的超级电容器材料的电化学性质测试:
将活性样品涂抹于1cm×1cm的方形泡沫镍上,之后在80℃的烘箱中烘干5小时,从而制备质量负载为1mg cm-2的电极材料。电化学测试使用了经典的三电极测试方法:以3MKOH水溶液(aq)作为电解质铂电极作为对电极,Ag/AgCl电极作为参比电极。电池容量Csp(单位为Fg-1)、能量密度、E(Wh kg-1)及功率密度P(kW kg-1)分别通过以下公式计算而得到的:
Csp=2im∫Vdt/ΔV
(1)
W=∫V(t)I(t)dt
(2)
P=V(t)I(t)
(3)
其中,Csp(Fg-1)代表比容量,im=I/m(Ag-1)是测试时输入的电流密度(I是电流,m是电极质量),ΔV是电势窗口,V和I分别表示电压和电流,W表示能量密度,P表示功率密度。
在不同的扫速下(10~70mV s-1)对类石墨烯电容材料进行循环伏安测试,发现在0.2-0.25V、0.3-0.36V范围内表现出了明显的氧化还原峰;配合物的峰型呈现出对称形状,表明在该材料的氧化还原反应是可逆的;且反应过程中无副反应发生。
在1~7A g-1的电流密度下测试了材料的GCD曲线,在0.45V的电压窗口下,GCD曲线均表现出了极化的三角形形状,说明材料呈现出了赝电容的能量存储特性;材料的充电时间与放电时间相近,表明其具有较高的库伦效率;材料GCD曲线中未出现明显台阶,说明材料储能特性相较于电池而言更偏向于超级电容器。对材料的比容量的计算结果表明该材料呈现出了超高的比容量值(2386Fg-1),该值在已报道的MOFs基材料应用作超级电容器的比容量值中处于绝对领先地位,类石墨烯结构超级电容器材料在不同条件下的循环伏安和GCD曲线如图4所示。
以上实例仅用以说明本发明而非限制本发明所描述的技术方案;因此,尽管本说明书参照上述的各个实例对本发明进行了详细的说明,但是本领域的普通技术人员应当理解,仍可对本发明进行修改或同等替换;而一切不脱离本发明的精神和范围的技术方案及其改进,均应涵盖在本发明的专利要求范围。

Claims (3)

1.一种具有超高比容量的配合物基超级电容器材料的制备方法,其特征在于,具体步骤如下:
S1、前驱体溶液的制备:将H3TATB与铀酰金属盐加入到DMF中,通过机械搅拌的方式得到混合溶液;随后加入的甲醇和甲酸溶液,继续搅拌30min得到混合液;
S2、溶剂热反应:将步骤S1所制备的混合溶液加入到聚四氟乙烯衬底的水热反应釜中,并在固定升温速率下升至固定反应温度反应一定时长;降温至室温,经过滤、洗涤、干燥后,得到黄色片状晶体。
2.根据权利要求1所述的一种具有超高比容量的配合物基超级电容器材料的制备方法,其特征在于:所述S1步骤中铀酰金属盐为UO2(NO3)3·6H2O、UO2(CH3COO)2·2H2O和ZnUO2(CH3COO)4溶剂比例为10:6:7.5。
3.根据权利要求1所述的一种具有超高比容量的配合物基超级电容器材料的制备方法,其特征在于:所述S2步骤中固定升温速率为2~5℃/min,所述固定反应温度为135℃,所述反应时间为3天,所述的降温速率为2~3℃/h。
CN202310327605.0A 2023-03-30 2023-03-30 一种具有超高比容量的配合物基超级电容器材料的制备方法 Pending CN116332862A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310327605.0A CN116332862A (zh) 2023-03-30 2023-03-30 一种具有超高比容量的配合物基超级电容器材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310327605.0A CN116332862A (zh) 2023-03-30 2023-03-30 一种具有超高比容量的配合物基超级电容器材料的制备方法

Publications (1)

Publication Number Publication Date
CN116332862A true CN116332862A (zh) 2023-06-27

Family

ID=86875926

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310327605.0A Pending CN116332862A (zh) 2023-03-30 2023-03-30 一种具有超高比容量的配合物基超级电容器材料的制备方法

Country Status (1)

Country Link
CN (1) CN116332862A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116873858A (zh) * 2023-07-13 2023-10-13 烟台大学 一种放射性储氢材料催化剂、镁基储氢合金材料及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116873858A (zh) * 2023-07-13 2023-10-13 烟台大学 一种放射性储氢材料催化剂、镁基储氢合金材料及制备方法
CN116873858B (zh) * 2023-07-13 2023-12-29 烟台大学 一种放射性储氢材料催化剂、镁基储氢合金材料及制备方法

Similar Documents

Publication Publication Date Title
Zhao et al. Ni/Co-based metal-organic frameworks as electrode material for high performance supercapacitors
Zhou et al. Simple method for the preparation of highly porous ZnCo2O4 nanotubes with enhanced electrochemical property for supercapacitor
Wang et al. Biomass carbon/polyaniline composite and WO 3 nanowire-based asymmetric supercapacitor with superior performance
CN108922790B (zh) 一种复合材料的制备方法和应用
CN101527202A (zh) 氧化石墨烯/聚苯胺超级电容器复合电极材料及其制备方法、用途
Gong et al. Facile synthesis of Ni 0.85 Se on Ni foam for high-performance asymmetric capacitors
CN110921721B (zh) 一种基于金属有机框架衍生的双金属氢氧化物的制备及应用
Ran et al. Nano vanadium nitride incorporated onto interconnected porous carbon via the method of surface-initiated electrochemical mediated ATRP and heat-treatment approach for supercapacitors
Rong et al. A three-dimensional Mn-based MOF as a high-performance supercapacitor electrode
CN111446414B (zh) 一种共价有机框架材料、制备方法及其应用
CN110010367B (zh) 一种二维金属有机框架半导体材料及制备方法及应用
Aristote et al. General overview of sodium, potassium, and zinc-ion capacitors
Liu et al. Properties of polyaniline/ordered mesoporous carbon composites as electrodes for supercapacitors
Wang et al. Preparation of benzoxazine-based N-doped mesoporous carbon material and its electrochemical behaviour as supercapacitor
CN109928384A (zh) 一种氮掺杂多孔碳材料的制备方法
CN116332862A (zh) 一种具有超高比容量的配合物基超级电容器材料的制备方法
Guo et al. An excellent cycle performance of asymmetric supercapacitor based on ZIF-derived C/N-doped porous carbon nanostructures
KR102012106B1 (ko) 금속산화물 및 유기리간드를 포함하는 금속-유기 복합체, 이를 이용한 슈퍼커패시터용 전극, 및 이의 제조방법
CN114497547A (zh) 共轭醌嗪类有机电极材料及其制备方法与应用
Li et al. Engineering hierarchical manganese molybdenum sulfide nanosheet integrated cathodes for high-energy density hybrid supercapacitors
Wang et al. The high performance of polyaniline-gel network modified electrode in 3-(2, 2, 6, 6-tetramethyl-piperidiynl-1-oxyl)-1-methylylimidazoliumbromide biredox electrolyte used for supercapacitor
Zhou et al. Electrodeposited coral-like bimetallic NiCo-MOFs on Ni foam as binder-free electrodes for high performance all solid-state asymmetric supercapacitors
Liu et al. Preparation of Nb2O5 with an air filter-like structure and its excellent electrochemical performance in supercapacitors
CN111085691B (zh) 一种含Co@C结构的介孔活性炭材料及其制备方法与应用
Zhang et al. Na+ intercalated manganese dioxide/MOF-derived Nanoporous carbon hybrid electrodes for supercapacitors with high rate performance and cyclic stability

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination