CN116326073A - 用于物理上行链路共享信道可靠性增强的相位跟踪参考信号传输 - Google Patents

用于物理上行链路共享信道可靠性增强的相位跟踪参考信号传输 Download PDF

Info

Publication number
CN116326073A
CN116326073A CN202080106373.0A CN202080106373A CN116326073A CN 116326073 A CN116326073 A CN 116326073A CN 202080106373 A CN202080106373 A CN 202080106373A CN 116326073 A CN116326073 A CN 116326073A
Authority
CN
China
Prior art keywords
ptrs
dmrs
repetition
ports
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080106373.0A
Other languages
English (en)
Inventor
张羽书
曾威
孙海童
张大伟
何宏
叶春璇
叶思根
杨维东
牛华宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Publication of CN116326073A publication Critical patent/CN116326073A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及设备和部件,这些设备和部件包括用于物理上行链路共享信道传输的装置、系统和方法,这些物理上行链路共享信道传输在不同的发射波束上具有重复并且利用相位跟踪参考信号。

Description

用于物理上行链路共享信道可靠性增强的相位跟踪参考信号 传输
背景技术
相位跟踪参考信号(PTRS)可以与物理上行链路共享信道(PUSCH)相关联,以补偿每个符号的相位偏移。
附图说明
图1示出了根据一些实施方案的网络环境。
图2示出了根据一些实施方案的时隙传输。
图3示出了根据一些实施方案的一个信令图。
图4示出了根据一些实施方案的另一信令图。
图5示出了根据一些实施方案的操作流程/算法结构。
图6示出了根据一些实施方案的另一个操作流程/算法结构。
图7示出了根据一些实施方案的另一个操作流程/算法结构。
图8示出了根据一些实施方案的另一个操作流程/算法结构。
图9示出了根据一些实施方案的设备的波束形成部件。
图10示出了根据一些实施方案的用户装备。
图11示出了根据一些实施方案的基站。
具体实施方式
以下具体实施方式涉及附图。在不同的附图中可使用相同的附图标号来识别相同或相似的元件。在以下描述中,出于说明而非限制的目的,阐述了具体细节,诸如特定结构、架构、接口、技术等,以便提供对各个实施方案的各个方面的透彻理解。然而,对于受益于本公开的本领域技术人员显而易见的是,可以在背离这些具体细节的其他示例中实践各个实施方案的各个方面。在某些情况下,省略了对熟知的设备、电路和方法的描述,以便不会因不必要的细节而使对各种实施方案的描述模糊。就本文档而言,短语“A或B”是指(A)、(B)或(A和B)。
以下为可在本公开中使用的术语表。
如本文所用,术语“电路”是指以下项、为以下项的一部分或包括以下项:硬件部件诸如被配置为提供所述功能的电子电路、逻辑电路、处理器(共享、专用或组)或存储器(共享、专用或组)、专用集成电路(ASIC)、现场可编程设备(FPD)(例如,现场可编程门阵列(FPGA)、可编程逻辑设备(PLD)、复杂PLD(CPLD)、大容量PLD(HCPLD)、结构化ASIC或可编程片上系统(SoC))、数字信号处理器(DSP)等。在一些实施方案中,电路可执行一个或多个软件或固件程序以提供所述功能中的至少一些。术语“电路”还可以指一个或多个硬件元件与用于执行该程序代码的功能的程序代码的组合(或电气或电子系统中使用的电路的组合)。在这些实施方案中,硬件元件和程序代码的组合可被称为特定类型的电路。
如本文所用,术语“处理器电路”是指以下项、为以下项的一部分或包括以下项:能够顺序地和自动地执行一系列算术运算或逻辑运算或者记录、存储或传输数字数据的电路。术语“处理器电路”可指应用处理器、基带处理器、中央处理单元(CPU)、图形处理单元、单核处理器、双核处理器、三核处理器、四核处理器或能够执行或以其他方式操作计算机可执行指令(诸如程序代码、软件模块和/或功能过程)的任何其他设备。
如本文所用,术语“接口电路”是指实现两个或更多个部件或设备之间的信息交换的电路、为该电路的一部分,或包括该电路。术语“接口电路”可指一个或多个硬件接口,例如总线、I/O接口、外围部件接口、网络接口卡等。
如本文所用,术语“用户装备”或“UE”是指具有无线电通信能力并且可描述通信网络中的网络资源的远程用户的设备。此外,术语“用户装备”或“UE”可被认为是同义的,并且可被称为客户端、移动电话、移动设备、移动终端、用户终端、移动单元、移动站、移动用户、订户、用户、远程站、接入代理、用户代理、接收器、无线电装备、可重新配置的无线电装备、可重新配置的移动设备等。此外,术语“用户装备”或“UE”可包括任何类型的无线/有线设备或包括无线通信接口的任何计算设备。
如本文所用,术语“计算机系统”是指任何类型的互连电子设备、计算机设备或它们的部件。另外,术语“计算机系统”或“系统”可指彼此通信地耦接的计算机的各种部件。此外,术语“计算机系统”或“系统”可指彼此通信地耦接并且被配置为共享计算资源或联网资源的多个计算机设备或多个计算系统。
如本文所用,术语“资源”是指物理或虚拟设备、计算环境内的物理或虚拟部件,或特定设备内的物理或虚拟部件,诸如计算机设备、机械设备、存储器空间、处理器/CPU时间、处理器/CPU使用率、处理器和加速器负载、硬件时间或使用率、电源、输入/输出操作、端口或网络套接字、信道/链路分配、吞吐量、存储器使用率、存储、网络、数据库和应用程序、工作量单位等。“硬件资源”可指由物理硬件元件提供的计算、存储或网络资源。“虚拟化资源”可指由虚拟化基础设施提供给应用程序、设备、系统等的计算、存储或网络资源。术语“网络资源”或“通信资源”可指计算机设备/系统可经由通信网络访问的资源。术语“系统资源”可指提供服务的任何种类的共享实体,并且可包括计算资源或网络资源。系统资源可被视为可通过服务器访问的一组连贯功能、网络数据对象或服务,其中此类系统资源驻留在单个主机或多个主机上并且可清楚识别。
如本文所用,术语“信道”是指用于传送数据或数据流的任何有形的或无形的传输介质。术语“信道”可与“通信信道”、“数据通信信道”、“传输信道”、“数据传输信道”、“接入信道”、“数据访问信道”、“链路”、“数据链路”“载波”、“射频载波”或表示通过其传送数据的途径或介质的任何其他类似的术语同义或等同。另外,如本文所用,术语“链路”是指在两个设备之间进行的用于传输和接收信息的连接。
如本文所用,术语“使……实例化”、“实例化”等是指实例的创建。“实例”还指对象的具体发生,其可例如在程序代码的执行期间发生。
术语“连接”可意味着在公共通信协议层处的两个或更多个元件通过通信信道、链路、接口或参考点彼此具有建立的信令关系。
如本文所用,术语“网络元件”是指用于提供有线或无线通信网络服务的物理或虚拟化装备或基础设施。术语“网络元件”可被认为同义于或被称为联网计算机、联网硬件、网络装备、网络节点、虚拟化网络功能等。
术语“信息元素”是指包含一个或多个字段的结构元素。术语“字段”是指信息元素的各个内容,或包含内容的数据元素。信息元素可包括一个或多个附加信息元素。
图1示出了根据一些实施方案的网络环境100。网络环境100可包括UE 104和基站108。基站108可提供一个或多个无线服务小区,例如3GPP新空口“NR”小区,UE 104可通过该无线服务小区与基站108通信。
UE 104和基站108可以通过与3GPP技术规范兼容的空中接口进行通信,诸如定义第五代(5G)NR系统标准的技术规范。基站108可以是与5G核心网络耦接的下一代无线电接入网络(NG-RAN)节点。NG-RAN节点可以是向UE 104提供NR用户平面和控制平面协议终止的gNB,或者是向UE 104提供演进通用地面无线电接入(E-UTRA)用户平面和控制平面协议终止的ng-eNB。
基站108可以与一个或多个分布式天线面板(AP)(例如,AP 116和AP 120)耦接。分布式AP 116/120可以在传输接收点(AP)或其他设备中实现。一般来讲,基站108可执行通信协议栈的大部分操作,包括调度,而AP 116/120充当分布式天线。在一些实施方案中,AP116/120可执行通信协议栈的一些低层操作(例如,模拟物理(PHY)层操作)。
基站108可使用AP 116/120以在地理上隔开可向UE 104传输信号或从该UE接收信号的点。这可增加使用多输入、多输出和波束形成增强来与UE 104进行通信的灵活性。AP116/120可用于向UE 104传输下行链路传输并从UE 104接收上行链路传输。在一些实施方案中,由AP 116和AP 120提供的分布式传输/接收能力可用于来自一个或多个基站的协作式多点或载波聚合系统。
尽管网络环境100示出了通过AP 116/120与UE 104进行通信的一个基站108,但是在各种实施方案中,网络环境100可包括多个其他网络元件(例如,基站、TRP、eNB等),以便于UE 104的无线接入网络连接。例如,在一些实施方案中,基站108可以与AP 116本地耦接,而另一基站可以与AP 120本地耦接。基站108可通过理想性或非理想性回程与其他基站进行通信,以便于与UE 104进行通信。
基站108可通过将逻辑信道映射到传输信道上以及将传输信道映射到物理信道上,来在下行链路方向上传输信息(例如,数据和控制信令)。逻辑信道可在无线电链路控制(RLC)层与介质访问控制(MAC)层之间传递数据;传输信道可以在MAC与PHY层之间传递数据;并且物理信道可以跨空中接口传递信息。
AP 116和UE 104上的一个或多个天线面板可包括允许接收或传输波束形成的天线元件阵列。通过确定并使用增加了天线增益和整体系统性能的上行链路和下行链路波束,波束形成可改善上行链路和下行链路预算。基于参考信号测量结果和信道互易性假设,使用波束管理操作,UE 104和基站108可确定所需的上行链路-下行链路波束对。
在下行链路方向上,基站108可发送UE 104所测量的同步信号块(SSB)和信道状态信息-参考信号(CSI-RS),以确定用于传输/接收物理下行链路控制信道(PDCCH)和物理下行链路共享信道(PDSCH)传输所需的下行链路波束对。在一些实施方案中,网络元件可以假设上行链路/下行链路波束对应性并且将所需下行链路波束对用作PUSCH和PUCCH传输所需的上行链路波束对。在一些实施方案中,基于UE 104所传输的探测参考信号(SRS),可针对上行链路方向独立地确定波束对。在各种实施方案中,波束管理可包括不同阶段,诸如上行链路和下行链路波束的初始获取以及上行链路和下行链路波束的稍后细化。
PUSCH可用于传送用户面的用户数据以及控制面的信令无线承载(SRB)消息。PUSCH也可用于传送各种控制信息,诸如(例如)缓存状态报告、小区无线电网络临时标识符(C-RNTI)、所配置的授权配置和功率余量报告。
基站108可以调度PUSCH传输124。利用可由一个或多个波束传输的多个重复(repetition),可以调度PUSCH传输124。PUSCH传输的每个重复可以携带相同的传输块(TB),以增加PUSCH传输的可靠性。可使用多输入多输出(MIMO)技术,在一个或多个传输层上传输每个重复。
如图所示,PUSCH传输124可包括四个重复,其中重复#1和重复#2被调度为利用波束#1而传输给AP 116,并且重复#3和重复#4被调度为利用波束#2而传输给AP 120。可以将这些重复分成各重复集,每个重复集包括具有类似波束配置的重复。例如,重复#1和#2可纳入重复集1中,而重复#3和#4可纳入重复集2中。
在一些实施方案中,基于重复集之中共享了SRS资源指示符(SRI)或传输预编码器矩阵指示符(TPMI)的各重复,可确定类似的波束配置。一个重复集可包括一个或多个重复。
基站108可使用动态授权(DG)或配置授权(CG)来调度PUSCH传输。由动态授权调度的PUSCH(DG-PUSCH)可以在为DG-PUSCH提供单独资源分配的PDCCH中通过DCI来调度。由配置授权调度的PUSCH(CG-PUSCH)可以由基站108调度,该基站给UE 104配置了可用于CG-PUSCH的专用资源块集合。CG-PUSCH的控制信令可包括RRC信令,该RRC信令具有或不具有充当激活触发器的层1(例如,PHY层)信令。
UE 104可利用PUSCH来传输上行链路相位跟踪参考信号(PTRS),以允许基站108估计并补偿可能基于发射器和接收器处的振荡器的操作而生成的相位噪声和频率偏移两者。这在可能存在较大相位噪声的较高频带中可能尤其普遍,这可导致不同符号的相移。
图2示出了根据一些实施方案的时隙传输200。时隙传输200可包括DMRS 204、PUSCH传输208和PTRS 212。PTRS 212可插入不包括DMRS 204的正交频分复用(OFDM)符号中。相位噪声可随着时间而非随着频率而改变。因此,PTRS 212在时域中的密度可比频域中更高。
假设利用相同的预编码器来传输DMRS 204和PTRS 212,基站108在收到时隙传输200后,可以补偿DMRS 204中的相位噪声影响和相移。具体地,基站108的接收器可比较PTRS212与DMRS 204之间的相移以计算相位偏移,该相位偏移可用于补偿DMRS 204的所有子载波的相移。
在当前版本的3GPP技术规范中,可支持至多两个PTRS端口。如果UE 104包括多个天线面板,则可能期望两个PTRS端口,假定与每个面板相关联的本地振荡器可能是单独的相位噪声和频率偏移源。分别通过onePortsPTRS信息元素(IE)和twoPortsPTRS IE,UE 104可以用信号发送其对在一个或两个天线端口上传输PTRS的支持。onePortsPTRS IE可指示UE是否支持频带1(410MHz-7125MHz)中的单端口PTRS,因为可能要求UE 104支持频带2(24.25GHz-52.6GHz)中的单端口PTRS。
每个PTRS端口可以与DMRS端口相关联,其中相同的数字预编码器应用于PTRS及其相关联的DMRS。这两个PTRS端口可用于非相干/部分相干预编码器。
通过提供了授权信息的控制信令,可提供PTRS端口与DMRS端口之间的关联性。例如,对于DG-PUSCH,参考表1的一个PTRS端口和表2的两个PTRS端口,可通过DCI字段PTRS-DMRS关联性来指示PTRS与DMRS端口之间的关联性。表1对应于3GPP TS 38.212v16.3.0(2020-09)中的表7.3.1.1.2-25,表2对应于3GPP TS 38.212的表7.3.1.1.2-26。
DMRS端口
0 第1DMRS调度端口
1 第2DMRS调度端口
2 第3DMRS调度端口
3 第4DMRS调度端口
表1—针对UL PTRS端口0的PTRS-DMRS关联性
Figure BDA0004184157550000071
表2—针对UL PTRS端口0和1的PTRS-DMRS关联性
例如,如果启用了一个PTRS端口,并且在DCI中指示了值‘0’,则基于表1,该一个PTRS端口(例如,PTRS端口0)与第一DMRS调度端口相关联。因此,针对PTRS的预编码器可以与第一传输层相同,第一传输层也可称为层0。
如果启用了两个PTRS端口并且在DCI中指示了位值‘01’,则基于表2,该PTRS端口0与第一传输层相关联(基于最高有效位(MSB)值‘0’),并且PTRS端口1与第二传输层相关联(基于最低有效位(LSB)值‘1’)。
PTRS端口数目可通过RRC信令和用于PUSCH传输的指示预编码器(例如,TPMI)来确定。当PTRS与PUSCH相关联时,当以下所有条件都为真时,可启用2端口PTRS:条件1—在RRC中,上行链路PTRS端口的最大数目被配置为二;条件2—码本子集被配置为非相干或部分相干;和条件3—PUSCH通过端口1000/1002和端口1001/1003来传输。对于条件3,端口1000/1002可以与第一天线面板相关联,并且端口1001/1003可以与第二天线面板相关联。因此,条件3对应于双面板PUSCH传输。考虑例如表3,其对应于3GPP TS 38.211v16.3.0(2020-09)的表6.3.1.5-5的摘录。
Figure BDA0004184157550000081
表3—使用禁用了变换预编码的四个天线端口进行双层传输的预编码矩阵
W
在此示例中,当针对秩2和4端口码本的TPMI=0、2、3、5并且UE报告其支持2个PTRS端口时,可以在端口1000/1002和端口1001/1003上,用非相干或部分相干预编码器来调度PUSCH,并且因此可满足条件2和3。假设也满足条件1,则可使用双端口PTRS。
如果不满足所有三个条件,则当PTRS与PUSCH相关联时,可传输单端口PTRS。
如上文参照图1所论,PUSCH传输124可包括利用不同预编码器所传输的重复。这相对于已知技术,可能使PTRS操作复杂化。因此,本公开的实施方案描述了如何确定针对每个PUSCH重复的PTRS端口数目;并且还描述了如何确定针对每个PUSCH重复的PTRS到DMRS关联性。具体地,各实施方案描述了针对具有来自多个波束/预编码器的重复的PUSCH的PTRS传输。一些方面包括针对某一PTRS端口数目的控制信令和PTRS到DMRS关联性指示。另外的方面包括用以确定PTRS端口数目和PTRS传输特性的UE行为。
可提供三个选项来确定针对每个PUSCH重复的PTRS端口数目。这些选项并不相互排斥。这些选项中的一些选项的各方面可以与其他选项一起使用。
第一选项可包括:针对利用具有多个波束/预编码器的重复进行调度的PUSCH,使用单端口PTRS端口。例如,即使满足了用于使用双端口PTRS的三个条件(例如,UL PTRS端口的最大数目可以被配置为一个以上;码本子集被配置为非相干/部分相干,并且将使用双面板传输),UE 104仍将仅应用一个PTRS端口。UE 104可通过一个天线端口来传输PTRS,并且该PTRS可用于所有PUSCH重复。在各种实施方案中,单个PTRS端口传输可以在不同重复集之中的不同天线/面板中传输。
第二选项可包括:针对所有PUSCH重复,使用相同数目的PTRS端口。例如,针对每个重复(或重复集)的初始数目的PTRS端口可基于针对该重复或重复集的配置集来确定。初始确定结果可基于配置集(例如,基于RRC信令和针对该重复(或重复集)的指示预编码器)是否满足上述三个条件。例如,如果在RRC中,针对一个重复(或重复集),上行链路PTRS端口的最大数目被配置为2;则码本子集被配置为非相干或部分相干;并且该重复(或重复集)将通过端口1000/1002和端口1001/1003来传输,可以将该重复(或重复集)最初确定为具有两个PTRS端口。否则,针对该重复(或重复集),可初始确定一个PTRS端口。
在一些实施方案中,通过端口1000/1002和端口1001/1003所传输的重复(或重复集)可通过UE层定义的一个波束来传输,例如,应用于两个天线面板以形成一个波束的波束形成权重。另选地,通过端口1000/1002和端口1001/1003所传输的重复(或重复集)可通过在天线面板层定义的两个波束来传输。
尽管是初始确定结果,但可选择一个PTRS端口数目以用于所有PUSCH重复。选择待用于所有PUSCH重复的数目可以如参照随后子选项中的一个自选项所述的那样进行。
子选项2-1可包括:基于针对特定PUSCH重复而初始确定的PTRS端口数目,确定待使用的PTRS端口数目。PUSCH重复可以是例如第一PUSCH重复(或重复集);然而,在其他实施方案中,其可以是其他PUSCH重复(或重复集)。考虑例如最初确定了将一个PTRS端口用于重复集1并且将两个PTRS端口用于重复集2。在子选项2-1中,UE 104可确定:将一个PTRS端口用于重复集1和2两者。
子选项2-2可包括:基于针对所有PUSCH重复(重复集)的最小PTRS端口数目,确定用于所有PUSCH重复(或重复集)的PTRS端口数目。考虑例如最初确定了将两个PTRS端口用于重复集1并且将一个PTRS端口用于重复集2。在子选项2-2中,UE 104可确定将一个PTRS端口用于重复集1和2两者。
子选项2-3可包括:基于针对所有PUSCH重复(或重复集)的最大PTRS端口数目,确定用于所有PUSCH重复(或重复集)的PTRS端口数目。考虑例如最初确定了将两个PTRS端口用于重复集1并且将一个PTRS端口用于重复集2。在子选项2-3中,UE 104可确定:将两个PTRS端口用于重复集1和2两者。
子选项2-4可包括实现调度限制条件,其中基站108调度应当导致将相同数目的PTRS端口用于每个PUSCH重复。例如,基站108可以按如下方式来调度PUSCH传输124:针对重复集1和2,初始确定相同数目的PTRS端口,例如,1个PTRS端口或两个PTRS端口。在此实施方案中,如果对重复集的调度方式使得针对不同的重复集确定了不同数目的PTRS端口,则可认为该实施方式出现错误。
在一些实施方案中,基站108可限制重复集之间的调度变化,以便确保针对不同的重复集确定了相同数目的PTRS端口。例如,如果基站108对重复集1的调度方式满足了针对2个PTRS端口的三个条件,则该基站对重复集2的调度方式也须满足针对2个PTRS端口的三个条件。将理解,在两个重复集之间仍可能存在一些调度变化。例如,只要第二预编码器中的第一预编码器是非相干或部分相干预编码器(并且因此满足条件2),就可以利用第一预编码器来调度第一重复集,而利用第二预编码器来调度第二重复集。
用于确定用于每个PUSCH重复(或重复集)的PTRS端口数目的第三选项可包括:单独地确定用于每个PUSCH重复(或重复集)的PTRS端口数目。例如,对于每个PUSCH重复(或重复集),可以确定RRC信令和预编码器是否满足三个条件。例如,可以确定是否:在RRC中,上行链路PTRS端口的最大数目被配置为2;码本子集被配置为非相干或部分相干;并且PUSCH重复(或重复集)将通过端口1000/1002和端口1001/1003来传输。如果是,则可以将两个PTRS端口应用于PUSCH重复(或重复集)。否则,可以将一个PTRS端口用于该重复(或重复集)。可以指出,PUSCH重复可以指示实际或标称PUSCH重复。
可以提供三个选项来确定针对具有重复的DG-PUSCH传输的PTRS到DMRS关联性。这些选项并不相互排斥。这些选项中的一些选项的各方面可以与其他选项一起使用。
第一选项可包括:基于由单个DCI提供的指示符,确定针对每个PUSCH重复(或重复集,例如,具有相同预编码器/波束的PUSCH重复)的PTRS到DMRS关联性。这可根据至少两个子选项来执行。
在子选项1-1中,单个DCI字段可用于联合配置针对每个重复(或重复集)的PTRS到DMRS关联性。在一些实施方案中,单个DCI字段可以指将与不同重复(或重复集)对应的各值的预配置表。考虑例如表4,其将UL PTRS端口0关联到针对第一和第二PUSCH重复集的第一DMRS调度端口或第二DMRS调度端口。在该实施方案中,重复集被定义为共享第一SRI/TPMI的重复以及共享第二SRI/TPMI的重复。
Figure BDA0004184157550000121
表4—针对UL PTRS端口0的PTRS到DMRS关联性
例如,如果DCI字段提供了值‘1’的指示,则用于第一重复集的DMRS端口将是第二DMRS调度端口(例如,传输层1);并且用于第一重复集的DMRS端口将是第一DMRS调度端口(例如,传输层0)。因此,PTRS端口0将与第一DMRS调度端口和第二DMRS调度端口两者相关联。因此,从PTRS端口0传输的PTRS将使用与以下项相同的预编码器:经由传输层0,与第一重复集一起传输的DMRS;以及经由传输层1,与第二重复集一起传输的DMRS。
在一些实施方案中,可限制用于每个PUSCH重复(或重复集)的最大层数以减少开销。例如,在一些实施方案中,可允许至多两个传输层(例如,可以针对所有PUSCH重复应用两个预编码器/波束)。这可允许参考针对一项PTRS端口指示的PTRS-DMRS关联性表(诸如表4)来使用2位PTRS到DMRS关联性字段。
在子选项1-2中,多个DCI字段可用于配置针对每个重复(或重复集)的PTRS到DMRS关联性。例如,假设将传输两个重复集,则第一DCI字段可指示参考了针对第一重复集的PTRS-DMRS关联性表(诸如表1)的第一关联性值;并且第二DCI字段可指示参考了针对第二重复集的PTRS-DMRS关联性表的第二关联性值。
在用于针对其重复具有多个预编码器/波束的DG-PUSCH来确定PTRS到DMRS关联性的第二选项中,PTRS DMRS关联性可不基于DCI。例如,该关联性可以不在DCI中指示,或者如果被指示,则可以被UE 104忽略。这可根据至少两个子选项来执行。
在选项2-1中,PTRS到DMRS关联性可基于PTRS到DMRS关联性的预定义值。例如,可以假设一个关联性值作为待应用的默认PTRS到DMRS关联性。例如,UE 104可以确定PTRS总是与第一DMRS端口相关联,例如,参照表1、表2或表4中的任一表,PTRS到DMRS关联性值是0。
在选项2-2中,可通过高层信令(例如,RRC或MAC CE)来配置PTRS到DMRS关联性。以此方式,可基于特定配置场景来更新关联性值。然而,关联性值将进行更新的速率可能小于如上所述的通过DCI对动态信令进行更新的速率。
在选项2-3中,PTRS到DMRS关联性可基于每预编码器端口循环,其中该关联性是基于DMRS端口数目和重复集内的重复数目。具体地,根据一些实施方案,关联性可通过以下项来确定:相关联的DMRS端口的数目(N)以及重复集内的各重复之间的重复索引(k)(例如,共享相同预编码器/波束的重复)。例如,重复集的第一重复可具有k值0,重复集的第二重复可具有值1,等等。然后,PTRS端口0可以与DMRS端口k mod N相关联。
考虑例如根据一些实施方案的图3的信令图300。类似于图1的PUSCH传输,信令图300可包括PUSCH传输300,该传输包括第一重复集304,第一重复集包括PUSCH重复#1和PUSCH重复#2。PUSCH传输300还可包括第二重复集308,其包括PUSCH重复#3和PUSCH重复#4。可通过波束#1来传输第一重复集304,并且可通过波束#2来传输第二重复集308。
假设启用了一个PTRS端口,选项2-3的端口循环可导致:在第一传输层上,传输PUSCH重复#1(其中PTRS端口0与DMRS端口0相关联(基于k=0且N=2));在第二传输层上,传输PUSCH重复#2(其中PTRS端口0与DMRS端口1相关联(基于k=1且N=2));在第一传输层上,传输PUSCH重复#3,(其中PTRS端口0再次与DMRS端口0相关联(基于k=0且N=2));以及在第二传输层上,传输PUSCH重复#4(其中PTRS端口0与DMRS端口1相关联(基于k=1且N=2))。
在用于针对其重复具有多个预编码器/波束的DG-PUSCH来确定PTRS到DMRS关联性的第三选项中,对于DG-PUSCH,可通过第二级DCI来指示针对除了第一PUSCH重复之外的PUSCH重复、或具有与第一PUSCH重复不同的预编码器/波束的PUSCH重复的PTRS到DMRS关联性。
图4示出了根据一些实施方案的具有PTRS到DMRS关联性的第二级指示的信令图400。该信令图包括第一级DCI 404和第二级DCI 408。第一级DCI 404可以调度DG-PUSCH传输412。DG-PUSCH传输412可包括具有PUSCH重复#1和#2的第一重复集416以及具有PUSCH重复#3和#4的第二重复集420。
第一级DCI 404可提供针对DG-PUSCH传输412的动态授权。另外,第一级DCI 404可提供针对第一重复集的PTRS到DMRS关联性。在该实施方案中,该关联性可指示PTRS端口0与DMRS端口0相关联。因此,第一重复集416可以由第一传输层来传输。在一些实施方案中,第一级DCI也可提供第二级DCI 408的指示,并且可能提供第二级DCI的位置。
第二级DCI 408可提供针对第一重复集之后的重复集的PTRS到DMRS关联性的指示。例如,第二级DCI 408可指示PTRS端口0与第二重复集420的DMRS端口1相关联。因此,第二重复集420可以由第二传输层来传输。
在一些实施方案中,第一级DCI 404可提供针对DG-PUSCH 412的动态授权,而第二级DCI 408提供针对所有重复集的PTRS到DMRS关联性的指示。
在一些实施方案中,可基于第一级DCI 404的调度,调整第二级DCI 408中的位宽。DG-PUSCH 412的调度可形成有效且需要参考的PTRS-DMRS关联性表的各值的较小子集。例如,如果一个端口PTRS仅与两个传输层一起使用,则可能仅需要一个位来提供PTRS到DMRS关联性的指示。在一些实施方案中,通过PTRS端口数目M和层数N,可以确定第二级DCI 408中的PTRS-DMRS指示的位宽。例如,位宽可以是log2(ceil(N/M))*M。
对于具有来自多个波束/预编码器的重复的CG-PUSCH,通过RRC信令,基站108可以为每个重复(或重复集)配置不同的PTRS到DMRS关联性。下面提供了使用RRC信令来配置端口关联性的两个选项。这些选项并不相互排斥。这些选项之一的各方面可以与另一方面一起使用。
在第一选项中,可引入RRC参数来配置针对PUSCH重复的PTRS到DMRS关联性。其可通过单个RRC参数或PTRS到DMRS关联性列表进行联合指示。例如,如果利用两个传输层和一个PTRS端口来调度CG-PUSCH,则RRC参数可指示:对于CG-PUSCH的多个重复集之中的每个重复集,PTRS端口是否与第一DMRS调度端口或第二DMRS调度端口相关联。
在第二选项中,可引入RRC参数以启用PTRS端口循环。启用后,UE 104可使用与上文参照选项2-3和图4所述类似的方法。
在一些实施方案中,可以将用于配置端口关联性的RRC参数纳入用于为CG-PUSCH提供配置授权的RRC信令中。另外/另选地,在对配置授权进行更新时,可提供RRC参数。
图5示出了根据一些实施方案的操作流程/算法结构500。操作流程/算法结构500可以由UE(诸如例如UE 104或UE 1000)或其部件(例如,基带处理器1004A)执行或实现。
操作流程/算法结构500可包括:在504处,处理调度信息,以确定具有重复的PUSCH传输的时间表。在一些实施方案中,调度信息可以是通过DCI传输的动态授权调度信息。在其他实施方案中,调度信息可以被配置为授权通过RRC和可选地DCI所传输的调度信息。
可以将PUSCH传输的重复分成多个重复集,这些重复集被调度为在相应的多个发射波束上传输。相应发射波束上的重复集调度可基于针对重复集内的各重复的公共SRI或TPMI配置。一个重复集可包括一个或多个重复。重复集可包括不同数目的重复。
操作流程/算法结构500还可包括:在508处,确定PTRS端口数目以用于传输与重复相关联的PTRS。可以将PTRS端口数目确定为对于所有重复集是相同的或者不同的。
在一个实施方案中,针对每个重复集,可以确定初始数目的PTRS端口。基于为具体重复集所设置的一项配置是否满足上述三个条件,可以确定初始数目(例如,上行链路PTRS端口的最大数目被配置为二;码本子集被配置为非相干或部分相干;并且重复集通过端口1000/1002和端口1001/1003来传输)。在一些实施方案中,初始数目之一可用于所有重复集。初始数目可以是与第一重复集相关联的数目、初始数目中的最大数目、或初始数目中的最小数目。在其他实施方案中,初始数目可用于传输相应重复集。
操作流程/算法结构500还可包括:在512处,传输具有重复的PUSCH传输。PUSCH传输可利用如由动态授权或配置授权所配置的发射波束来传输。
操作流程/算法结构500还可包括:在516处,通过在508处确定的PTRS端口数目,传输PTRS。
图6示出了根据一些实施方案的操作流程/算法结构600。操作流程/算法结构600可以由UE(诸如例如UE 104或UE 1000)或其部件(例如,基带处理器1004A)执行或实现。
操作流程/算法结构600可包括:在604处,接收一个或多个DCI以调度PUSCH传输并指示关联性值。此实施方案中的PUSCH传输可以是具有多个重复集的DG-PUSCH。每个重复集可包括共享SRI/TPMI的一个或多个重复。
一个或多个DCI可以在一个或多个字段中包括关联性值的指示。例如,在第一实施方案中,单个DCI字段可用于联合配置针对每个重复集的关联性。在另一实施方案中,多个DCI字段可用于单独地配置针对相应多个重复集的关联性。
在一些实施方案中,一个或多个DCI可包括包含调度信息的第一级DCI和包含关联性信息的第二级DCI。在一些实施方案中,第一级DCI可包括针对第一重复集的关联性信息,而第二级DCI包括针对第二重复集的关联性信息。在其他实施方案中,第二级DCI可包括针对所有重复集的关联性信息。
操作流程/算法结构600还可包括:在608处,确定针对各重复集的PTRS到DMRS关联性。具体地,一个或多个PTRS端口可以与一个或多个DMRS调度端口相关联。通过使用关联性信息以参考一个或多个PTRS-DMRS存储表,诸如(例如)如本文所述的表1、表2或表4,可确定这些关联性。
操作流程/算法结构600还可包括:在612处,基于该关联性,传输PTRS;以及传输PUSCH传输。可利用用于关联DMRS的相同预编码器来传输PTRS,该预编码器利用相应的重复集来传输。
图7可包括根据一些实施方案的操作流程/算法结构700。操作流程/算法结构700可以由UE(诸如例如UE 104或1000)或其部件(例如,基带处理器1004A)执行或实现。
操作流程/算法结构700可包括:在704处,接收DCI以调度PUSCH传输。在该实施方案中,PUSCH传输可以是通过与上述类似的DCI所调度的DG-PUSCH。
操作流程/算法结构700还可包括:在708处,基于配置信息,确定针对重复集的PTRS到DMRS关联性。在该实施方案中,配置信息可以是预定义的或者接收自高层信令。如本文所用的高层信令可以指物理层之上的信令。例如,高层信令可包括RRC信令或MAC控制信令(例如,MAC CE)。
如果DCI包括关联性信息,则其可以被UE丢弃或以其他方式忽略。
在一些实施方案中,配置信息可指示:PTRS到DMRS关联性是基于预定义值。此预定义值可参考PTRS-DMRS表,诸如上文参照表1、表2或表3所述的表。该预定值可以是静态值,其在没有通过例如高层信令来配置其他关联性信息的情况下被用作默认值。
在一些实施方案中,配置信息可指示PTRS到DMRS关联性将基于PTRS端口循环。例如,如果DG-PUSCH传输与N个DMRS端口相关联,其中N是整数,则可以基于一个或多个重复之间的重复索引(k),针对重复集的每个重复,确定PTRS到DMRS关联性。例如,PTRS端口可以与DMRS端口k mod N相关联。在该实施方案中,k=0用于具体重复集的第一重复,并且对于该重复集的后续重复,将其递增一。当确定针对后续重复集之中的各重复的关联性时,可以将值k重置为0。
操作流程/算法结构700还可包括:在712处,传输PTRS和PUSCH传输。如上所论,PTRS可利用与其相关联的DMRS相同的预编码器来传输。
图8可包括根据一些实施方案的操作流程/算法结构800。操作流程/算法结构800可以由基站(诸如例如基站108或gNB 1100)或其部件(例如,基带处理器1104A)执行或实现。
操作流程/算法结构800可包括:在804处,传输针对CG-PUSCH的RRC信令。CG-PUSCH可以是类型1配置授权(由RRC信令完全配置)或类型2配置授权(由RRC信令配置并随后由DCI传输触发)。
在一些实施方案中,除了配置授权信息之外,RRC信令还可包括关联性信息,以针对各个重复集,配置不同的PTRS到DMRS关联性。在一些实施方案中,关联性信息可纳入一个或多个RRC参数或关联性列表中。在一些实施方案中,关联性信息可以启用、触发或重新配置PTRS端口循环以由接收UE使用。
操作流程/算法结构800还可包括:在808处,接收CG-PUSCH传输和PTRS。CG-PUSCH传输和PTRS可以由UE基于通过804的RRC信令所提供的调度和关联性信息来传输。
操作流程/算法结构800还可包括:在812处,基于PTRS,处理CG-PUSCH。具体地,基站可基于PTRS来确定相移并且可使用所确定的相移来处理与PTRS相关联的DMRS。以此方式,基站然后可基于恢复的DMRS来解调PUSCH重复。
图9示出了根据一些实施方案的波束形成电路900。波束形成电路900可包括:第一天线面板,即面板1 1004;和第二天线面板,即面板2 908。每个天线面板可包括多个天线元件。其他实施方案可包括其他数量的天线面板。
数字波束形成(BF)部件928可以从例如基带处理器(诸如例如图12的基带处理器1204A)接收输入基带(BB)信号。数字BF部件928可依赖于复杂权重以将BB信号预编码并且向并行射频(RF)链920/1124提供波束形成的BB信号。
每个RF链920/1124可包括数模转换器以将BB信号转换到模拟域中;混频器,该混频器将基带信号混合为RF信号;和功率放大器,该功率放大器放大RF信号以用于传输。
RF信号可提供给模拟BF部件912/1116,这些模拟BF部件可通过在模拟域中提供相移来另外施加波束形成。然后,RF信号可提供给天线面板904/1108以供传输。
在一些实施方案中,可仅在数字域中或仅在模拟域中完成波束形成,代替此处所示的混合波束形成。
在各种实施方案中,可驻留在基带处理器中的控制电路可以向模拟/数字BF部件提供BF权重,以在相应天线面板处提供发射波束。这些BF权重可由控制电路确定以提供如本文所述的服务小区的定向调配。在一些实施方案中,BF部件和天线面板可一起操作以提供能够在期望方向上引导波束的动态相控阵列。
图10示出了根据一些实施方案的UE 1000。UE 1000可类似于图1的UE 104,并且基本上可与其互换。
UE 1000可以是任何移动或非移动的计算设备,诸如移动电话、计算机、平板电脑、工业无线传感器(例如,麦克风、二氧化碳传感器、压力传感器、湿度传感器、温度计、运动传感器、加速度计、激光扫描仪、流体水平传感器、库存传感器、电压/电流计、致动器等)、视频监控/监测设备(例如相机、摄像机等)、可穿戴设备(例如,智能手表)、松散IoT设备。
UE 1000可包括处理器1004、RF接口电路1008、存储器/存储装置1012、用户接口1016、传感器1020、驱动电路1022、电源管理集成电路(PMIC)1024、天线结构1026和电池1028。UE 1000的部件可被实现为集成电路(IC)、集成电路的部分、离散电子设备或其他模块、逻辑部件、硬件、软件、固件或它们的组合。图10的框图旨在示出UE 1000的部件中的某些部件的高级视图。然而,可省略所示的部件中的一些,可存在附加部件,并且所示部件的不同布置可在其他具体实施中发生。
UE 1000的部件可通过一个或多个互连器1032与各种其他部件耦接,该一个或多个互连器可表示任何类型的接口、输入/输出、总线(本地、系统或扩展)、传输线、迹线、光学连接件等,其允许各种(在公共或不同的芯片或芯片组上的)电路部件彼此交互。
处理器1004可包括处理器电路,诸如基带处理器电路(BB)1004A、中央处理器单元电路(CPU)1004B和图形处理器单元电路(GPU)1004C。处理器1004可包括执行或以其他方式操作计算机可执行指令(诸如程序代码、软件模块或来自存储器/存储装置1012的功能过程)的任何类型的电路或处理器电路,以使UE 1000执行如本文所描述的操作。
在一些实施方案中,基带处理器电路1004A可访问存储器/存储装置1012中的通信协议栈1036以通过3GPP兼容网络进行通信。一般来讲,基带处理器电路1004A可访问通信协议栈以:在PHY层、MAC层、RLC层、PDCP层、SDAP层和PDU层处执行用户平面功能;以及在PHY层、MAC层、RLC层、PDCP层、RRC层和非接入层处执行控制平面功能。在一些实施方案中,PHY层操作可附加地/另选地由RF接口电路1008的部件执行。
基带处理器电路1004A可生成或处理在3GPP兼容网络中承载信息的基带信号或波形。在一些实施方案中,用于NR的波形可基于上行链路或下行链路中的循环前缀OFDM(“CP-OFDM”),以及上行链路中的离散傅里叶变换扩展OFDM(“DFT-S-OFDM”)。
存储器/存储装置1012可包括一个或多个非暂态计算机可读介质,该一个或多个非暂态计算机可读介质包括指令(例如,通信协议栈1036),这些指令可由处理器1004中的一个或多个处理器执行以使UE 1000执行本文所描述的各种操作。存储器/存储装置1012包括可分布在整个UE 1000中的任何类型的易失性或非易失性存储器。在一些实施方案中,存储器/存储装置1012中的一些存储器/存储装置可位于处理器1004本身(例如,L1高速缓存和L2高速缓存)上,而其他存储器/存储装置1012位于处理器1004的外部,但可经由存储器接口访问。存储器/存储装置1012可包括任何合适的易失性或非易失性存储器,诸如但不限于动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、可擦除可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)、闪存存储器、固态存储器或任何其他类型的存储器设备技术。
RF接口电路1008可包括收发器电路和射频前端模块(RFEM),其允许UE 1000通过无线电接入网络与其他设备通信。RF接口电路1008可包括布置在发射路径或接收路径中的各种元件。这些元件可包括例如开关、混频器、放大器、滤波器、合成器电路、控制电路等。
在接收路径中,RFEM可经由天线结构1026从空中接口接收辐射信号,并且继续(利用低噪声放大器)过滤并放大信号。可将该信号提供给收发器的接收器,该接收器将RF信号向下转换成被提供给处理器1004的基带处理器的基带信号。
在发射路径中,收发器的发射器将从基带处理器接收的基带信号向上转换,并将RF信号提供给RFEM。RFEM可在信号经由天线1026跨空中接口被辐射之前通过功率放大器来放大RF信号。
在各种实施方案中,RF接口电路1008可被配置为以与NR接入技术兼容的方式发射/接收信号。
天线1026可包括天线元件以将电信号转换成无线电波以行进通过空气并且将所接收到的无线电波转换成电信号。这些天线元件可被布置成一个或多个天线面板。天线1026可具有全向、定向或它们的组合的天线面板,以实现波束形成和多个输入/多个输出通信。天线1026可包括微带天线、制造在一个或多个印刷电路板的表面上的印刷天线、贴片天线、相控阵列天线等。天线1026可具有一个或多个面板,该一个或多个面板被设计用于包括在FR1或FR2中的带的特定频带。
用户接口电路1016包括各种输入/输出(I/O)设备,这些输入/输出设备被设计成使用户能够与UE 1000进行交互。用户接口1016包括输入设备电路和输出设备电路。输入设备电路包括用于接受输入的任何物理或虚拟装置,尤其包括一个或多个物理或虚拟按钮(例如,复位按钮)、物理键盘、小键盘、鼠标、触控板、触摸屏、麦克风、扫描仪、头戴式耳机等。输出设备电路包括用于显示信息或以其他方式传达信息(诸如传感器读数、致动器位置或其他类似信息)的任何物理或虚拟装置。输出设备电路可包括任何数量或组合的音频或视觉显示,尤其包括一个或多个简单的视觉输出/指示器(例如,二进制状态指示器(诸如发光二极管“LED”)和多字符视觉输出),或更复杂的输出,诸如显示设备或触摸屏(例如,液晶显示器“LCD”、LED显示器、量子点显示器、投影仪等),其中字符、图形、多媒体对象等的输出由UE 1100的操作生成或产生。
传感器1020可包括目的在于检测其环境中的事件或变化的设备、模块或子系统,并且将关于所检测的事件的信息(传感器数据)发送到一些其他设备、模块、子系统等。此类传感器的示例尤其包括:包括加速度计、陀螺仪或磁力仪的惯性测量单元;包括三轴加速度计、三轴陀螺仪或磁力仪的微机电系统或纳机电系统;液位传感器;流量传感器;温度传感器(例如,热敏电阻器);压力传感器;气压传感器;重力仪;测高仪;图像捕获设备(例如,相机或无透镜孔径);光检测和测距传感器;接近传感器(例如,红外辐射检测器等);深度传感器;环境光传感器;超声收发器;麦克风或其他类似的音频捕获设备;等。
驱动电路1022可包括用于控制嵌入在UE 1000中、附接到UE 1100或以其他方式与UE 1000通信地耦接的特定设备的软件元件和硬件元件。驱动电路1022可包括各个驱动器,从而允许其他部件与可存在于UE 1000内或连接到该UE的各种输入/输出(I/O)设备交互或控制这些I/O设备。例如,驱动电路1022可包括:用于控制并允许接入显示设备的显示驱动器、用于控制并允许接入触摸屏接口的触摸屏驱动器、用于获取传感器电路1020的传感器读数并控制且允许接入传感器电路1020的传感器驱动器、用于获取机电式部件的致动器位置或者控制并允许接入机电式部件的驱动器、用于控制并允许接入嵌入式图像捕获设备的相机驱动器、用于控制并允许接入一个或多个音频设备的音频驱动器。
PMIC 1024可管理提供给UE 1000的各种部件的功率。具体地,相对于处理器1004,PMIC 1024可控制电源选择、电压缩放、电池充电或DC-DC转换。
在一些实施方案中,PMIC 1024可控制或以其他方式成为UE 1000的各种省电机制的一部分,其包括DRX,如本文所讨论的。
电池1028可为UE 1000供电,但在一些示例中,UE 1000可被安装在固定位置,并且可具有耦接到电网的电源。电池1028可以是锂离子电池、金属-空气电池诸如锌-空气电池、铝-空气电池、锂-空气电池等。在一些具体实施中,诸如在基于车辆的应用中,电池1028可以是典型的铅酸汽车电池。
图11示出了根据一些实施方案的gNB 1100。gNB节点1100可类似于图1的基站108,并且基本上可与其互换。
gNB 1100可包括处理器1104、RF接口电路1108、核心网络“CN”接口电路1112、存储器/存储装置电路1116和天线结构1126。
gNB 1100的部件可通过一个或多个互连器1128与各种其他部件耦接。
处理器1104、RF接口电路1108、存储器/存储装置电路1116(包括通信协议栈1110)、天线结构1126和互连器1128可类似于参考图10示出和描述的类似命名的元件。
CN接口电路1112可为核心网络(例如,使用5GC兼容网络接口协议(诸如载波以太网协议)或一些其他合适的协议的第5代核心网络“5GC”)提供连接。可经由光纤或无线回程向/从gNB 1100提供网络连接。CN接口电路1112可包括用于使用前述协议中的一者或多者来通信的一个或多个专用处理器或FPGA。在一些具体实施中,CN控制器电路1112可包括用于使用相同或不同的协议来提供到其他网络的连接的多个控制器。
在一些实施方案中,gNB 1100可使用天线结构1126,CN接口电路或其他接口电路与诸如TRP 112或116的TRP耦接。
众所周知,使用个人可识别信息应遵循公认为满足或超过维护用户隐私的行业或政府要求的隐私政策和做法。具体地,应管理和处理个人可识别信息数据,以使无意或未经授权的访问或使用的风险最小化,并应当向用户明确说明授权使用的性质。
对于一个或多个实施方案,在前述附图中的一个或多个中示出的部件中的至少一个可被配置为执行如下示例部分中所述的一个或多个操作、技术、过程或方法。例如,上文结合前述附图中的一个或多个所述的基带电路可被配置为根据下述示例中的一个或多个进行操作。又如,与上文结合前述附图中的一个或多个所述的UE、基站、网络元件等相关联的电路可被配置为根据以下在示例部分中示出的示例中的一个或多个进行操作。
实施例
在以下部分中,提供了另外的示例性实施方案。
实施例1可包括一种操作UE的方法,该方法包括:处理调度信息以确定具有多个重复的物理上行链路共享信道(PUSCH)传输的时间表,其中多个重复包括待分别利用至少两个发射波束进行传输的至少两个重复集;确定一定数目的相位跟踪参考信号(PTRS)端口,以用于传输与至少两个重复集之中的每个重复集相关联的PTRS;使用至少两个发射波束,传输具有多个重复的PUSCH传输;以及通过该数目的PTRS端口,传输PTRS。
实施例2可包括根据实施例1或本文一些其他实施例所述的方法,还包括:确定配置了多个PTRS端口;以及确定一个PTRS端口将用于传输与第一重复集和第二重复集之中的每个重复集相关联的PTRS。
实施例3可包括根据实施例1或本文某个其他实施例所述的方法,其中针对至少两个重复集之中的第一重复集,初始地确定第一数目的PTRS端口,针对至少两个重复集之中的第二重复集,初始地确定第二数目的PTRS端口,并且确定该数目的PTRS端口包括:确定第一数目的PTRS端口将用于传输与多个重复相关联的PTRS。
实施例4可包括根据实施例3或本文某个其他实施例所述的方法,其中针对至少两个重复集之中的每个重复集,确定初始数目的PTRS端口,并且该方法还包括:基于第一数目是PTRS端口初始数目的最小值,确定第一数目的PTRS端口将用于传输与多个重复相关联的PTRS;或基于第一数目是PTRS端口初始数目的最大值,确定第一数目的PTRS端口将用于传输与多个重复相关联的PTRS。
实施例5可包括根据实施例1或本文某个其他实施例所述的方法,还包括:针对至少两个重复集之中的第一重复集,从无线电资源控制(RRC)信令中确定所指示的最大数目的PTRS端口;针对第一重复集,确定码本子集;确定用于传输第一重复集的一个或多个天线端口;以及基于所指示的最大数目、码本子集和一个或多个天线端口,确定第一数目的PTRS端口以传输与第一重复集相关联的PTRS。
实施例6可包括根据实施例5或本文某个其他实施例所述的方法,还包括:如果所指示的最大数目是一,码本子集未被配置为非相干或部分相干,或者一个或多个天线端口不包括端口1000或1002以及端口1001或1003,则确定第一数目的PTRS端口是一个端口。
实施例7可包括根据实施例5或本文某个其他实施例所述的方法,还包括:如果所指示的最大数目是二,码本子集被配置为非相干或部分相干,并且一个或多个天线端口包括端口1000或1002以及端口1001或1003,则确定第一数目的PTRS端口是两个端口。
实施例8可包括一种操作UE的方法,该方法包括:存储相位跟踪参考信号(PTRS)-解调参考信号(DMRS)关联性表;接收一个或多个下行链路控制信息(DCI)以:调度具有第一重复集和第二重复集的物理上行链路共享信道(PUSCH)传输,第一重复集包括共享第一调度请求指示符(SRI)或所传输的预编码矩阵指示符(TPMI)的一个或多个重复,并且第二重复集包括共享第二SRI/TPMI的一个或多个重复;以及以在单个字段或多个字段中,指示一个或多个关联性值;基于一个或多个关联性值和PTRS-DMRS关联性表,确定针对第一重复集或第二重复集的PTRS到DMRS关联性;基于PTRS到DMRS关联性,传输PTRS;以及传输第一重复集和第二重复集。
实施例9可包括根据实施例8或本文某个其他实施例所述的方法,其中一个或多个DCI包括用以指示一个或多个关联性值的单个两位字段,并且确定PTRS到DMRS关联性包括:确定PTRS端口与第一DMRS调度端口或第二DMRS调度端口相关联,其中针对第一重复集的DMRS端口是第一DMRS调度端口或第二DMRS调度端口,并且针对第二重复集的DMRS端口是第一DMRS调度端口或第二DMRS调度端口。
实施例10可包括根据实施例8或本文某个其他实施例所述的方法,其中一个或多个DCI包括用以指示一个或多个关联性值中的第一关联性值的第一字段以及用以指示一个或多个关联性值中的第二关联性值的第二字段,并且确定PTRS到DMRS关联性包括:基于第一关联性值,确定与针对第一重复集的DMRS端口相关联的PTRS端口;以及基于第二关联性值,确定与针对第二重复集的DMRS端口相关联的PTRS端口。
实施例11可包括根据实施例10或本文某个其他实施例所述的方法,其中与针对第一重复集的DMRS端口相关联的PTRS端口以及与针对第二重复集的DMRS端口相关联的PTRS端口是不同的PTRS端口。
实施例12可包括根据实施例8或本文某个其他实施例所述的方法,其中该方法还包括:基于PTRS到DMRS关联性,确定第一PTRS端口与针对第一重复集的第一DMRS端口相关联;以及使用公共预编码器,经由第一PTRS端口来传输PTRS,并且经由第一DMRS端口来传输DMRS。
实施例13可包括根据实施例8或本文某个其他实施例所述的方法,其中一个或多个关联性值包括第一关联性值和第二关联性值,一个或多个DCI包括用以调度PUSCH传输的第一级DCI以及用以包括第二关联性值的第二级DCI,并且该方法还包括:基于第一关联性值和PTRS-DMRS关联性表,确定针对第一重复集的PTRS到DMRS关联性;以及基于第二关联性值和PTRS-DMRS关联性表,确定针对第二重复集的PTRS到DMRS关联性。
实施例14可包括根据实施例13或本文某个其他实施例所述的方法,其中第二级DCI包括log2(ceil(N/M)*M的位宽,其中M是PTRS端口的数目,并且N是传输层的数目。
实施例15可包括根据实施例13或本文某个其他实施例所述的方法,其中第一关联性值处于第一级DCI或第二级DCI中。
实施例16包括一种方法,包括:接收下行链路控制信息(DCI),以调度具有待利用至少两个发射波束来传输的多个重复集的物理上行链路共享信道(PUSCH)传输;基于由无线电资源控制(RRC)或介质访问控制(MAC)控制信令所预定义的或从其接收的配置信息,确定针对多个重复集之中的每个重复集的PTRS到DMRS关联性;基于PTRS到DMRS关联性,传输PTRS;以及传输具有多个重复的PUSCH传输。
实施例17可包括根据实施例16或本文某个其他实施例所述的方法,其中配置信息包括介质访问控制(MAC)控制元素(CE)。
实施例18可包括根据实施例16或本文某个其他实施例所述的方法,其中PUSCH传输与N个DMRS端口相关联,其中N是整数,并且确定PTRS到DMRS关联性包括:针对多个重复集之中的第一重复集的一个或多个重复中的每个重复,基于一个或多个重复之间的重复索引(k),确定PTRS端口与DMRS端口k mod N相关联,其中k=0用于一个或多个重复的第一重复,并且对于一个或多个重复中的后续重复,将其递增一。
实施例19可包括一种操作基站的方法,该方法包括:向用户装备传输用于具有多个重复集的配置授权-物理上行链路共享信道(PUSCH)传输的无线电资源控制(RRC)信令,其中RRC信令包括一个或多个参数以给多个重复集配置对应多个PTRS到DMRS关联性;接收CG-PUSCH传输;接收与CG-PUSCH传输相关联的PTRS;以及基于接收该PTRS,处理CG-PUSCH传输。
实施例20可包括根据实施例19或本文某个其他实施例所述的方法,其中一个或多个参数包括单个RRC参数以联合指示具有PTRS到DMRS关联性的各个重复集;或包括多个RRC参数以分别指示。
实施例21可包括一种装置,该装置包括用于执行实施例1至20中任一项所述或与之相关的方法或本文所述的任何其他方法或过程的一个或多个元素的构件。
实施例22可包括一种或多种非暂态计算机可读介质,该一种或多种非暂态计算机可读介质包括指令,这些指令在由电子设备的一个或多个处理器执行时,使电子设备执行实施例1至20中任一项所述或与之相关的方法或本文所述的任何其他方法或过程的一个或多个元素。
实施例23可包括一种装置,该装置包括用于执行实施例1至20中任一项所述或与之相关的方法或本文所述的任何其他方法或过程的一个或多个元素的逻辑部件、模块或电路。
实施例24可包括根据实施例1至20中任一项所述或与之相关的方法、技术或过程,或其部分或部件。
实施例25可包括一种装置,该装置包括:一个或多个处理器以及一个或多个计算机可读介质,该一个或多个计算机可读介质包括指令,这些指令在由一个或多个处理器执行时使一个或多个处理器执行根据实施例1至20中任一项所述或与之相关的方法、技术或过程,或其部分。
实施例26可包括根据实施例1至20中任一项所述或与其相关的信号,或其部分或部件。
实施例27可包括根据实施例1至20中任一项所述或与其相关的数据报、信息元素、分组、帧、段、PDU或消息,或其部分或部件,或在本公开中以其他方式描述。
实施例28可包括根据实施例1至20中任一项所述或与其相关的编码有数据的信号,或其部分或部件,或在本公开中以其他方式描述的。
实施例29可包括根据实施例1至20中任一项所述或与其相关的编码有数据报、IE、分组、帧、段、PDU或消息的信号,或其部分或部件,或在本公开中以其他方式描述。
实施例30可包括携带计算机可读指令的电磁信号,其中由一个或多个处理器执行计算机可读指令将使一个或多个处理器执行实施例1至20中任一项所述或与其相关的方法、技术或过程,或其部分。
实施例31可包括一种计算机程序,该计算机程序包括指令,其中由处理元件执行程序将使处理元件执行实施例1至20中任一项所述或与其相关的方法、技术或过程,或其部分。
实施例32可包括如本文所示和所述的无线网络中的信号。
实施例33可包括如本文所示和所述的在无线网络中进行通信的方法。
实施例34可包括如本文所示和所述的用于提供无线通信的系统。
实施例35可包括如本文所示和所述的用于提供无线通信的设备。
除非另有明确说明,否则上述示例中的任一者可与任何其他示例(或示例的组合)组合。一个或多个具体实施的前述描述提供了说明和描述,但是并不旨在穷举或将实施方案的范围限制为所公开的精确形式。鉴于上面的教导内容,修改和变型是可能的,或者可从各种实施方案的实践中获取修改和变型。
虽然已相当详细地描述了上面的实施方案,但是一旦完全了解上面的公开,许多变型和修改对于本领域的技术人员而言将变得显而易见。本公开旨在使以下权利要求书被阐释为包含所有此类变型和修改。

Claims (20)

1.一个或多个计算机可读介质,所述一个或多个计算机可读介质具有在由一个或多个处理器执行时使得用户装备(UE)执行以下操作的指令:
处理调度信息,以确定具有多个重复的物理上行链路共享信道(PUSCH)传输的时间表,其中所述多个重复包括待分别利用至少两个发射波束进行传输的至少两个重复集;
确定一定数目的相位跟踪参考信号(PTRS)端口,以用于传输与所述至少两个重复集之中的每个重复集相关联的PTRS;
使用所述至少两个发射波束,传输具有所述多个重复的所述PUSCH传输;以及
通过所述数目的PTRS端口,传输所述PTRS。
2.根据权利要求1所述的一个或多个计算机可读介质,其中为了确定所述数目的PTRS端口,所述指令在被执行时还使得所述UE:
确定配置了多个PTRS端口;以及
确定一个PTRS端口将用于传输与所述第一重复集和第二重复集之中的每个重复集相关联的PTRS。
3.根据权利要求1或权利要求2所述的一个或多个计算机可读介质,其中针对所述至少两个重复集之中的所述第一重复集,初始地确定第一数目的PTRS端口,针对所述至少两个重复集之中的第二重复集,初始地确定第二数目的PTRS端口,并且为了确定所述数目的PTRS端口,所述指令还将使所述UE:
确定所述第一数目的PTRS端口将用于传输与所述多个重复相关联的PTRS。
4.根据权利要求3所述的一个或多个计算机可读介质,其中针对所述至少两个重复集之中的每个重复集,确定初始数目的PTRS端口,并且所述指令在被执行时还使得所述UE:
基于所述第一数目是PTRS端口的所述初始数目的最小值,确定所述第一数目的PTRS端口将用于传输与所述多个重复相关联的PTRS;或者
基于所述第一数目是PTRS端口的所述初始数目的最大值,确定所述第一数目的PTRS端口将用于传输与所述多个重复相关联的PTRS。
5.根据权利要求1或2所述的一个或多个计算机可读介质,其中所述指令在被执行时还使得所述UE:
针对所述至少两个重复集之中的第一重复集,从无线电资源控制(RRC)信令中确定所指示的最大数目的PTRS端口;
针对所述第一重复集,确定码本子集;
确定用于传输所述第一重复集的一个或多个天线端口;以及
基于所指示的最大数目、所述码本子集和所述一个或多个天线端口,确定第一数目的PTRS端口以传输与所述第一重复集相关联的PTRS。
6.根据权利要求5所述的一个或多个计算机可读介质,其中所述指令在被执行时还使得所述UE:如果所指示的最大数目是一,所述码本子集未被配置为非相干或部分相干,或者所述一个或多个天线端口不包括端口1000或1002以及端口1001或1003,则确定所述第一数目的PTRS端口是一个端口。
7.根据权利要求5所述的一个或多个计算机可读介质,其中所述指令在被执行时还使得所述UE:如果所指示的最大数目是二,所述码本子集被配置为非相干或部分相干,并且所述一个或多个天线端口包括端口1000或1002以及端口1001或1003,则确定所述第一数目的PTRS端口是两个端口。
8.一种用户装备(UE),所述UE包括:
存储器,所述存储器用以存储相位跟踪参考信号(PTRS)-解调参考信号(DMRS)关联性表;和
处理电路,所述处理电路与所述存储器耦接,所述处理电路用于:
接收一个或多个下行链路控制信息(DCI)以:调度具有第一重复集和第二重复集的物理上行链路共享信道(PUSCH)传输,所述第一重复集包括共享第一调度请求指示符(SRI)或所传输的预编码矩阵指示符(TPMI)的一个或多个重复,并且所述第二重复集包括共享第二SRI/TPMI的一个或多个重复;以及
以在单个字段或多个字段中,指示一个或多个关联性值;
基于所述一个或多个关联性值和所述PTRS-DMRS关联性表,确定针对所述第一重复集或所述第二重复集的PTRS到DMRS关联性;
基于所述PTRS到DMRS关联性,传输PTRS;以及
传输所述第一重复集和所述第二重复集。
9.根据权利要求8所述的UE,其中所述一个或多个DCI包括用以指示所述一个或多个关联性值的单个两位字段,并且为了确定所述PTRS到DMRS关联性,所述处理电路将确定:
PTRS端口与第一DMRS调度端口或第二DMRS调度端口相关联,其中针对所述第一重复集的DMRS端口是所述第一DMRS调度端口或第二DMRS调度端口,并且针对所述第二重复集的DMRS端口是所述第一DMRS调度端口或所述第二DMRS调度端口。
10.根据权利要求8所述的UE,其中所述一个或多个DCI包括用以指示所述一个或多个关联性值中的第一关联性值的第一字段以及用以指示所述一个或多个关联性值中的第二关联性值的第二字段,并且为了确定所述PTRS到DMRS关联性,所述处理电路将:
基于所述第一关联性值,确定与针对所述第一重复集的DMRS端口相关联的PTRS端口;以及
基于所述第二关联性值,确定与针对所述第二重复集的DMRS端口相关联的PTRS端口。
11.根据权利要求10所述的用户装备,其中与针对所述第一重复集的所述DMRS端口相关联的所述PTRS端口以及与针对所述第二重复集的所述DMRS端口相关联的所述PTRS端口是不同的PTRS端口。
12.根据权利要求8至11中任一项所述的用户装备,其中所述处理电路还将:
基于所述PTRS到DMRS关联性,确定第一PTRS端口与针对所述第一重复集的第一DMRS端口相关联;以及
使用公共预编码器,经由所述第一PTRS端口来传输所述PTRS,并且经由所述第一DMRS端口来传输DMRS。
13.根据权利要求8所述的UE,其中所述一个或多个关联性值包括第一关联性值和第二关联性值,所述一个或多个DCI包括用以调度所述PUSCH传输的第一级DCI以及用以包括所述第二关联性值的第二级DCI,并且所述处理电路还将:
基于所述第一关联性值和所述PTRS-DMRS关联性表,确定针对所述第一重复集的PTRS到DMRS关联性;以及
基于所述第二关联性值和所述PTRS-DMRS关联性表,确定针对所述第二重复集的PTRS到DMRS关联性。
14.根据权利要求13所述的UE,其中所述第二级DCI包括log2(ceil(N/M)*M的位宽,其中M是PTRS端口的数目,并且N是传输层的数目。
15.根据权利要求13所述的UE,其中所述第一关联性值处于所述第一级DCI或所述第二级DCI中。
16.一种方法,包括:
接收下行链路控制信息(DCI),以调度具有待利用至少两个发射波束来传输的多个重复集的物理上行链路共享信道(PUSCH)传输;
基于由无线电资源控制(RRC)或介质访问控制(MAC)控制信令所预定义的或从其接收的配置信息,确定针对所述多个重复集之中的每个重复集的PTRS到DMRS关联性;
基于所述PTRS到DMRS关联性,传输PTRS;以及
传输具有所述多个重复的所述PUSCH传输。
17.根据权利要求16所述的方法,其中所述配置信息包括介质访问控制(MAC)控制元素(CE)。
18.根据权利要求16或权利要求17所述的方法,其中所述PUSCH传输与N个DMRS端口相关联,其中N是整数,并且确定所述PTRS到DMRS关联性包括:
针对所述多个重复集之中的第一重复集的一个或多个重复中的每个重复,基于所述一个或多个重复之间的重复索引(k),确定PTRS端口与DMRS端口k mod N相关联,其中k=0用于所述一个或多个重复的第一重复,并且对于所述一个或多个重复中的后续重复,将其递增一。
19.一种操作基站的方法,所述方法包括:
向用户装备传输用于具有多个重复集的配置授权-物理上行链路共享信道(PUSCH)传输的无线电资源控制(RRC)信令,其中所述RRC信令包括一个或多个参数以给所述多个重复集配置对应多个PTRS到DMRS关联性;
接收所述CG-PUSCH传输;
接收与所述CG-PUSCH传输相关联的PTRS;以及
基于接收所述PTRS,处理所述CG-PUSCH传输。
20.根据权利要求19所述的方法,其中所述一个或多个参数包括单个RRC参数以联合指示具有PTRS到DMRS关联性的各个重复集;或
包括多个RRC参数以分别指示
CN202080106373.0A 2020-10-19 2020-10-19 用于物理上行链路共享信道可靠性增强的相位跟踪参考信号传输 Pending CN116326073A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121835 WO2022082351A1 (en) 2020-10-19 2020-10-19 Phase tracking reference signal transmission for physical uplink shared channel reliability enhancement

Publications (1)

Publication Number Publication Date
CN116326073A true CN116326073A (zh) 2023-06-23

Family

ID=81291360

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080106373.0A Pending CN116326073A (zh) 2020-10-19 2020-10-19 用于物理上行链路共享信道可靠性增强的相位跟踪参考信号传输

Country Status (6)

Country Link
US (1) US20220303097A1 (zh)
EP (1) EP4229961A1 (zh)
JP (1) JP2023545319A (zh)
KR (1) KR20230073273A (zh)
CN (1) CN116326073A (zh)
WO (1) WO2022082351A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024036222A1 (en) * 2022-08-10 2024-02-15 Apple Inc. Indication of phase tracking reference signal (ptrs) ports association with demodulation reference signal (dmrs) ports
WO2024074065A1 (en) * 2023-06-30 2024-04-11 Lenovo (Beijing) Ltd. Methods and apparatus of ptrs transmission for pusch

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809575B (zh) * 2017-05-05 2024-01-30 华为技术有限公司 上报端口信息的方法、终端设备和网络设备
KR101948901B1 (ko) * 2017-05-18 2019-02-15 엘지전자 주식회사 무선 통신 시스템에서 상향링크 전송을 수행하는 방법 및 이를 위한 장치
CN109151970B (zh) * 2017-06-16 2023-10-20 华为技术有限公司 一种发送功率的确定方法、处理芯片及通信设备
JP2019050469A (ja) * 2017-09-08 2019-03-28 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路
CN108111283B (zh) * 2017-11-03 2021-12-14 中兴通讯股份有限公司 一种参考信号的传输方法及设备
US10973038B2 (en) * 2018-01-19 2021-04-06 Qualcomm Incorporated UCI transmission for overlapping uplink resource assignments with repetition
CN110266626A (zh) * 2018-03-12 2019-09-20 维沃移动通信有限公司 相位跟踪参考信号ptrs的传输方法、终端及网络设备
WO2020022835A1 (en) * 2018-07-27 2020-01-30 Samsung Electronics Co., Ltd. Improvements in and relating to positioning reference signal configuration in a telecommunication system
US11050525B2 (en) * 2018-09-27 2021-06-29 Huawei Technologies Co., Ltd. System and method for control and data channel reliability enhancement using multiple diversity domains
WO2020167070A1 (ko) * 2019-02-14 2020-08-20 엘지전자 주식회사 무선 통신 시스템에서 상향링크 데이터를 송수신하기 위한 방법 및 이를 위한 장치
KR20210138108A (ko) * 2019-03-27 2021-11-18 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 랜덤 액세스 절차를 위한 방법들, 단말 디바이스 및 기지국
WO2020222605A1 (ko) * 2019-05-02 2020-11-05 엘지전자 주식회사 무선 통신 시스템에서 데이터 채널의 송수신 방법 및 이에 대한 장치
US20220224472A1 (en) * 2019-05-02 2022-07-14 Lg Electronics Inc. Method for transmitting or receiving physical downlink shared channel in wireless communication system and device therefor
US11617139B2 (en) * 2019-08-27 2023-03-28 Qualcomm Incorporated Power control for repeated uplink transmissions
US11588602B2 (en) * 2019-12-13 2023-02-21 Samsung Electronics Co., Ltd. Beam management and coverage enhancements for semi-persistent and configured grant transmissions
US11516838B2 (en) * 2019-12-20 2022-11-29 Qualcomm Incorporated Systems and methods for physical uplink shared channel repetition adaptation
EP4111776A4 (en) * 2020-02-24 2024-02-07 Qualcomm Inc ASSOCIATION OF PHASE TRACKING REFERENCE SIGNAL PORTS AND DEMODULATION REFERENCE SIGNAL PORTS FOR MULTI-BEAM UPLINK REPETITIONS
EP4128604A1 (en) * 2020-04-01 2023-02-08 Telefonaktiebolaget LM Ericsson (publ) Pusch multiple trp reliability with ul tci indication

Also Published As

Publication number Publication date
EP4229961A1 (en) 2023-08-23
KR20230073273A (ko) 2023-05-25
WO2022082351A1 (en) 2022-04-28
JP2023545319A (ja) 2023-10-27
US20220303097A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
WO2022082359A1 (en) Physical uplink shared channel repetition with different configurations
KR20230027263A (ko) 물리적 다운링크 제어 채널 반복 수신을 위한 사용자 장비 복잡성 감소
US20230087280A1 (en) Transmission configuration indicator determination and acknowledgment
WO2022082351A1 (en) Phase tracking reference signal transmission for physical uplink shared channel reliability enhancement
CN116325883A (zh) 多发射接收点操作的上行链路冲突处理
JP2023546012A (ja) セル間多重送受信ポイント動作のためのレートマッチング
WO2023004646A1 (en) Uplink codeword to layer mapping and phase tracking reference signaling
US20230015168A1 (en) User equipment processing limits for uplink or downlink data transmissions with repetitions
US20230097691A1 (en) Uplink power control to enhance physical uplink channel reliability
US20220303807A1 (en) Parallel beam management in new band combinations
CN116830497A (zh) 用于增强的动态频谱共享的信道状态反馈
US20240107523A1 (en) Antenna port indication for more than four layer physical uplink shared channel operation
US20240057140A1 (en) Phase tracking reference signal user equipment capability reporting
US20240056341A1 (en) Phase tracking reference signal configuration
WO2024092623A1 (en) Technologies for transmission configuration indicator association for physical downlink shared channel reception
WO2024031675A1 (en) Technologies for supporting spatial-domain multiplex based simultaneous uplink transmissions
US20240048300A1 (en) Multiple demodulation reference signal (dmrs) ports in a code division multiplexing (cdm) group
WO2023004581A1 (en) Latency reduction for beam failure recovery
WO2023211661A1 (en) Non-codebook-based transmission of sounding reference signals
CN116134787A (zh) 基于信道的波束成形
CN116171584A (zh) 波束成形方案切换
WO2023211640A1 (en) Codebook-based transmission of sounding reference signals
CN115734248A (zh) 子带信道状态信息报告
CN115956376A (zh) 多波束上行链路传输的功率余量报告

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination