CN116322966A - 用于在自动化生物反应器中使用的温度校准方法和装置 - Google Patents

用于在自动化生物反应器中使用的温度校准方法和装置 Download PDF

Info

Publication number
CN116322966A
CN116322966A CN202180070476.0A CN202180070476A CN116322966A CN 116322966 A CN116322966 A CN 116322966A CN 202180070476 A CN202180070476 A CN 202180070476A CN 116322966 A CN116322966 A CN 116322966A
Authority
CN
China
Prior art keywords
temperature
cassette
time
cell culture
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180070476.0A
Other languages
English (en)
Inventor
P·加丁
R·丹尼尔斯
T·阿里
G·奥拉姆
M·休伊特
E·亚伯拉罕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oaktai Biotechnology Co ltd
Lonza Walkersville Inc
Original Assignee
Oaktai Biotechnology Co ltd
Lonza Walkersville Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oaktai Biotechnology Co ltd, Lonza Walkersville Inc filed Critical Oaktai Biotechnology Co ltd
Publication of CN116322966A publication Critical patent/CN116322966A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/42Integrated assemblies, e.g. cassettes or cartridges
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本公开提供了用于在包含细胞工程系统的自动化生物材料工程系统中进行温度监测和控制的装置和相关联的方法。所述装置和所述方法利用自动化系统中的内部温度测量结果来绘制在所述系统中执行的各种过程期间的温度。

Description

用于在自动化生物反应器中使用的温度校准方法和装置
相关申请的交叉引用
本申请要求于2020年10月9日提交的题为“用于在自动化生物反应器中使用的温度校准方法和装置”的美国临时申请63/089,840的优先权,所述美国临时申请的全部内容通过引用并入本文。
技术领域
本公开提供了用于在包含细胞工程系统的自动化生物材料工程系统中进行温度监测和控制的装置和相关联的方法。所述装置和所述方法利用自动化系统中的内部温度测量结果来绘制在系统中执行的各种过程期间的温度。
背景技术
由于预期建立对先进细胞和生物材料疗法的加速临床采用,因此更多的注意力转向将使这些疗法惠及全世界患者的基础制造策略。虽然细胞疗法在临床上拥有广阔的前景,但相对于偿付的高制造成本是商业化的巨大障碍。因此,对成本效益、过程效率和产品一致性的需求正在推动众多细胞疗法领域中针对自动化的努力。
生产用于疗法的细胞群涉及各种过程的自动化。包含将细胞活化、转导和扩增整合到商业制造平台中,以将这些重要的疗法转化为面向广泛的患者群体。
在生物材料制造的各种过程(包含细胞生产)期间,有必要监测这种自动化系统中的温度变化和梯度,以确保生物过程在正确的温度下进行,并且使用的材料储存在适当的温度下。本发明满足这些需要。
发明内容
本公开的一方面涉及用于自动化生物材料工程系统中的校准盒。所述校准盒包括低温室、高温室、一个或多个流体通路和电连接元件。所述低温室包含培养基储存容器以及所述培养基储存容器中的第一密封温度探针阵列。所述高温室通过热屏障与所述低温室分离,所述高温室包含细胞培养室以及所述细胞培养室中的第二密封温度探针阵列。所述一个或多个流体通路连接到所述细胞培养室和所述培养基储存容器,并且包含所述一个或多个流体通路中的第三密封温度探针阵列。所述电连接元件电连接到所述第一密封温度探针阵列、所述第二密封温度探针阵列和所述第三密封温度探针阵列中的每一个。
本公开的一方面涉及用于自动化细胞工程系统中的生产盒。所述生产盒包含:低温室,所述低温室包含细胞培养基储存容器以及所述细胞培养基储存容器中的第一密封温度探针阵列;高温室,所述高温室用于进行细胞培养物的活化、转导和/或扩增,所述高温室通过热屏障与所述低温室分离,所述高温室包含细胞培养室以及所述细胞培养室中的第二密封温度探针阵列;一个或多个流体通路,所述一个或多个流体通路连接到所述细胞培养室和所述细胞培养基储存容器,并且包含所述一个或多个流体通路中的第三密封温度探针阵列;以及电连接元件,所述电连接元件电连接到所述第一密封温度探针阵列、所述第二密封温度探针阵列和所述第三密封温度探针阵列中的每一个,其中所述一个或多个流体通路提供再循环、废物去除和均质气体交换以及营养物向所述细胞培养室的分配。
本公开的一方面涉及一种在自动化生物材料工程系统中进行温度监测的方法。所述方法包括:在第一盒容纳在所述自动化生物材料工程系统中的时间段期间由控制电路接收一组内部温度测量结果,其中所述一组内部温度测量结果指示所述第一盒内的温度,并且在所述时间段期间由安置在所述第一盒内的温度探针阵列产生;当所述第一盒容纳在所述自动化生物材料工程系统中时,由所述控制电路接收环境温度测量结果,其中所述环境温度测量结果指示所述第一盒外部的温度,并且在所述时间段期间由安置在所述第一盒外部的所述自动化生物材料工程系统的系统温度探针产生;以及由所述控制电路测定一组温度偏移值,所述一组温度偏移值指示所述一组内部温度测量结果与所述环境温度测量结果之间的相应差异。
本公开的一方面涉及一种在自动化生物材料工程系统中进行的温度控制方法。所述方法包括:在第一盒容纳在所述自动化生物材料工程系统中的第一时间段期间由控制电路接收一组内部温度测量结果,其中所述一组内部温度测量结果指示所述第一盒内的温度,并且在所述第一时间段期间由安置在所述第一盒内的温度探针阵列产生;当所述第一盒容纳在所述自动化生物材料工程系统中时,由所述控制电路接收第一环境温度测量结果,其中所述第一环境温度测量结果指示所述第一盒外部的温度,并且在所述第一时间段期间由安置在所述第一盒外部的所述自动化生物材料工程系统的系统温度传感器产生;由所述控制电路测定一组温度偏移值,所述一组温度偏移值指示所述一组内部温度测量结果与所述第一环境温度测量结果之间的相应差异;由所述控制电路测定针对第二盒中的位置的目标内部温度值;以及基于所述目标内部温度值、所述一组温度偏移值以及由所述系统温度传感器在所述第二时间段期间产生的一个或多个另外的环境温度测量结果,在所述第二盒容纳在所述自动化生物材料工程系统中的第二时间段期间,由所述控制电路控制所述自动化生物材料工程系统的加热装置或冷却装置,其中所述系统温度传感器安置在所述第二盒外部。
附图说明
图1示出了可以用如本文的实施例中所描述的自动化生物材料工程系统的盒执行的各种步骤。
图2A示出了根据本文的实施例的示例性盒。
图2B-2D示出了如本文所描述的用于温度测量和/或校准的示例性盒。
图2E示出了根据本文的实施例的密封温度探针。
图3A和3B示出了根据本文的实施例的自动化生物材料工程系统的图像。
图3C和3D示出了根据本文的实施例的自动化生物材料工程系统和盒的图像。
图3E示出了根据本文的实施例的盒的图像。
图3F示出了根据本文的实施例的自动化生物材料工程系统、盒和计算装置的图像。
图3G示出了根据本文的实施例的能够收纳第一盒和第二盒的自动化生物材料工程系统的图像。
图4示出了含有如本文的实施例中所描述的示例性生物材料工程系统的实验室空间。
图5示出了如本文的实施例中所描述的自动化生物材料工程系统的流动路径。
图6描绘了根据本文的实施例的用于测定温度偏移的示例方法的流程图。
图7A和7B示出了如本文所描述的用于温度测量和/或校准的盒。
图8A和8B示出了根据本文的实施例的温度偏移值。
图9描绘了根据本文的实施例的可以安置在自动化生物材料工程系统内的盒。
图10A和10B描绘了根据本文的实施例的受加热装置的操作影响的控制温度和培养基温度。
具体实施方式
应当理解,本文中示出和描述的特定实施方案是实例并且不旨在以任何方式在其它方面限制本申请的范围。
本文所提及的公开专利、专利申请、网站、公司名称和科学文献在此以全文引用的方式并入,并入程度如同各自被确切地且单独地指出通过引用而并入。本文所引用的任何参考文献与本说明书的具体教导之间的任何冲突应以有利于后者的方式解决。同样,本领域理解的词或词组的定义与本说明书中具体教导的词或词组的定义之间的任何冲突应以有利于后者的方式解决。
如本说明书中所使用的,除非上下文另外明确说明,否则单数形式“一个/一种(a/an)”和“所述(the)”具体地也涵盖其所指的术语的复数形式。本文所使用的术语“约”是指大约、在某一范围内、大致上或周围。当结合数值范围使用术语“约”时,所述术语通过扩展所阐述的数值以上和以下的界限来修改所述范围。术语“约”通常在本文中用于将数值在所述值以上和以下修改20%的变化。
本文所使用的技术术语和科学术语具有本领域的技术人员对本申请所涉及的术语通常理解的含义,除非另有定义。本文中参考了本领域技术人员已知的各种方法和材料。
本文所提供的方法、装置和系统是参考其与用于自动化生物材料工程系统的盒的应用来描述的。图1示出了示例性盒102,其中各种过程可以在封闭的自动化系统中进行,所述自动化系统允许生产各种样品和群体,并且特别是包含蛋白质、肽、抗体、抗体片段以及细胞的“生物材料”。此类过程可以包含蛋白质和/或细胞的活化、转导、扩展、浓缩、洗涤和收集/采集步骤。
如本文所描述的,盒和方法在全封闭的自动化生物材料工程系统300(参见图3A、3B),包含自动化细胞工程系统中适当地利用和执行,其上适当地具有用于执行如活化、转导、扩增、浓缩和采集等步骤的指令。在于2018年8月31日提交的美国专利申请第16/119,618号(其公开内容以全文引用的方式并入本文中)中描述了用于自动化生产例如基因修饰的免疫细胞(包含CAR T细胞)的细胞工程系统,并且所述细胞工程系统在本文中也被称为自动化细胞工程系统、
Figure BDA0004177834040000041
或COCOONTM系统。
例如,用户可以提供预填充有细胞培养物和试剂(例如,活化试剂、载体、细胞培养基、营养物、选择试剂等)和用于细胞生产的参数(例如,细胞的起始数量、培养基的类型、活化试剂的类型、载体的类型、细胞的数量或要生产的剂量等)的自动化细胞工程系统。所述自动化细胞工程系统能够执行各种自动化方法,包含在无需来自用户的进一步输入的情况下生产基因修饰的免疫细胞培养物(包含CAR T细胞)的方法。在一些实施例中,全封闭式自动化细胞工程系统通过减少细胞培养物对非无菌环境的暴露来最小化细胞培养物的污染。在另外的实施例中,全封闭式自动化细胞工程系统通过减少用户对细胞的处理来最小化细胞培养物的污染。
自动化工程系统还可以用于制备其它生物材料,包含各种蛋白质、肽、抗体、抗体片段等。
如本文所描述的,自动化生物材料工程系统300适当地包含盒102。如本文所使用的,“盒”是指自动化生物材料工程系统的主要独立的、可移除且可替换的元件,所述盒包含用于执行本文所描述的方法的各种元件的一个或多个室,并且适当地还包含细胞培养基、活化试剂、清洗培养基等中的一种或多种。
图2A示出了用于在包含自动化细胞工程系统的自动化生物材料工程系统中使用的示例性盒102。在实施例中,盒102包含细胞样品输入202。细胞样品输入202在图2A中示出为小瓶或室,在引入或装载到盒102中之前,可以将细胞样品放置在所述小瓶或室中。在其它实施例中,细胞样品输入202可以简单地是无菌锁定管(例如,鲁尔(luer)锁管连接等),注射器或如血袋等含有细胞的袋可以连接到所述无菌锁定管。
盒102进一步包含细胞培养室206。本文描述了细胞培养室206的特性和用途的实例。盒102还包含流体地连接到细胞培养室206的泵送系统520(参见图5了解流动路径中的示例性位置)。
如本文所使用的,“流体地连接”意指系统的一个或多个组件,如盒102的组件,通过合适的元件连接,所述元件允许流体(包含气体和液体)在组件之间通过,而不会泄漏或损失体积。示例性流体连接包含本领域已知的各种管、通道和连接,如硅酮或橡胶管、鲁尔锁连接等。应当理解的是,流体地连接的组件还可以包含每个组件之间的另外的元件,同时仍然维持流体连接。也就是说,流体地连接的组件可以包含另外的元件,使得在组件之间通过的流体也可以穿过这些另外的元件,但不要求这样做。
泵送系统520适当地是蠕动泵系统,但也可以利用其它泵送系统。蠕动泵是指用于泵送流体的正排量泵类型。流体适当地包含在安装在泵壳(通常为圆形)内的挠性管内。带有附接到转子的外圆周的多个“辊”、“滚轮”、“擦拭器”或“叶片”的转子压缩柔性管。当转子转动时,受压的管部分被挤压关闭(或“阻塞”),从而迫使待泵送的流体穿过管。此外,当管在凸轮通过后打开时(“恢复”或“弹性”),流体流被引导至泵。此过程被称为蠕动,并且用于将流体移动通过柔性管。通常,有两个或更多个辊或擦拭器将管阻塞,从而在其之间截留大量流体。然后将流体输送到泵出口。
在实施例中,盒102进一步包含适当地连接到细胞培养室的一个或多个流体通路(参见图2A中的盒102内部的232)。盒102中还包含流体地连接到细胞培养室的细胞样品输出208。如本文所描述的,细胞样品输出208可以用于按照各种自动化程序采集细胞以用于进一步处理、储存或在患者中的潜在用途,或用于进一步处理以分离细胞所产生的期望蛋白质或肽。如本文所描述的,细胞样品输出208也可以是样品端口220,其允许细胞样品从盒中取出,例如用于转导,如电穿孔,并且然后返回到盒以进行进一步的自动化处理。如本文所描述的,流体通路232的实例包含向盒的元件提供营养物、溶液等的各种管、通道、毛细管、微流体元件等。
在示例性实施例中,本文提供了用于自动化生物材料工程系统中的温度测量和/或校准的盒240。盒240可以用作校准盒或生产盒。“校准”盒是指在生物材料的生产期间未使用的盒,并且因此仅充当试验或模拟盒,用于测量过程期间的温度变化和梯度。“生产”盒是指可以用于执行包含细胞在内的生物材料的生产的盒。如图所示,本文中关于盒240讨论校准盒和生产盒。
如图2B所示,盒240适当地包含低温室250,所述低温室包含培养基储存容器228(参见图2A)和培养基储存容器228中的密封温度探针252的第一阵列262。密封温度探针252在图2B-2D中以短实线表示。如本文所使用的,密封温度探针252的“阵列”262是指多个密封温度探针252的布置,其允许探针测量结构内多个不同点的处的温度,以最终用于绘制或描述表面、结构、容器、主体等的温度曲线。“多个”包含2个或更多个物品,包含密封温度探针,并且适当地包含3个或更多个、4个或更多个、5个或更多个、6个或更多个、7个或更多个、8个或更多个、9个或更多个、10个或更多个、15个或更多个、20个或更多个、25个或更多个、30个或更多个等物品,如密封温度探针252。
在示例性实施例中,第一密封温度探针阵列、第二密封温度探针阵列和第三密封温度探针阵列中的每一个各自包含至少2个密封温度探针。也就是说,阵列中的每个阵列被配置成提供关于盒240的特定部分,包含例如,高温室254、低温室250和流体通路232的温度信息。在合适的实施例中,密封温度探针252的不同阵列262中的每一个包含2-20个密封温度探针,更合适地每个阵列中2-15个密封温度探针、2-10个、2-9个、2-8个、2-7个、2-6个、2-5个、2-4个或2-3个密封温度探针。在实施例中,所有阵列262中的密封温度探针252的总数量合适地为10-15个探针,更合适地总共10个、11个、12个、13个、14个或15个探针。
如图2B所示,盒240还适当地包含高温室254,所述高温室通过热屏障256与低温室250分隔开。适当地,高温室254包含细胞培养室206和细胞培养室206中的密封温度探针252的第二阵列262(参见图2C,其示出了盒240的侧视图;图2D示出了盒240的俯视图)。
在实施例中,低温室250可以包含适于储存细胞培养基的冷藏区226。高温室254适于例如在细胞培养室206中进行细胞培养物的活化、转导和/或扩增。适当地,高温室通过热屏障256与低温室分隔开,所述热屏障可以是绝缘层、部分或室,其维持高温区域与低温区域之间温度不同。如本文所使用的,“低温室”是指适当地维持在室温以下并且更适当地维持在约4℃到约8℃以将细胞培养基等维持在冷藏温度下的室。低温室可以包含用于培养基的袋或其它固持器,包含约1L、约2L、约3L、约4L或约5L的流体。另外的培养基袋或其它流体来源可以在外部连接到盒,并且通过接入端口连接到盒。图2B和2C中所示的示出低温室250和高温室254的位置的括号是代表性的,并且不限于任一室的全部尺寸,而是提供用于表示每个室的适当位置和参考尺寸。
如本文所使用的,“高温室”是指适当地维持在室温以上,并且更适当地维持在允许细胞增殖和生长的温度(即,约35℃-40℃)并且更适当地约37℃的室。在实施例中,高温室适当地包含细胞培养室206(也被称为增殖室或细胞增殖室)。
在盒240的其它实施例中,包含在其中并连接到细胞培养室和培养基储存容器的一个或多个流体通路也适当地包含一个或多个流体通路232中的密封温度探针252的第三阵列262(参见图2B和2C)。
如图2B-2D所示,密封温度探针252也适当地包含电连接元件258,所述电连接元件电连接到第一密封温度探针阵列、第二密封温度探针阵列和第三密封温度探针阵列中的每一个。并非所有电连接元件258都在图2B-2D中示出,以便于查看。应当注意的是,适当地,密封温度探针252中的每一个包含电连接元件258,以允许将密封温度探针电连接到电源和/或允许测量信号的通信。
如本文所使用的,“密封温度探针”是指能够测量表面、溶液或气体的温度的装置,并且还包含封闭探针的盖,并限制或适当地禁止液体和/或气体通过所述盖传输。图2E中示出了示例性的密封温度探针252,其展示了温度探针282(用于测量温度)和盖(或密封件)284(当探针位于盖内时只能看到盖)以及电连接元件258。可以使用的合适的盖包含各种聚合物,并且适当地,所述盖提供围绕温度探针的气密密封(hermetic seal),即气密密封(airtight seal)。示例性温度探针包含由聚合物盖气密密封的电阻温度检测器(RTD)。可以使用的另外的温度探针包含热电偶和热敏电阻,其还适当地包含密封件或盖,以减少或消除探针受到流体或气体等的污染。
如本文所描述的,在示例性实施例中,培养基储存容器228是袋,并且其中密封温度探针252的阵列262附接到所述袋的内表面。如本文所描述的,适当地,细胞培养室206是扁平的并且基本上非柔性的。已经发现,此类细胞培养室允许在细胞生产过程或生物材料生产过程期间增加细胞产率。在实施例中,密封温度252探针的阵列262附接到细胞培养室的底部和/或侧面。
如本文所描述的,适当地,盒内的流体通路包含各种管和连接器,并且在实施例中,还包含位于管内的密封温度探针252的第三阵列262。参见图2B的盒240的中间部分,展示了密封温度探针252在管内的潜在示例性位置。可以设计温度探针在管内的位置,使得可以在流体通路的各个部分中测量温度曲线和梯度。包含例如,在被配置成将细胞培养基递送至细胞培养室206的管中;在被配置成将细胞从细胞培养室206中去除的管中;在被配置成将细胞培养基混合以调节气体含量的管中;在被配置成允许对细胞培养过程或其它生物材料过程进行取样的管中;在被配置成提供至细胞培养室206的输入路径的管中;以及其它配置。用于将密封温度探针252附接到本文所描述的盒的一个或多个部分或元件的方法是本领域已知的,并且包含例如,使用各种粘合剂、胶带、胶水、热密封方法、焊接方法、与机械紧固件的连接,以及如在形成、模制或制造期间直接集成到盒元件中。
适当地,本文所描述的盒240进一步包含控制电路270,所述控制电路电连接到电连接元件258,并且因此电连接到密封温度探针252。图2B示出了控制电路270及其到电连接元件258之一的电连接272的示例性位置。应当理解的是,其它电连接元件258以及因此探针252可以以类似的方式连接到控制电路270,但是为了便于可视化,图中未示出。控制电路270也可以放置在盒240上的任何期望位置,包含例如,沿着盒240的侧面、底部或顶部(参见图2C了解示例性侧面位置;参见图2D了解示例性顶部位置),并且可以位于盒内部(即,壳体内部)或外部。图中示出的控制电路270的位置仅用于说明目的,并且本领域的普通技术人员将容易理解,也可以使用其它位置和配置。虽然控制电路被适当地电连接到温度探针,但一些实施例可以涉及用于与温度探针通信的无线连接(例如,射频、
Figure BDA0004177834040000081
等)。在此类实施例中,另一个装置可以通过有线连接与温度探针电连接,并且可以进一步具有与控制电路的无线连接。也就是说,此装置可以被配置成与控制电路无线通信。此类装置可以例如包含数据收集电路,所述数据收集电路具有到温度探针的有线连接,并且被配置成接收由温度探针产生的测量结果或其它数据,并且可以进一步包含无线模块(也被称为无线通信电路),所述无线模块可以通过无线连接将此类数据中继到控制电路。
本文所使用的“控制电路”是指提供与温度控制和/或温度测量相关的功能的电子电路。控制电路270可以被配置成例如接收和处理由温度传感器252或任何其它温度传感器产生的温度测量结果。在一些实施例中,控制电路可以被配置成控制通信模块(例如,无线模块),以将温度测量结果传送到计算机系统以进行温度记录。在一些情况下,控制电路可以被配置成如通过控制加热装置或冷却装置来控制或以其它方式影响温度修改(即,升高或降低温度)。在实施例中,控制电路270简单地提供盒240的温度的测量和记录功能,以允许对温度进行绘图,如本文所描述。在一些实施例中,控制电路270还可以用于在设定的时间段内记录(record/log)温度测量结果,以供以后使用或提取。在此类实施例中,如果控制电路270在计算机外部,则控制电路不需要立即连接到计算机,而是可以稍后连接(无线地或通过直接连接)并传输数据。在实施例中,控制电路270可以被编程为在温度测量之间关闭或进入低功率状态,以减少盒的非预期加热。在一实施例中,控制电路270可以包含处理电路,如一个或多个微处理器、微处理器核、可编程逻辑电路(PLC)、现场可编程门阵列(FPGA)电路、专用集成电路(ASIC)、微控制器单元(MCU)和/或任何其它控制电路。
如下文更详细地讨论的,控制电路270可以位于盒、自动化生物材料工程系统或与所述自动化生物材料工程系统通信的一些其它装置(如台式计算机或膝上型计算机)中或以其它方式与其相关联。例如,控制电路270可以与盒240相关联,并且因此直接连接到盒240、容纳在盒240内或成为盒240的一部分。在其它实施例中,控制电路270可以与自动化生物材料工程系统300相关联。例如,如图3B所示,控制电路270可以连接到生物材料工程系统300、包含在所述生物材料工程系统内或以其它方式成为所述生物材料工程系统的一部分。当盒240插入到系统300中时,盒240可以通过有线电连接或无线连接与控制电路通信。例如,如果盒具有从盒内的位置延伸到盒外的位置或盒的外表面上的位置的一个或多个电接触件或其它电导体(例如,电线),则电导体可以提供有线电连接,以提供通信和/或向盒的各种组件提供电力。在此类实例中,电连接器可以包含或电连接到电连接元件258,所述电连接元件可以电连接到盒240中的温度探针252。如果电导体也(直接或间接)电连接到控制电路270,则其可以提供电连接,通过所述电连接可以在控制电路270与温度探针252之间发生通信。例如,这可以通过将电连接元件258插入到电连接到控制电路270的连接器中而发生,并且可以在盒240插入到系统300中时发生(即,作为即插即用连接)或者在盒240被插入之后发生(即,作为另一个连接,可能仅在需要时使用)。如上所述,盒240与控制电路270之间的通信(也被称为通信连接或通信耦接)也可以无线地进行,特别是如果盒240不具有可以在盒240内部的位置和盒240外部的位置之间提供有线连接的导体。
本文所描述的盒和方法中利用各种过滤器或分离装置。例如,可以利用磁分离过程从细胞群中消除和分离不期望的细胞和碎片。在此类实施例中,已结合生物分子(例如,抗体、抗体片段等)的磁珠或其它结构可以与靶细胞相互作用。然后可以使用各种磁分离方法(包含使用过滤器、柱、流管或具有磁场的通道等)将靶细胞群与可能在细胞样品中的不期望的细胞、碎片等分离。例如,靶细胞群可以流过管或其它结构并暴露于磁场,由此所述靶细胞群被磁场保留或滞留,从而允许不期望的细胞和碎片穿过所述管。然后可以关闭磁场,从而允许靶细胞群通入到另外的保留室或盒的其它一个或多个区域中以供进一步自动化处理。另外的过滤包含传统的柱过滤,或使用其它过滤膜和结构。
在利用磁分离过程的实施例中,本文所描述的盒还可以进一步包含磁性探针,以测量和绘制盒内和周围的磁通量。此测量和绘图提供了可以用于在分离过程期间校准、验证和/或控制磁场的信息。
在另外的实施例中,盒240进一步包含废物收集室510。在另外的实施例中,卫星容积550可以为盒提供额外的储存能力,以增加自动化过程的总容积。卫星容积550的示例性位置在图5的流动路径中示出。盒还可以进一步包含一个或多个流体通路(一般地232),其中所述流体通路提供再循环、废物去除和均质气体交换以及营养物向盒的各个部分(包含细胞培养室)的分配,而不干扰细胞培养室内的细胞。盒240还进一步包含一个或多个阀522或552,用于控制通过各种流体通路的流量(参见图5了解流动路径内的示例性位置)。
在示例性实施例中,如图2A和图2B所示,细胞培养室206是不容易弯曲或挠曲的扁平且非柔性的室(即,由如塑料等基本上非柔性的材料制成)。非柔性室的使用允许细胞维持在基本上不受干扰的状态。如图2A所示,细胞培养室206被定向成允许细胞培养物扩散遍布细胞培养室的底部。如图2A所示,细胞培养室206适当地维持在与地面或桌子平行的位置,从而维持细胞培养物处于不受干扰的状态,允许细胞培养物扩散遍布细胞培养室底部的大面积。在实施例中,细胞培养室206的总厚度(即,室高度)较低,近似约0.5cm至约5cm。适当地,细胞培养室的容积介于约0.50ml与约300ml之间,更适当地介于约50ml与约200ml之间,或者细胞培养室的容积为约180ml。使用较低室高度(小于5cm,适当地小于4cm、小于3cm或小于2cm)允许在细胞附近进行有效的介质和气体交换。端口被配置成允许通过流体的再循环进行混合而不干扰细胞。较大高度的静态器皿可以产生浓度梯度,从而使细胞附近区域的氧和新鲜营养物质受到限制。通过受控的流动动力学,可以在没有细胞干扰的情况下进行介质交换。可以从另外的室(不存在细胞)中去除培养基而没有细胞损失的风险。
如本文所描述的,在示例性实施例中,盒预填充有细胞培养物、培养基、细胞清洗介质(如果期望的话)、活化试剂和/或载体中的一种或多种,包含这些的任何组合。在另外的实施例中,这些不同的元件可以稍后通过合适的注射端口等添加。
如本文所描述的,在实施例中,盒适当地进一步包含pH传感器524、葡萄糖传感器(未示出)、氧传感器526、二氧化碳传感器(未示出)、乳酸传感器/监测器(未示出)和/或光密度传感器(未示出)中的一个或多个。参见图5了解流动路径内的示例性位置。盒还可以包含一个或多个采样端口和/或注射端口。此类采样端口220和注入端口222的实例展示于图2A中,并且流动路径中的示例性位置示出于图5中,并且可以包含用于将盒连接到外部装置(如电穿孔单元或另外的介质源)的接入端口。图2A还示出了输入202、可以用于温热细胞培养基等的预温热的温热袋224和二级室230的位置。
在实施例中,盒240还可以包含细胞清洗系统512,所述细胞清洗系统适当地包含在盒内(即,在图2A所示的结构内),并且流体地连接到盒的流体系统。在实施例中,细胞清洗系统512是包含在盒240内的适当地包含细胞清洗介质的容器或袋。在将细胞群体转移到盒内或盒外部以供进一步处理或使用之前,细胞清洗介质被适当地用于清洁期望的细胞群体以去除任何不期望的废细胞或污染物。细胞清洗系统512也可以包含在盒102外部。
盒102还可以进一步任选地包含细胞保持室516(在图2中不可见,因为其位于盒102内)。图5示出了细胞保持室516在盒的流动路径中的示例性位置。细胞保持室516适当地是位于盒内的储器或合适的室,如本文所描述的,在处理的各个阶段之前或之后,细胞群体可以保持在所述细胞保持室中。
在另外的实施例中,本文提供了一种用于自动化细胞工程系统的生产盒,所述生产盒包括:低温室,所述低温室包含细胞培养基储存容器以及所述细胞培养基储存容器中的第一密封温度探针阵列;高温室,所述高温室用于进行细胞培养物的活化、转导和/或扩增,所述高温室通过热屏障与所述低温室分离,所述高温室包含细胞培养室以及所述细胞培养室中的第二密封温度探针阵列;一个或多个流体通路,所述一个或多个流体通路连接到所述细胞培养室和所述细胞培养基储存容器,并且包含所述一个或多个流体通路中的第三密封温度探针阵列;以及电连接元件,所述电连接元件电连接到所述第一密封温度探针阵列、所述第二密封温度探针阵列和所述第三密封温度探针阵列中的每一个,其中所述一个或多个流体通路提供再循环、废物去除和均质气体交换以及营养物向所述细胞培养室的分配。
如上所述,本文所描述的含有密封温度探针252的盒240可以用作校准盒和/或生产盒。在盒用作校准盒的实施例中,所述盒被设计和实施为似乎其生产细胞产品或生物材料产品一样,但实际上没有生产产品。相反,盒仅提供相关系统/平台的温度、生产盒设计和生产盒的各个部分和区域的校准,或用于生产盒的工艺设计的校准。在其中盒是生产盒的实施例中,除了提供关于盒内温度曲线的信息之外,还将系统设置成制备期望的细胞和/或生物材料,以最终用于患者或研究背景。在盒是生产盒的实施例中,温度探针在每次使用之间被适当地移除和清洁/消毒或更换,特别是在每次不同的使用针对不同的患者的情况下。
如本文所描述的,在生产盒的实施例中,细胞培养基储存容器是袋,并且第一密封温度探针阵列附接到所述袋的内表面。适当地,细胞培养室是扁平的并且基本上非柔性的,并且细胞培养室中的第二密封温度探针阵列附接到所述细胞培养室的底部和/或侧面。在另外的实施例中,一个或多个流体通路包含管和连接器,并且其中第三密封温度探针阵列位于所述管内。
在实施例中,第一密封温度探针阵列、第二密封温度探针阵列和第三密封温度探针阵列包含由聚合物盖气密密封的电阻温度检测器(RTD)。本文描述了温度探针的其它实例。本文描述了用于各种阵列的合适数量的探针,并且在实施例中,第一密封温度探针阵列、第二密封温度探针阵列和第三密封温度探针阵列各自包含至少2个密封温度探针,适当地2-4个密封温度探针,并且在实施例中,第一密封温度探针阵列、第二密封温度探针阵列和第三密封温度探针阵列总共包含12个密封温度探针。
如本文所描述的,生产盒还适当地包含电连接到电连接元件的控制电路,用于与温度探针相互作用(即,用于测量、记录、修改等)。控制电路可以与生产盒相关联(即,连接到盒的内部或外部),或与自动化细胞工程系统相关联。
本文所描述的装置、系统和方法适用于监测、绘制和/或控制生物材料工程系统的盒内的温度。然而,类似的方法可以与测量盒的其它变量,包含例如,pH、溶解氧、流体流速、磁场等的探针一起使用。用于测量此类变量的探针在本领域中是已知的,并且可以类似于温度探针以阵列形式放置在盒内,从而允许在盒的全部或一部分之上测量这些变量,以在细胞工程或生物材料工程方法的各个过程步骤期间绘制和监测这些变量。
在另外的实施例中,远程温度探针可以用于监测、记录和提供关于自动化生物材料工程系统中的盒的温度的反馈。例如,此类远程温度探针可以包含红外温度检测装置,所述红外温度检测装置可以安装在自动化工程系统内,并在执行自动化过程时记录盒内的一个或多个温度。
图3A-3B示出了
Figure BDA0004177834040000121
自动化细胞工程系统300,其中盒240位于内部(在图3B中,自动化细胞工程系统的盖子打开)。还示出了示例性用户接口304,所述示例性用户接口可以包含条形码阅读器以及通过触摸板或其它类似装置使用输入来接收的能力。
本文所描述的自动化细胞工程系统和盒适当地具有三个相关容积:细胞培养室容积、工作容积和总容积。适当地,基于过程步骤,盒中使用的工作容积的范围为180mL至460mL,并且可以增加至约500mL、约600mL、约700mL、约800mL、约900mL或约1L。在实施例中,盒可以容易地实现4*109个细胞-10*109个细胞。过程期间的细胞浓度在0.3*106个细胞/ml至大约10*106个细胞/ml之间变化。如本文所描述的,细胞位于细胞培养室中,但培养基连续地再循环通过另外的室(例如,错流储器和卫星容积)以增加工作容积。
流体通路(包含气体交换管线)可以由透气材料(例如,硅酮)制成。在一些实施例中,在细胞生产方法期间,自动化细胞工程系统使氧气在整个基本上不屈服的室中再循环。因此,在一些实施例中,自动化细胞工程系统中的细胞培养物的氧气水平高于柔性透气袋中的细胞培养物的氧气水平。在细胞培养扩增步骤中,更高的氧气水平可能是重要的,因为增加的氧气水平可以支持增加的细胞生长和增殖。
图3C和3D描绘了自动化生物材料工程系统,如
Figure BDA0004177834040000131
自动化细胞工程系统或一些其它生物材料工程系统,以及可以放置在自动化生物材料工程系统内的盒的实施例。更具体地,图3C描绘了具有多个温度探针352并且具有控制电路270的盒340。温度探针352可以被配置成测量盒340内的内部温度。此图进一步描绘了可以收纳盒340的自动化生物材料工程系统301。自动化生物材料工程系统301可以包含系统温度探针242和加热装置或冷却装置250。系统温度探针242可以被配置成测量盒340外部的温度(其可以被称为环境温度)。在一些情况下,自动化生物材料工程系统301可以具有可以与控制电路270分离的其自身的控制电路。
图3D描绘了控制电路270位于自动化生物材料工程系统301中或以其它方式与所述自动化生物材料工程学系统相关联。在此实例中,系统301可以被配置成收纳具有无线模块362的盒341,并且系统301的控制电路270可以被配置成通过无线模块362从盒341内接收内部温度测量结果。
图3E描绘了盒340/341的实例。更具体地,此实例中的盒340可以具有温度探针352和印刷电路板,用于处理由温度探针352产生的温度测量结果和/或将温度测量结果传送到外部装置,如图3D中的控制电路270。例如,印刷电路板可以包含用于处理温度测量结果的频率滤波器、模拟前端(AFE)、模/数转换器和控制电路(例如,微控制器单元(MCU)),以及用于将温度测量结果传输到另一个装置的无线模块362。在一实施例中,MCU可以被配置成将温度测量结果存储在可移除存储器装置或某些其它非暂时性计算机可读或电路可读介质上。在一些情况下,可移除存储器装置和/或印刷电路板上的电路内编程可以存储可以由MCU执行的指令。
图3F描绘了其中控制电路270位于与盒340/341和/或自动化生物材料工程系统301通信的计算装置303(如膝上型计算机或台式计算机或其它个人计算机(PC))中或以其它方式与所述计算装置相关联的实例。控制电路270可以被配置成例如从盒340/341和/或从自动化生物材料工程系统301接收温度测量结果或其它数据,和/或可以被配置成控制自动化生物材料工程系统301的一个或多个组件。在一实施例中,盒340/341/342、自动化生物材料工程系统301和/或计算装置302可以包含非暂时性计算机可读介质,如硬盘驱动器(HDD)、固态驱动器(SSD)、闪速存储器或任何其它存储装置。非暂时性计算机可读介质可以存储数据,如温度测量结果和/或可以由控制电路270执行的指令。这些指令可以用于例如执行本文所讨论的一个或多个方法,如下文所讨论的方法600。
图3G展示了其中自动化生物材料工程系统301可以被配置成在不同时间或同时收纳第一盒或第一类型的盒,如盒340/341,以及收纳第二盒或第二类型的盒,如盒342的实例。在一实施例中,盒342可以具有比盒340/341更少的温度探针,或者盒342内可以没有温度探针。在一些情况下,盒340/341可以是校准盒,并且盒342可以是生产盒。
在实施例中,本文所描述的方法和盒在
Figure BDA0004177834040000141
平台(傲克生物技术公司(Octane Biotech)(安大略省金斯顿))中使用,所述平台将多个单元操作整合在单个统包平台中。向多个细胞方案提供了非常具体的细胞处理目标。为了提供高效且有效的自动化转变,所描述的方法利用结合多个单元操作的应用特定/赞助商特定一次性盒的概念,所有这些都集中在最终细胞疗法产品的核心要求上。多个自动化细胞工程系统300可以一起整合到大型多单元操作中,以为个体患者生产大量细胞或多个不同的细胞样品(参见图4)。
图5中还展示了各种传感器(例如,pH传感器524、溶解氧传感器526)以及采样/样品端口和各种阀(包含旁通止回阀552)以及一个或多个流体通路540(适当地包括连接所述组件的基于硅酮的管组件)的示例性定位。如本文所描述的,使用基于硅酮的管组件允许通过管组件进行氧合以促进气体转移和针对细胞培养物的最佳氧合。图5中还示出了在盒的流动路径中使用一个或多个疏水过滤器554或亲水过滤器556。
在另外的实施例中,本文提供了自动化细胞工程系统300。如图3A和3B所示,自动化细胞工程系统300适当地包含可封闭壳体302以及包含在所述可封闭壳体内的盒240。如本文所使用的,“可封闭壳体”是指可以打开和关闭的结构,并且如本文所描述的盒240可以放置在所述结构内并与各种组件,如流体供应管线、气体供应管线、电源、冷却连接、加热连接等集成。如图3A和3B所示,可封闭壳体可以打开(图3B),以允许插入盒,并且关闭(图3A)以维持封闭、密封的环境,以允许利用盒进行本文所描述的各种自动化过程。
细胞疗法生产中的单元操作的自动化为同种异体细胞疗法应用和自体细胞疗法应用的普遍益处提供了机会。在患者特异性自体细胞产品的独特场景中,并且这些疗法的临床成功更强调的是,由于小批量GMP合规性、经济性、患者可追溯性和过程偏差的早期识别的显著微批次复杂性,自动化的优势特别引人注目。复杂制造方案的相关联的出现吸引对这样的事实的注意,即微批次细胞生产中自动化单元操作的端到端整合的价值尚未成为重要研究点。然而,在这些疗法即将获得批准后对这些疗法的预期需求指示,实施全封闭式端到端系统可以为制造瓶颈(如手动操作时间和占地面积)提供更需要的解决方案。
鼓励先进疗法的开发者在推出临床转译和扩大临床试验方案的早期考虑自动化。早期自动化可能影响方案开发,避免在后期在从手动过程切换到自动化过程时进行可比性研究的需要,并且提供对长期商业化路线的更好理解。
方法描述
本公开的一方面涉及用于在自动化生物材料工程系统,如上文所讨论的系统300/301中执行温度监测和/或温度控制的方法。这些方法可以由控制电路,如上文所讨论的控制电路270执行。如上文所描述的,控制电路270可以位于盒(例如,图2B、2C、3C和3D的盒240、340或341)中或以其它方式与所述盒相关联、位于自动化生物材料工程系统(例如图3A-3F的300/301)中或以其它方式与所述自动化生物材料工程学系统相关联、或与某些其它装置(例如,计算装置303)相关联。
图6展示了执行温度监测的示例方法600的流程图。所述方法可以由例如,控制电路270执行。在一实施例中,方法600可以以步骤602开始或以其它方式包含所述步骤,在所述步骤中,控制电路接收指示第一盒(如图2B和3A的盒240或图3D-3F的盒340/341)内的温度的一组内部温度测量结果。在一实施例中,所述一组内部温度测量结果可以从安置在第一盒内的温度探针阵列(如图2B的温度探针252阵列或图3D-3E的温度探针352阵列(也被称为温度传感器))接收。在此类实施例中,控制电路可以通过有线连接(如由图2B中的电连接元件258提供的有线连接)或通过无线连接(如由图3D/3E中的无线模块提供的无线连接)从温度探针阵列接收所述一组内部温度测量结果。例如,如果控制电路(例如,270)安置在第一盒内部,如图3C所展示,则在一些实施方案中,控制电路可以通过有线连接(如通过图2A或2B的电连接元件258)接收温度测量结果。如果控制电路(例如,270)安置在第一盒外部,如图3D和3F所展示,则控制电路可以通过无线模块362或某些其它通信电路或者通过有线电连接(如果有的话)接收温度测量结果。如上所述,无线模块362可以中继由数据收集电路361从温度探针352收集的数据。在一些情况下,如果温度探针352具有基于温度而变化的阻抗,则数据收集电路361可以被配置成测定温度探针352的阻抗值并使用所述阻抗值计算温度值。无线模块362然后可以被配置成将温度值无线地传送到控制电路270。在一些情况下,如果控制电路270具有到温度探针的有线连接,则控制电路270可以被配置成基于温度探针的阻抗值计算温度值。
在一些场景中,当第一盒(例如,240或340/341)容纳在自动化生物材料工程系统(例如,300/301)中时,所述一组内部温度测量结果可以在第一时间段期间由温度探针产生和/或由控制电路接收,如图3B中所展示的场景。在一些实施方案中,如上文所讨论的,第一盒可以是校准盒,并且第一时间段可以是校准阶段的一部分。在一些实施方案中,第一盒可以是生产盒,这也在上文中讨论。
在一实施例中,温度探针阵列可以安置在第一盒内的多个相应位置处,如图2B和2C所描绘。在此类实施例中,所述一组内部温度测量结果可以与多个相应位置相对应。例如,图7A展示了在时间t1(也被称为时间1)产生的一组温度测量结果Temp位置1,时间1至Temp位置11,时间1。图7B进一步展示了在时间t2或时间2产生的一组温度测量结果Temp位置1,时间2至Temp位置11,时间2。如图7A和7B所描绘的,一组温度测量结果Temp位置1,时间1至Temp位置11,时间1可以指示位置1至11在时间t1或时间1的温度,并且一组温度测量结果Temp位置1,时间2至Temp位置11,时间2可以指示在时间t2(也被称为时间2)在相同位置处的温度。在一些情况下,时间1和时间2中的每一个可以是在第一盒被安置在自动化生物材料工程系统内的第一时间段期间的时间点。这两个时间点可以例如与由生物材料工程系统执行的生物材料生产过程的两个不同阶段(例如,生产过程中的两个步骤)相对应。
在一实施例中,控制电路可以使用所述一组内部温度测量结果产生温度图,所述温度图指示温度如何跨所述第一盒在空间上变化。例如,温度测量结果Temp位置1,时间1至Temp位置11,时间1可以用于产生第一温度图,所述第一温度图指示第一盒内的温度在第一时间点时如何在空间上变化,并且温度测量结果Temp位置1,时间2至Temp位置11,时间2可以用于产生第二温度图,所述第二温度图指示第一盒内的温度在第二时间点时如何在空间上变化。
在一实施例中,控制电路(例如,270)可以将所述一组内部温度测量结果无线传输至计算装置,如图3D中的计算装置303。计算装置303可以是例如台式计算机或膝上型计算机,其用于记录第一盒内或与自动化生物材料工程系统兼容的某些其它盒内的温度。
返回图6,在一实施例中,方法600可以包含步骤604,其中控制电路在第一盒容纳在自动化生物材料工程系统中的时间段期间接收环境温度测量结果。在一实施例中,环境温度测量结果可以由自动化生物材料工程系统的系统温度探针(也被称为系统温度传感器),如图3C至3G中所展示的系统温度探针253,或图7A和7B中所展示的系统温度探针753产生。系统温度探针可以安置在第一盒外部,并且环境温度测量结果可以指示第一盒外部(例如,盒240、340或341外部)的温度。作为实例,图7A描绘了由系统温度探针753在时间1产生和/或由控制电路在第一时间点,即时间1接收的环境温度测量结果Temp环境,时间1,而图7B描绘了由探针753在第二时间点产生和/或由控制电路在第二时间点,即时间2接收的环境温度测量结果Temp环境,时间2
返回图7B,在一实施例中,方法600可以包含步骤606,其中控制电路测定一组温度偏移值,所述一组温度偏移值指示一组内部温度测量结果与环境温度测量结果之间的相应差异。例如,图8A提供了第一组温度偏移值的实例,其指示与第一时间点相对应的第一组内部温度测量结果Temp位置1,时间1至Temp位置11,时间1与和第一时间点相对应的环境温度测量结果Temp环境,时间1之间的相应差异。此图提供了第二组温度偏移值的实例,其指示与第二时间点相对应的第二组内部温度测量结果Temp位置1,时间2至Temp位置11,时间2与和第二时间点相对应的环境温度测量结果Temp环境,时间2之间的相应差异。在一些情况下,第一时间点可以与生物材料生产过程的第一阶段(例如,第一生物方案)相对应,而第二时间点可以与生物材料生产过程的第二阶段(例如,第二生物方案)相对应,如图8B所展示。如图8A和8B所展示的,在一实施例中,在步骤606中测定的温度偏移值可以是覆盖不同生物方案的动态偏移值,或者更一般地覆盖第一时间段中的不同时间点。
在一实施例中,温度偏移值可以用于促进温度控制。温度控制可以涉及例如,控制加热装置或冷却装置,如图3C和3D中的装置250,以使盒,如图3G中的盒342或图9中的盒742中的位置达到期望的温度,如目标温度值。在一些情况下,上文所讨论的用于测定温度偏移值的盒(例如,240或340/341)可以是第一盒,如校准盒。在此实施例中,对其执行温度控制的盒(例如,342/742)可以是第二盒,如生产盒。在此类情况下,可以已在第一时间段期间测定温度偏移值,其中第一盒安置在自动化生物工程系统内,并且可以在第二时间段期间执行温度控制,其中第二盒安置在自动生物工程系统内。在第二时间段期间,可以例如从自动化生物材料工程系统中取出第一盒,而第二盒可以放置到系统中。在一些实施方案中,第二盒可以不具有安置在其中的温度探针,或者相对于第一盒中安置的温度探针的数量可以具有更少的温度探针。
在一实施例中,温度偏移值的测定和温度的控制可以由同一控制电路执行,或者可以由两个单独的控制电路执行。例如,第一控制电路可以测定温度偏移值并将其存储在存储装置中,而同一控制电路或另一控制电路随后可以从存储装置检索温度偏移值,并基于所述温度偏移值执行温度控制。
在一实施例中,执行温度控制可以涉及使用在步骤606中测定的温度偏移值来确定环境温度值与盒(例如342/742)内位置处的内部温度值之间的关系。在一些情况下,尽管自动化生物材料工程系统可以具有系统温度探针,如图9中的探针753,以测定环境温度值,但盒(例如,342/742)可以不具有温度探针,或者仅有几个温度探针。因此,控制电路可以不具有直接测量结果,或者仅有关于盒(例如,342/742)内的内部温度的几个直接测量结果。在此类情况下,控制电路(例如,270)可以依赖于温度偏移值来基于由系统温度探针测量的环境温度值推断关于盒(例如,342/742)内的温度的信息,和/或测定目标环境温度以便为盒(例如342/742)内的位置带来期望内部温度。
在一实施例中,正在执行温度控制的控制电路(例如,控制电路270)可以测定盒,如上文所讨论的第二盒(例如,342/724)中的位置的目标内部温度值。可以在将盒放置在自动化生物材料工程系统内之前或之后执行所述测定。在一些情况下,此位置可以是图9的盒742中的位置1至11之一。这些位置可以与在图7A和7B的盒240中测量Temp位置1至Temp位置11的相应位置相同或相对应。在一些情况下,与目标内部温度值相关联的位置可以是图9中的位置1至11中的两个或更多个之间的位置。在一些情况下,如果自动化生物材料工程系统是自动化细胞工程系统,则目标内部温度值可以是针对盒(例如,342/742)内的细胞培养物的期望细胞培养温度值。所述期望细胞培养温度值可以是例如,促进细胞生长的值。
在一实施例中,控制电路(例如,270)可以通过控制自动化生物材料工程系统的加热装置或冷却装置来控制温度。此操作可以在盒(例如,342/742)安置在自动化生物材料工程系统内的时间段期间发生。如上所述,此时间段可以是第二时间段,而当另一个盒(例如,240)安置在自动化生物材料工程系统内时,所述一组温度偏移值可以在第一时间段期间测定,如上文所讨论。
在一实施例中,控制电路可以基于目标内部温度值、一组温度偏移值以及由系统温度探针(例如,753)产生的一个或多个环境温度测量结果来控制加热装置或冷却装置。更具体地,控制电路可以控制加热装置或冷却装置以使估计的内部温度值达到目标内部温度值,和/或使环境温度值达到目标环境温度值。估计的内部温度值和/或目标环境温度值可以基于所述一组温度偏移值来确定,如下文更详细地讨论的。
在一实施例中,控制电路可以通过估计盒(例如,342/742)中的位置的内部温度值来执行温度控制,使得控制电路可以基于估计的内部温度值与目标内部温度值之间的差异来控制加热装置或冷却装置,或者更具体地,使差异减小,使得估计的内部温度值接近目标内部温度值,如上所述。在一些情况下,可以基于由图9中的系统温度探针(例如,753)测得的环境温度值,以及基于与盒(例如,342/742)中的位置相对应的温度偏移值来估计盒(例如,342/742)中的所述位置的估计内部温度值。盒(例如,342/742),如上文所讨论的第二盒中的位置的温度偏移值可以等于或基于上文关于步骤606所讨论的一组温度偏移值之一。可以已使用另一个盒,如上文所讨论的第一盒(例如,240或340/341)测定所述一组温度偏移值。更具体地,第二盒中的位置的温度偏移值可以等于或基于第一盒中的对应位置的温度偏移值。在一些实施方案中,第一盒和第二盒可以具有相同或类似的形状或布局,并且如果两个位置相对于其各自的盒在空间上相同或类似地定位,则第一盒中的位置可以与第二盒中的位置相对应。也就是说,两个对应的位置相对于其各自的盒可以是相同或类似的位置。
作为实例,图7A和7B的盒240中的位置1(在此位置测量Temp位置1,时间1和Temp位置1,时间2)可以与图9的盒742中的位置1相对应。在此类实例中,盒742中的位置1的温度偏移值可以等于或基于盒240中的对应位置的温度偏移量值,例如偏移位置1,时间1或偏移位置1,时间2,其可以已在步骤606中测定。控制电路可以因此基于例如环境温度值,如图9中的Temp环境以及基于偏移位置1,时间1或偏移位置1,时间2来测定盒742中的位置1的估计内部温度值。例如,控制电路可以通过从环境温度值减去偏移位置1,时间1或偏移位置1,时间2来测定盒742中的位置1的估计内部温度值。
如上所述,在一实施例中,在步骤606中测定的温度偏移值可以是动态偏移值,所述动态偏移值考虑了某个时间段内的各种时间点(例如,各种生物方案),如上文所讨论的第一时间段,其中第一盒(例如,240)被安置在自动化生物材料工程系统内。例如,如图8A和8B所描绘的,在第一时间段期间测定的动态温度偏移值可以被组织成与第一时间段期间的不同时间点相对应的多组温度偏移值,如与时间1相对应的第一组温度偏移值偏移位置1,时间1至偏移位置11,时间1(例如,第一生物方案)和与时间2相对应的第二组温度偏移值偏移位置1,时间2至偏移位置11,时间2(例如,第二生物方案)。在此实施例中,测定第二盒(例如,342/742)中的某个位置在第二时间段(其中第二盒位于自动化生物材料工程系统中)中的某个时间点的估计内部温度值可以涉及测定与所述时间点以及所述位置相对应的温度偏移值。时间点可以是估计内部温度值的时间点,或者是估计值将被使用的时间点。
在一些情况下,对应的温度偏移值可以是在上文所讨论的第一时间段期间在对应的时间点估计的值(当测定多组温度偏移值时)。在这些情况下,如果例如第一时间段中的时间点和第二时间段中的时间点属于生物材料生产过程的同一阶段(例如,属于同一生物方案),和/或如果所述两个时间点相对于其各自的时间段的开始或结束具有相同的时间偏移,则所述第一时间段中的时间点可以与所述第二时间段中的时间点相对应。作为实例,如果控制电路在第二时间段中的第一生物方案期间测定位置1的估计内部温度值,则控制电路可以测定对应的温度偏移值为偏移位置1,时间1,其与位置1相对应并且与第一生物方案相对应。如果控制电路在第二时间段中的第二生物方案期间测定同一位置的估计内部温度值,则控制电路可以测定对应的温度偏移值为偏移置1,时间2。
在一些情况下,控制电路可以通过估计温度图来执行上文所讨论的盒(例如,342/742)的温度控制,所述温度图指示温度如何跨盒在空间上变化。可以基于温度偏移值(如上文所讨论的第一组和/或第二组温度偏移值)以及在第二时间段期间产生的一个或多个温度环境测量结果来产生温度图。在一些实施方案中,如上文所讨论的,控制电路可以通过估计盒内不同位置处的内部温度值来产生温度图。例如,控制电路可以从环境温度测量结果(或者更具体地从环境温度值)中减去与这些位置相对应并且与产生环境温度测量结果的时间点相对应的温度偏移值。
在一些实施方案中,控制电路可以基于在第一时间段中产生的温度图来确定盒(例如,342/742)在第二时间段的温度图。在上述实施方案中,温度图可以指示在某个时间点处盒(例如,342/742)中的各种位置处的估计内部温度值,并且控制电路可以基于温度图控制加热装置或冷却装置。控制电路可以被配置成产生单个温度图,或者可以产生与第二时间段内的多个时间点相对应(例如,与多个生物方案相对应)的多个温度图。如果控制电路正在测定第二时间段内的第一时间点的温度图,则所述控制电路可以选择第一组温度偏移值偏移位置1,时间1至偏移位置11,时间1来确定温度图。如果控制电路正在测定第二时间段内的第二时间点的温度图,则所述控制电路可以选择第二组温度偏移值偏移位置1,时间2至偏移位置11,时间2来确定温度图。
如上所述,控制电路可以通过使估计的内部温度值接近目标内部温度值和/或通过使测得的环境温度值接近目标环境温度值来执行加热控制。在一实施例中,控制电路可以基于目标内部温度值和/或估计的内部温度值来测定目标环境温度值。例如,控制电路可以通过将盒内的特定位置的目标内部温度值与和所述位置相对应的温度偏移值相加来测定目标环境温度值。作为实例,控制电路可以通过将图9中的位置7的目标内部温度值添加到偏移位置7,时间1或偏移位置7,时间2来测定目标环境温度值。
在一实施例中,控制电路可以测定针对第二时间段中的多个点的多个目标环境温度值。例如,为了使盒(例如,742)中的位置7在各个时间点达到目标内部温度值,控制电路可以通过使用与第一时间点相对应的偏移位置7,时间1来测定第二时间段内的第一时间点的第一目标环境温度值。控制电路可以通过使用与第二时间点相对应的偏移位置7,时间2来测定第二时间段内的第二点的第二目标环境温度值。这两个时间点可以是第二时间段内的两个不同生物方案的一部分,或者可以是同一生物方案的一部分。控制电路可以例如控制(例如,激活或去激活)加热装置或冷却装置,以使可以通过系统温度探针(例如,753)测量的测得的环境温度从第一目标环境温度值转变为第二目标环境温度值。例如,图10A描绘了目标环境温度和/或测得的环境温度的实例,其可以被称为控制温度,因为其被用于控制加热装置或冷却装置。此图进一步描绘了内部温度值,所述内部温度值可以被称为培养基温度,因为此实例中的盒可以含有细胞培养基。在此实例中,控制电路可以控制加热装置以使控制温度从第一目标环境温度值转变为第二环境温度值,或者更具体地从较高的目标环境温度值转变为较低的环境温度值。使用至少两个不同目标环境温度值可以使盒内的培养基更快加热或冷却。例如,图10A中使用较高的初始环境温度值可能使内部温度值(例如,培养基温度)相对于其中控制电路简单地试图在整个特定时间段内维持单一目标环境温度或控制温度的实施方案更快地上升。图10B中示出了使用单一控制温度的后一实例。因此,图10A中的实例可以以更积极和/或动态的方式使用加热装置,以更好地补偿环境温度与内部温度(例如,培养基温度)之间的热滞后,并且更快地使内部温度达到目标值。
在一实施例中,温度偏移值可以促进控制加热装置或冷却装置的更积极和/或动态的方式。更具体地,虽然提高环境温度可以帮助补偿环境温度与内部温度之间的热滞后,但控制电路可能需要确保内部温度不会变得过高或过低,这可能损坏例如上文所讨论的盒(例如,342/742)中的细胞培养基。控制电路可以使用温度偏移值来更准确地测定不可能使内部温度值变得过高或过低的环境温度值,和/或更准确地估计内部温度值以确认其不是过高或过低,即使控制电路无法直接测量内部温度值。在一实施例中,如果温度偏移值通过与多个时间点相对应而为动态的,则控制电路可以使用动态温度偏移值来调整环境温度的控制方式。例如,动态温度偏移值可以帮助控制电路确定何时从图10A的较高初始环境温度值(例如,目标环境温度值)转变为较低环境温度,以便快速升高内部温度,但也避免使内部温度超过其目标值。
在一实施例中,自动化材料工程系统具有多个系统温度探针,所述探针测量盒(例如342/742)外部的多个相应位置处的多个环境温度值,控制电路可以被配置成测定与多个系统温度探针和/或多个位置相对应的多个目标环境温度值。
另外的示例性实施例
实施例1涉及一种用于在自动化生物材料工程系统中使用的校准盒。此实施例中的所述校准盒包括:低温室,所述低温室包含培养基储存容器以及所述培养基储存容器中的第一密封温度探针阵列;高温室,所述高温室通过热屏障与所述低温室分离,所述高温室包含细胞培养室以及所述细胞培养室中的第二密封温度探针阵列;一个或多个流体通路,所述一个或多个流体通路连接到所述细胞培养室和所述培养基储存容器,并且包含所述一个或多个流体通路中的第三密封温度探针阵列;以及电连接元件,所述电连接元件电连接到所述第一密封温度探针阵列、所述第二密封温度探针阵列和所述第三密封温度探针阵列中的每一个。
实施例2包含根据实施例1所述的校准盒,其中所述培养基储存容器是袋,并且其中所述第一密封温度探针阵列附接到所述袋的内表面。
实施例3包含根据实施例1或2所述的校准盒,其中所述细胞培养室是扁平的并且基本上非柔性的,并且其中所述第二密封温度探针阵列附接到所述细胞培养室的底部和/或侧面。
实施例4包含根据实施例1至3中任一项所述的校准盒,其中所述一个或多个流体通路包含管和连接器,并且其中所述第三密封温度探针阵列位于所述管内。
实施例5包含根据实施例1至4中任一项所述的校准盒,其中所述第一密封温度探针阵列、所述第二密封温度探针阵列和所述第三密封温度探针阵列包含由聚合物盖气密密封的电阻温度检测器(RTD)。
实施例6包含根据实施例1至5中任一项所述的校准盒,其中所述第一密封温度探针阵列、所述第二密封温度探针阵列和所述第三密封温度探针阵列各自包含至少2个密封温度探针。
实施例7包含根据实施例6所述的校准盒,其中所述第一密封温度探针阵列、所述第二密封温度探针阵列和所述第三密封温度探针阵列各自包含2-4个密封温度探针。
实施例8包含根据实施例7所述的校准盒,其中所述第一密封温度探针阵列、所述第二密封温度探针阵列和所述第三密封温度探针阵列总共包含12个密封温度探针。
实施例9包含根据实施例1至8中任一项所述的校准盒,其中所述电连接元件电连接到与所述校准盒相关联的控制电路。
实施例10包含根据实施例1至8中任一项所述的校准盒,其中所述电连接元件被配置成电连接到与所述自动化生物材料工程系统相关联的控制电路。
实施例11涉及一种用于在自动化细胞工程系统中使用的生产盒。此实施例中的所述生产盒包含:低温室,所述低温室包含细胞培养基储存容器以及所述细胞培养基储存容器中的第一密封温度探针阵列;高温室,所述高温室用于进行细胞培养物的活化、转导和/或扩增,所述高温室通过热屏障与所述低温室分离,所述高温室包含细胞培养室以及所述细胞培养室中的第二密封温度探针阵列;一个或多个流体通路,所述一个或多个流体通路连接到所述细胞培养室和所述细胞培养基储存容器,并且包含所述一个或多个流体通路中的第三密封温度探针阵列;以及电连接元件,所述电连接元件电连接到所述第一密封温度探针阵列、所述第二密封温度探针阵列和所述第三密封温度探针阵列中的每一个,其中所述一个或多个流体通路提供再循环、废物去除和均质气体交换以及营养物向所述细胞培养室的分配。
实施例12包含根据实施例11所述的生产盒,其中所述细胞培养基储存容器是袋,并且其中所述第一密封温度探针阵列附接到所述袋的内表面。
实施例13包含根据实施例11或12所述的生产盒,其中所述细胞培养室是扁平的并且基本上非柔性的,并且其中所述细胞培养室中的所述第二密封温度探针阵列附接到所述细胞培养室的底部和/或侧面。
实施例14包含根据实施例11至13中任一项所述的生产盒,其中所述一个或多个流体通路包含管和连接器,并且其中所述第三密封温度探针阵列位于所述管内。
实施例15包含根据实施例11至14中任一项所述的生产盒,其中所述第一密封温度探针阵列、所述第二密封温度探针阵列和所述第三密封温度探针阵列包含由聚合物盖气密密封的电阻温度检测器(RTD)。
实施例16包含根据实施例11至15中任一项所述的生产盒,其中所述第一密封温度探针阵列、所述第二密封温度探针阵列和所述第三密封温度探针阵列各自包含至少2个密封温度探针。
实施例17包含根据实施例16所述的生产盒,其中所述第一密封温度探针阵列、所述第二密封温度探针阵列和所述第三密封温度探针阵列各自包含2-4个密封温度探针。
实施例18包含根据实施例17所述的生产盒,其中所述第一密封温度探针阵列、所述第二密封温度探针阵列和所述第三密封温度探针阵列总共包含12个密封温度探针。
实施例19包含根据实施例11至18中任一项所述的生产盒,其中所述电连接元件电连接到与所述生产盒相关联的控制电路。
实施例20包含根据实施例11至18中任一项所述的生产盒,其中所述电连接元件被配置成连接到与所述自动化细胞工程系统相关联的控制电路。
实施例21包含一种在自动化生物材料工程系统中进行温度监测的方法。此实施例中的所述方法包括:在第一盒容纳在所述自动化生物材料工程系统中的时间段期间由控制电路接收一组内部温度测量结果,其中所述一组内部温度测量结果指示所述第一盒内的温度,并且在所述时间段期间由安置在所述第一盒内的温度探针阵列产生;当所述第一盒容纳在所述自动化生物材料工程系统中时,由所述控制电路接收环境温度测量结果,其中所述环境温度测量结果指示所述第一盒外部的温度,并且在所述时间段期间由安置在所述第一盒外部的所述自动化生物材料工程系统的系统温度探针产生;以及由所述控制电路测定一组温度偏移值,所述一组温度偏移值指示所述一组内部温度测量结果与所述环境温度测量结果之间的相应差异。
实施例22包含根据实施例21所述的方法,其中所述控制电路与所述第一盒相关联。
实施例23包含根据实施例21所述的方法,其中所述控制电路与所述自动化生物材料工程系统相关联。
实施例24包含根据实施例21至23中任一项所述的方法,其中所述自动化生物材料工程系统是自动化细胞工程系统。
实施例25包含根据实施例21至24中任一项所述的方法,其中所述温度探针阵列安置在所述第一盒内的多个相应位置处,并且所述一组内部温度测量结果与所述第一盒内的所述多个相应位置相对应,其中所述方法进一步包括:基于所述一组内部温度测量结果产生温度图,所述温度图指示温度如何跨所述第一盒在空间上变化。
实施例26包含根据实施例25所述的方法,其中所述一组内部温度测量结果是与所述时间段内的第一时间点相对应的第一组内部温度测量结果,并且其中所述温度图是第一温度图,所述第一温度图指示在所述时间段内的所述第一时间点处,温度如何跨所述第一盒在空间上变化,其中所述方法进一步包括:接收由所述第一盒中的所述温度探针阵列产生的第二组内部温度测量结果,其中所述第二组内部温度测量结果指示在所述时间段内的第二时间点处所述多个相应位置处的温度;以及基于所述第二组内部温度测量结果产生第二温度图,所述第二温度图指示在所述时间段内的所述第二时间点处,温度如何跨所述第一盒在空间上变化。
实施例27包含根据实施例26所述的方法,其中所述环境温度测量结果是与所述时间段内的所述第一时间点相对应的第一环境温度测量结果,并且所述一组温度偏移值是也与所述第一时间段相对应的第一组温度偏移值,其中所述方法进一步包括:接收第二环境温度测量结果,所述第二环境温度测量结果指示在所述时间段内的所述第二时间点处所述第一盒外部的温度;以及测定第二组温度偏移值,所述第二组温度偏移值指示所述第二环境温度测量结果与所述第二组内部温度测量结果之间的相应差异,其中所述第二组温度偏移值与所述第二时间点相对应,其中所述第一时间点属于生物材料生产过程的第一阶段,并且所述第二时间点属于生物材料生产过程的第二阶段。
实施例28包含根据实施例21至27中任一项所述的方法,其进一步包括将所述一组内部温度测量结果无线地传输到计算装置。
实施例29包含一种在自动化生物材料工程系统中进行的温度控制方法,所述方法包括:在第一盒容纳在所述自动化生物材料工程系统中的第一时间段期间由控制电路接收一组内部温度测量结果,其中所述一组内部温度测量结果指示所述第一盒内的温度,并且在所述第一时间段期间由安置在所述第一盒内的温度探针阵列产生;当所述第一盒容纳在所述自动化生物材料工程系统中时,由所述控制电路接收第一环境温度测量结果,其中所述第一环境温度测量结果指示所述第一盒外部的温度,并且在所述第一时间段期间由安置在所述第一盒外部的所述自动化生物材料工程系统的系统温度传感器产生;由所述控制电路测定一组温度偏移值,所述一组温度偏移值指示所述一组内部温度测量结果与所述第一环境温度测量结果之间的相应差异;由所述控制电路测定针对第二盒中的位置的目标内部温度值;以及基于所述目标内部温度值、所述一组温度偏移值以及由所述系统温度传感器在所述第二时间段期间产生的一个或多个另外的环境温度测量结果,在所述第二盒容纳在所述自动化生物材料工程系统中的第二时间段期间,由所述控制电路控制所述自动化生物材料工程系统的加热装置或冷却装置,其中所述系统温度传感器安置在所述第二盒外部。
实施例30包含根据实施例29所述的方法,其中所述自动化生物材料工程系统是自动化细胞工程系统,并且所述目标内部温度值是针对所述第二盒内的细胞培养物的期望细胞培养温度值。
实施例31包含根据实施例29或30所述的方法,其进一步包括基于所述一组温度偏移值和在所述第二时间段期间产生的所述一个或多个另外的环境温度测量结果产生温度图,所述温度图指示温度如何跨所述第二盒在空间上变化,其中基于所述温度图控制所述加热装置或所述冷却装置。
实施例32包含根据实施例31所述的方法,其中控制所述加热装置或所述冷却装置包括测定所述第二盒中的所述位置的估计内部温度值,其中基于所述估计内部温度值与期望内部温度值之间的差异来控制所述加热装置或所述冷却装置。
实施例33包含根据实施例32所述的方法,其中控制所述加热装置或所述冷却装置包括基于所述估计内部温度值和/或所述目标内部温度值来测定目标环境温度值,其中所述加热装置或所述冷却装置被控制以使由所述系统温度探针测得的温度接近所述目标环境温度值。
实施例34包含根据实施例33所述的方法,其中所述一组温度偏移值是在所述第一时间段期间测定的多组温度偏移值中的一组,其中所述多组与所述第一时间段内的不同时间点相对应,其中所测定的温度图与所述第二时间段内的时间点相对应,并且是通过基于所述一组温度偏移值也与所述第二时间段内的所述时间点相对应的确定从所述多组温度偏移值中选择所述一组温度偏移值来产生。
实施例35包含根据实施例34所述的方法,其中所述一组温度偏移值与所述第一时间段内的时间点相关联,并且其中所述第一时间段内的所述时间点和所述第二时间段内的所述时间点两者属于具有多个阶段的生物材料生产过程中的同一阶段。
实施例36包含根据实施例34或35所述的方法,其中所述温度图是第一温度图,所述方法进一步包括:在所述第二时间段内的第二时间点,从所述多组温度偏移值中选择第二组温度偏移值,其中所选择的第二组温度偏移值与所述第二时间段内的所述第二时间点相对应;基于所述第二组温度偏移值产生第二温度图,其中所述第二温度图与所述第二时间段内的所述第二时间点相关联,并且其中基于所述第二温度图控制所述加热装置或所述冷却装置。
实施例37包含根据实施例36所述的方法,其中所述目标环境温度值是第一目标环境温度值,所述方法进一步包括:测定第二估计内部温度值;基于所述第二估计内部温度值和/或所述目标内部温度值测定第二目标环境温度值;以及控制所述加热装置或所述冷却装置以使由所述系统温度探针测得的温度从所述第一目标环境温度值转变为所述第二目标环境温度值。
实施例38包含根据实施例37所述的方法,其中所述第一目标环境温度值高于所述第二目标环境温度值。
实施例39包含根据实施例21至38中任一项所述的方法,其中所述第二盒中没有安置温度传感器。
对相关领域的普通技术人员而言将显而易见的是,在不脱离任何实施例的范围的情况下,可以对本文所描述的方法和应用作出其它合适的修改和调整。
应当理解的是,虽然本文中已经展示和描述了某些实施例,但是权利要求不限于所描述和所示出的部分的特定形式或布置。在本说明书中已经公开了说明性实施例,并且尽管采用了具体术语,但其仅用于一般性和描述性意义,而不是出于限制的目的。鉴于以上教导,对所述实施例的修改和变化都是可能的。因此,应当理解的是,可以以与具体描述的方式不同的方式实践所述实施例。
本说明书中所提及的所有公开、专利以及专利申请通过引用并入本文中,其程度如同每个单独的公开、专利或专利申请被专门地且单独地指示通过引用并入。

Claims (39)

1.一种用于在自动化生物材料工程系统中使用的校准盒,所述校准盒包括:
低温室,所述低温室包含培养基储存容器以及所述培养基储存容器中的第一密封温度探针阵列;
高温室,所述高温室通过热屏障与所述低温室分离,所述高温室包含细胞培养室以及所述细胞培养室中的第二密封温度探针阵列;
一个或多个流体通路,所述一个或多个流体通路连接到所述细胞培养室和所述培养基储存容器,并且包含所述一个或多个流体通路中的第三密封温度探针阵列;以及
电连接元件,所述电连接元件电连接到所述第一密封温度探针阵列、所述第二密封温度探针阵列和所述第三密封温度探针阵列中的每一个。
2.根据权利要求1所述的校准盒,其中所述培养基储存容器是袋,并且其中所述第一密封温度探针阵列附接到所述袋的内表面。
3.根据权利要求1或权利要求2所述的校准盒,其中所述细胞培养室是扁平的并且基本上非柔性的,并且其中所述第二密封温度探针阵列附接到所述细胞培养室的底部和/或侧面。
4.根据权利要求1至3中任一项所述的校准盒,其中所述一个或多个流体通路包含管和连接器,并且其中所述第三密封温度探针阵列位于所述管内。
5.根据权利要求1至4中任一项所述的校准盒,其中所述第一密封温度探针阵列、所述第二密封温度探针阵列和所述第三密封温度探针阵列包含由聚合物盖气密密封的电阻温度检测器(RTD)。
6.根据权利要求1至5中任一项所述的校准盒,其中所述第一密封温度探针阵列、所述第二密封温度探针阵列和所述第三密封温度探针阵列各自包含至少2个密封温度探针。
7.根据权利要求6所述的校准盒,其中所述第一密封温度探针阵列、所述第二密封温度探针阵列和所述第三密封温度探针阵列各自包含2-4个密封温度探针。
8.根据权利要求7所述的校准盒,其中所述第一密封温度探针阵列、所述第二密封温度探针阵列和所述第三密封温度探针阵列总共包含12个密封温度探针。
9.根据权利要求1至8中任一项所述的校准盒,其中所述电连接元件电连接到与所述校准盒相关联的控制电路。
10.根据权利要求1至8中任一项所述的校准盒,其中所述电连接元件被配置成电连接到与所述自动化生物材料工程系统相关联的控制电路。
11.一种用于在自动化细胞工程系统中使用的生产盒,所述生产盒包括:
低温室,所述低温室包含细胞培养基储存容器以及所述细胞培养基储存容器中的第一密封温度探针阵列;
高温室,所述高温室用于进行细胞培养物的活化、转导和/或扩增,所述高温室通过热屏障与所述低温室分离,所述高温室包含细胞培养室以及所述细胞培养室中的第二密封温度探针阵列;
一个或多个流体通路,所述一个或多个流体通路连接到所述细胞培养室和所述细胞培养基储存容器,并且包含所述一个或多个流体通路中的第三密封温度探针阵列;以及
电连接元件,所述电连接元件电连接到所述第一密封温度探针阵列、所述第二密封温度探针阵列和所述第三密封温度探针阵列中的每一个,
其中所述一个或多个流体通路提供再循环、废物去除和均质气体交换以及营养物向所述细胞培养室的分配。
12.根据权利要求11所述的生产盒,其中所述细胞培养基储存容器是袋,并且其中所述第一密封温度探针阵列附接到所述袋的内表面。
13.根据权利要求11或权利要求12所述的生产盒,其中所述细胞培养室是扁平的并且基本上非柔性的,并且其中所述细胞培养室中的所述第二密封温度探针阵列附接到所述细胞培养室的底部和/或侧面。
14.根据权利要求11至13中任一项所述的生产盒,其中所述一个或多个流体通路包含管和连接器,并且其中所述第三密封温度探针阵列位于所述管内。
15.根据权利要求11至14中任一项所述的生产盒,其中所述第一密封温度探针阵列、所述第二密封温度探针阵列和所述第三密封温度探针阵列包含由聚合物盖气密密封的电阻温度检测器(RTD)。
16.根据权利要求11至15中任一项所述的生产盒,其中所述第一密封温度探针阵列、所述第二密封温度探针阵列和所述第三密封温度探针阵列各自包含至少2个密封温度探针。
17.根据权利要求16所述的生产盒,其中所述第一密封温度探针阵列、所述第二密封温度探针阵列和所述第三密封温度探针阵列各自包含2-4个密封温度探针。
18.根据权利要求17所述的生产盒,其中所述第一密封温度探针阵列、所述第二密封温度探针阵列和所述第三密封温度探针阵列总共包含12个密封温度探针。
19.根据权利要求11至18中任一项所述的生产盒,其中所述电连接元件电连接到与所述生产盒相关联的控制电路。
20.根据权利要求11至18中任一项所述的生产盒,其中所述电连接元件被配置成连接到与所述自动化细胞工程系统相关联的控制电路。
21.一种在自动化生物材料工程系统中进行温度监测的方法,所述方法包括:
在第一盒容纳在所述自动化生物材料工程系统中的时间段期间由控制电路接收一组内部温度测量结果,其中所述一组内部温度测量结果指示所述第一盒内的温度,并且在所述时间段期间由安置在所述第一盒内的温度探针阵列产生;
当所述第一盒容纳在所述自动化生物材料工程系统中时,由所述控制电路接收环境温度测量结果,其中所述环境温度测量结果指示所述第一盒外部的温度,并且在所述时间段期间由安置在所述第一盒外部的所述自动化生物材料工程系统的系统温度探针产生;以及
由所述控制电路测定一组温度偏移值,所述一组温度偏移值指示所述一组内部温度测量结果与所述环境温度测量结果之间的相应差异。
22.根据权利要求21所述的方法,其中所述控制电路与所述第一盒相关联。
23.根据权利要求21所述的方法,其中所述控制电路与所述自动化生物材料工程系统相关联。
24.根据权利要求21至23中任一项所述的方法,其中所述自动化生物材料工程系统是自动化细胞工程系统。
25.根据权利要求21至24中任一项所述的方法,其中所述温度探针阵列安置在所述第一盒内的多个相应位置处,并且所述一组内部温度测量结果与所述第一盒内的所述多个相应位置相对应,其中所述方法进一步包括:
基于所述一组内部温度测量结果产生温度图,所述温度图指示温度如何跨所述第一盒在空间上变化。
26.根据权利要求25所述的方法,其中所述一组内部温度测量结果是与所述时间段内的第一时间点相对应的第一组内部温度测量结果,并且其中所述温度图是第一温度图,所述第一温度图指示在所述时间段内的所述第一时间点处温度如何跨所述第一盒在空间上变化,其中所述方法进一步包括:
接收由所述第一盒中的所述温度探针阵列产生的第二组内部温度测量结果,其中所述第二组内部温度测量结果指示在所述时间段内的第二时间点处所述多个相应位置处的温度;以及
基于所述第二组内部温度测量结果产生第二温度图,所述第二温度图指示在所述时间段内的所述第二时间点处温度如何跨所述第一盒在空间上变化。
27.根据权利要求26所述的方法,其中所述环境温度测量结果是与所述时间段内的所述第一时间点相对应的第一环境温度测量结果,并且所述一组温度偏移值是也与所述第一时间段相对应的第一组温度偏移值,其中所述方法进一步包括:
接收第二环境温度测量结果,所述第二环境温度测量结果指示在所述时间段内的所述第二时间点处所述第一盒外部的温度;以及
测定第二组温度偏移值,所述第二组温度偏移值指示所述第二环境温度测量结果与所述第二组内部温度测量结果之间的相应差异,其中所述第二组温度偏移值与所述第二时间点相对应,
其中所述第一时间点属于生物材料生产过程的第一阶段,并且所述第二时间点属于生物材料生产过程的第二阶段。
28.根据权利要求21至27中任一项所述的方法,其进一步包括将所述一组内部温度测量结果无线地传输到计算装置。
29.一种在自动化生物材料工程系统中进行的温度控制方法,所述方法包括:
在第一盒容纳在所述自动化生物材料工程系统中的第一时间段期间由控制电路接收一组内部温度测量结果,其中所述一组内部温度测量结果指示所述第一盒内的温度,并且在所述第一时间段期间由安置在所述第一盒内的温度探针阵列产生;
当所述第一盒容纳在所述自动化生物材料工程系统中时,由所述控制电路接收第一环境温度测量结果,其中所述第一环境温度测量结果指示所述第一盒外部的温度,并且在所述第一时间段期间由安置在所述第一盒外部的所述自动化生物材料工程系统的系统温度传感器产生;
由所述控制电路测定一组温度偏移值,所述一组温度偏移值指示所述一组内部温度测量结果与所述第一环境温度测量结果之间的相应差异;
由所述控制电路测定针对第二盒中的位置的目标内部温度值;以及
基于所述目标内部温度值、所述一组温度偏移值以及由所述系统温度传感器在所述第二时间段期间产生的一个或多个另外的环境温度测量结果,在所述第二盒容纳在所述自动化生物材料工程系统中的第二时间段期间,由所述控制电路控制所述自动化生物材料工程系统的加热装置或冷却装置,其中所述系统温度传感器安置在所述第二盒外部。
30.根据权利要求29所述的方法,其中所述自动化生物材料工程系统是自动化细胞工程系统,并且所述目标内部温度值是针对所述第二盒内的细胞培养物的期望细胞培养温度值。
31.根据权利要求29或权利要求30所述的方法,其进一步包括基于所述一组温度偏移值和在所述第二时间段期间产生的所述一个或多个另外的环境温度测量结果产生温度图,所述温度图指示温度如何跨所述第二盒在空间上变化,其中基于所述温度图控制所述加热装置或所述冷却装置。
32.根据权利要求31所述的方法,其中控制所述加热装置或所述冷却装置包括测定所述第二盒中的所述位置的估计内部温度值,其中基于所述估计内部温度值与期望内部温度值之间的差异来控制所述加热装置或所述冷却装置。
33.根据权利要求32所述的方法,其中控制所述加热装置或所述冷却装置包括基于所述估计内部温度值和/或所述目标内部温度值来测定目标环境温度值,其中所述加热装置或所述冷却装置被控制以使由所述系统温度探针测得的温度接近所述目标环境温度值。
34.根据权利要求33所述的方法,其中所述一组温度偏移值是在所述第一时间段期间测定的多组温度偏移值中的一组,其中所述多组与所述第一时间段内的不同时间点相对应,
其中所测定的温度图与所述第二时间段内的时间点相对应,并且是通过基于所述一组温度偏移值也与所述第二时间段内的所述时间点相对应的确定从所述多组温度偏移值中选择所述一组温度偏移值来产生。
35.根据权利要求34所述的方法,其中所述一组温度偏移值与所述第一时间段内的时间点相关联,并且其中所述第一时间段内的所述时间点和所述第二时间段内的所述时间点两者属于具有多个阶段的生物材料生产过程中的同一阶段。
36.根据权利要求34或35所述的方法,其中所述温度图是第一温度图,所述方法进一步包括:
在所述第二时间段内的第二时间点,从所述多组温度偏移值中选择第二组温度偏移值,其中所选择的第二组温度偏移值与所述第二时间段内的所述第二时间点相对应;
基于所述第二组温度偏移值产生第二温度图,其中所述第二温度图与所述第二时间段内的所述第二时间点相关联,并且其中基于所述第二温度图控制所述加热装置或所述冷却装置。
37.根据权利要求36所述的方法,其中所述目标环境温度值是第一目标环境温度值,所述方法进一步包括:测定第二估计内部温度值
基于所述第二估计内部温度值和/或所述目标内部温度值测定第二目标环境温度值;以及
控制所述加热装置或所述冷却装置以使由所述系统温度探针测得的温度从所述第一目标环境温度值转变为所述第二目标环境温度值。
38.根据权利要求37所述的方法,其中所述第一目标环境温度值高于所述第二目标环境温度值。
39.根据权利要求21至38中任一项所述的方法,其中所述第二盒中没有安置温度传感器。
CN202180070476.0A 2020-10-09 2021-10-07 用于在自动化生物反应器中使用的温度校准方法和装置 Pending CN116322966A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063089840P 2020-10-09 2020-10-09
US63/089,840 2020-10-09
PCT/US2021/071773 WO2022077018A1 (en) 2020-10-09 2021-10-07 Temperature calibration methods and devices for use in automated bioreactors

Publications (1)

Publication Number Publication Date
CN116322966A true CN116322966A (zh) 2023-06-23

Family

ID=81126125

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180070476.0A Pending CN116322966A (zh) 2020-10-09 2021-10-07 用于在自动化生物反应器中使用的温度校准方法和装置

Country Status (8)

Country Link
US (1) US20230407222A1 (zh)
EP (1) EP4196251A1 (zh)
JP (1) JP2023545710A (zh)
KR (1) KR20230079385A (zh)
CN (1) CN116322966A (zh)
CA (1) CA3191628A1 (zh)
IL (1) IL301343A (zh)
WO (1) WO2022077018A1 (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440509A (en) * 1982-03-29 1984-04-03 The Babcock & Wilcox Company Detection of hot and cold spots in chemical reactors
US20040136873A1 (en) * 2003-01-09 2004-07-15 Argonaut Technologies, Inc. Modular reactor system
WO2004062779A2 (en) * 2003-01-09 2004-07-29 Argonaut Technologies, Inc. Multi-channel parallel module temperature control system
WO2005061741A1 (en) * 2003-12-23 2005-07-07 Bhp Billiton Sa Limited Method of and apparatus for simulating a biological heap leaching process
US10359415B2 (en) * 2014-05-02 2019-07-23 Rosemount Inc. Single-use bioreactor sensor architecture
CN111373030A (zh) * 2017-09-01 2020-07-03 隆萨沃克斯维尔股份有限公司 端到端细胞治疗自动化
GB201719769D0 (en) * 2017-11-28 2018-01-10 Cronin 3D Ltd Analytical device and methods of use

Also Published As

Publication number Publication date
IL301343A (en) 2023-05-01
KR20230079385A (ko) 2023-06-07
JP2023545710A (ja) 2023-10-31
US20230407222A1 (en) 2023-12-21
EP4196251A1 (en) 2023-06-21
CA3191628A1 (en) 2022-04-14
WO2022077018A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
US10723993B2 (en) Method and system for the production of cells and cell products and applications thereof
US20130045521A1 (en) System and method for supporting a biological chip device
CN108138115B (zh) 在生物制造设备中和涉及其的改进
KR20220044212A (ko) 미세유체 장치 및 이의 사용 방법
US20170176372A1 (en) Inline sensor arrangement and method for commissioning same
CN108138114B (zh) 在生物制造设备中和涉及其的改进
EP1960530A2 (en) System and method for supporting a biological chip device
CN108138117B (zh) 在生物制造设备中和涉及其的改进
CN110431223A (zh) 用于微板实验室器具的灌注和环境控制的方法和设备
US11285471B2 (en) Portable controlled micro-environment device for modular bio-processing
CN116322966A (zh) 用于在自动化生物反应器中使用的温度校准方法和装置
US20240009400A1 (en) Sterile sampling methods and devices for automated cell engineering systems
US11767497B2 (en) System and method for generating and testing tissue
WO2024052679A1 (en) System for bioprocessing
CA3214325A1 (en) Combinatorial fluid switch for use in automated cell engineering systems
WO2023203324A1 (en) Biological culture unit
CN114630890A (zh) 用于细胞培养系统的工作周期
WO2015051288A1 (en) Apparatus and method for automated blood analyte monitoring

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40088551

Country of ref document: HK