CN116316542A - 区域分布式光伏功率预测方法、装置、计算机设备及存储介质 - Google Patents
区域分布式光伏功率预测方法、装置、计算机设备及存储介质 Download PDFInfo
- Publication number
- CN116316542A CN116316542A CN202211426171.1A CN202211426171A CN116316542A CN 116316542 A CN116316542 A CN 116316542A CN 202211426171 A CN202211426171 A CN 202211426171A CN 116316542 A CN116316542 A CN 116316542A
- Authority
- CN
- China
- Prior art keywords
- distributed photovoltaic
- photovoltaic power
- power
- correlation
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 58
- 238000004422 calculation algorithm Methods 0.000 claims description 31
- 238000004590 computer program Methods 0.000 claims description 22
- 230000006870 function Effects 0.000 claims description 15
- 238000010276 construction Methods 0.000 claims description 14
- 238000010219 correlation analysis Methods 0.000 claims description 12
- 238000013527 convolutional neural network Methods 0.000 claims description 10
- 238000012217 deletion Methods 0.000 claims description 10
- 230000037430 deletion Effects 0.000 claims description 10
- 230000015654 memory Effects 0.000 claims description 9
- 230000002159 abnormal effect Effects 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 11
- 238000005457 optimization Methods 0.000 description 6
- 230000006798 recombination Effects 0.000 description 6
- 238000005215 recombination Methods 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- 230000007787 long-term memory Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000012847 principal component analysis method Methods 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/004—Generation forecast, e.g. methods or systems for forecasting future energy generation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
- H02J3/466—Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/40—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明实施例公开了区域分布式光伏功率预测方法、装置、计算机设备及存储介质。所述方法包括:构建分布式光伏电站间的关联模型,并进行不完备性区域分布式光伏功率相关性的聚类;获取与当前气象参数具有最大相似度的历史气象数据,构建相似日数据集;构建基准光伏电站功率预测模型,并预测基准光伏;对所述基准光伏与目标光伏电站间的相关性分析,以得到平均关联度值;将所述平均关联度值输入至所述关联模型内预测目标分布式光伏功率。通过实施本发明实施例的方法可实现对不完备性的区域分布式光伏功率的精准预测。
Description
技术领域
本发明涉及光伏功率预测方法,更具体地说是指区域分布式光伏功率预测方法、装置、计算机设备及存储介质。
背景技术
为缓解能源紧缺及全球生态环境恶化,清洁、绿色能源的高效利用已成为大势所趋,分布式光伏发电是对大自然中太阳能的有效利用,通过实现电能的直接转化满足人们对用电负荷的需求,随着国家能源结构的不断改革,分布式光伏在国家电网获得了广泛的应用,其装机容量不断提升,由于分布式光伏进行电力供应时具有随机性等特点,波动性强,大规模光伏并入到主电网时会给电力系统带来诸多问题,使电网安全性、稳定性受到严重威胁。为减小各种不确定因素对电力系统稳定运行的影响,对分布式光伏功率进行精准预测显得尤为重要。
众多学者对分布式光伏功率预测作了深入研究,部分人员针对光伏功率预测中必然存在的误差问题,在研究预测误差分布和分析各影响因素关联性的基础上,采用模糊C均值聚类确定预测误差分布,通过构建的高斯混合模型获取基于预测功率数值特点的光伏出力预测值,该方法可实现光伏功率的准确预测;另外一部分人员首先获取影响光伏功率预测值的气象、温度等数据,并对各因素与功率预测结果的关系进行分析,采用经验模态分解确定各影响因素的多尺度特征,通过主成分分析法完成主要影响因素的确定,打破特征序列的关联性、冗余性,采用长短期记忆网络构建光伏出力预测的动态多变量特征序列模型,实现光伏出力预测结果的获取。上述方法均需通过获取完整气象测量数据实现光伏功率的预测,但在实际应用中,气象数据等信息的测量存在不完备特点,各区域分布式光伏电站并不都具备气象站配备条件,在信息测量不完备的条件下,采用有效措施实现光伏功率的准确预测是当下研究的重点。
因此,有必要设计一种新的方法,实现对不完备性的区域分布式光伏功率的精准预测。
发明内容
本发明的目的在于克服现有技术的缺陷,提供区域分布式光伏功率预测方法、装置、计算机设备及存储介质。
为实现上述目的,本发明采用以下技术方案:区域分布式光伏功率预测方法,包括:
构建分布式光伏电站间的关联模型,并进行不完备性区域分布式光伏功率相关性的聚类;
获取与当前气象参数具有最大相似度的历史气象数据,构建相似日数据集;
构建基准光伏电站功率预测模型,并预测基准光伏;
对所述基准光伏与目标光伏电站间的相关性分析,以得到平均关联度值;
将所述平均关联度值输入至所述关联模型内预测目标分布式光伏功率。
其进一步技术方案为:所述构建分布式光伏电站间的关联模型,并进行不完备性区域分布式光伏功率相关性的聚类,包括:
获取分布式光伏电站的历史功率信息;
采用K-means算法构建分布式光伏电站间的关联模型,并利用所述历史功率信息进行不完备性区域分布式光伏功率相关性的聚类。
其进一步技术方案为:所述采用K-means算法构建分布式光伏电站间的关联模型,并利用所述历史功率信息进行不完备性区域分布式光伏功率相关性的聚类,包括:
采用K-means算法构建分布式光伏电站间的关联模型;
将所述历史功率信息视为特征变量,对各电站间的欧式距离进行求解,通过判断欧式距离的大小进行具有高相似度输出功率特性分布式光伏电站的聚类。
其进一步技术方案为:所述获取与当前气象参数具有最大相似度的历史气象数据,构建相似日数据集,包括:
获取气象站发布的整点气象数据,进行相似点的选择,以确定与当前气象参数具有最大相似度的历史气象数据;
对所述历史气象数据中的异常气象数据进行删除,以得到删除结果;
对所述删除结果进行分类处理,以得到子类;
根据所述子类构建相似点样本集,以得到相似日数据集。
其进一步技术方案为:所述构建基准光伏电站功率预测模型,并预测基准光伏,包括:
利用粒子群算法优化后的核函数极限学习机构建基准光伏电站功率预测模型;
利用所述基准光伏电站功率预测模型预测基准光伏。
其进一步技术方案为:所述对所述基准光伏与目标光伏电站间的相关性分析,以得到平均关联度值,包括:
采用灰色关联度分析方法对基准电站与预测电站间的关联系数进行求解,以得到平均关联度值。
其进一步技术方案为:所述将所述平均关联度值输入至所述关联模型内预测目标分布式光伏功率,包括:
将所述平均关联度值作为输入值,利用所述关联模型内预测目标分布式光伏功率的一维卷积神经网络结合输入值对区域分布式光伏功率进行预测,以得到目标分布式光伏功率。
本发明还提供了区域分布式光伏功率预测装置,包括:
关联模型构建单元,用于构建分布式光伏电站间的关联模型,并进行不完备性区域分布式光伏功率相关性的聚类;
相似日数据集构建单元,用于获取与当前气象参数具有最大相似度的历史气象数据,构建相似日数据集;
基准预测单元,用于构建基准光伏电站功率预测模型,并预测基准光伏;
相关性分析单元,用于对所述基准光伏与目标光伏电站间的相关性分析,以得到平均关联度值;
功率预测单元,用于将所述平均关联度值输入至所述关联模型内预测目标分布式光伏功率。
本发明还提供了一种计算机设备,所述计算机设备包括存储器及处理器,所述存储器上存储有计算机程序,所述处理器执行所述计算机程序时实现上述的方法。
本发明还提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述的方法。
本发明与现有技术相比的有益效果是:本发明通过获取分布式光伏电站的历史功率信息,采用K-means算法构建分布式光伏电站间的关联模型,实现多电站数据的共享,构建相似日数据集,实现相似日的重组,构建基准光伏电站功率预测模型,经灰色关联度分析方法确定基准电站与预测电站间的关联系数,确定平均关联度值后,将其作为一维CNN网络的输入,实现对不完备性的区域分布式光伏功率的精准预测。
下面结合附图和具体实施例对本发明作进一步描述。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的区域分布式光伏功率预测方法的应用场景示意图;
图2为本发明实施例提供的区域分布式光伏功率预测方法的流程示意图;
图3为本发明实施例提供的区域分布式光伏功率预测方法的子流程示意图;
图4为本发明实施例提供的区域分布式光伏功率预测方法的子流程示意图;
图5为本发明实施例提供的区域分布式光伏功率预测方法的子流程示意图;
图6为本发明实施例提供的区域分布式光伏功率预测方法的子流程示意图;
图7为本发明实施例提供的区域分布式光伏功率预测装置的示意性框图;
图8为本发明实施例提供的区域分布式光伏功率预测装置的关联模型构建单元的示意性框图;
图9为本发明实施例提供的区域分布式光伏功率预测装置的聚类子单元的示意性框图;
图10为本发明实施例提供的区域分布式光伏功率预测装置的相似日数据集构建单元的示意性框图;
图11为本发明实施例提供的区域分布式光伏功率预测装置的基准预测单元的示意性框图;
图12为本发明实施例提供的计算机设备的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在此本发明说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本发明。如在本发明说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本发明说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
请参阅图1和图2,图1为本发明实施例提供的区域分布式光伏功率预测方法的应用场景示意图。图2为本发明实施例提供的区域分布式光伏功率预测方法的示意性流程图。该区域分布式光伏功率预测方法应用于服务器中。该服务器与终端进行数据,研究计及测量不完备性的区域分布式光伏功率预测模型,提高信息缺失条件下的光伏功率预测准确性。数据信息不完备的情况下,获取分布式光伏电站的历史功率信息,采用K-means算法构建分布式光伏电站间的关联模型,实现多电站数据的共享,将可获得完备气象数据的光伏电站作为基准电站,获取与当前目标气象参数具有最大相似度的历史气象数据,构建相似日数据集,实现相似日的重组,利用粒子群算法优化后的核函数极限学习机构建基准光伏电站功率预测模型,经灰色关联度分析方法确定基准电站与预测电站间的关联系数,确定平均关联度值后,将其作为一维CNN网络的输入,实现目标光伏功率预测。实验结果表明:该模型可实现不同天气条件下信息不完备分布式光伏电站功率精准预测,且预测结果受分布式光伏不确定性及天气因素影响较小。
图2是本发明实施例提供的区域分布式光伏功率预测方法的流程示意图。如图2所示,该方法包括以下步骤S110至S150。
S110、构建分布式光伏电站间的关联模型,并进行不完备性区域分布式光伏功率相关性的聚类。
在本实施例中,关联模型是指含有完备NWP信息的分布式光伏电站作为基准电站,建立的基准电站、预测目标电站间的关联模型。
在一实施例中,请参阅图3,上述的步骤S110可包括步骤S111~S112。
S111、获取分布式光伏电站的历史功率信息。
在本实施例中,历史功率信息是指分布式光伏电站所记录的历史的功率信息。
气象因素对分布式光伏输出功率起决定性作用,当区域分布式光伏电站不具备安装气象测量设备的条件时,则无法完成可实现功率预测的有关天气预报数值即NWP信息的完整采集。在数据信息不完备的情况下,为实现区域分布式光伏功率预测,将含有完备NWP信息的分布式光伏电站作为基准电站,通过建立基准电站、预测目标电站间的关联模型,实现关联电站间的信息共享。
S112、采用K-means算法构建分布式光伏电站间的关联模型,并利用所述历史功率信息进行不完备性区域分布式光伏功率相关性的聚类。
在一实施例中,请参阅图4,上述的步骤S112可包括步骤S1121~S1122。
S1121、采用K-means算法构建分布式光伏电站间的关联模型;
S1122、将所述历史功率信息视为特征变量,对各电站间的欧式距离进行求解,通过判断欧式距离的大小进行具有高相似度输出功率特性分布式光伏电站的聚类。
在本实施例中,采用K-means实现分布式光伏电站间的关联模型的建立,获取分布式光伏电站的历史功率信息,将其视为特征变量,对各电站间的欧式距离进行求解,通过判断其大小实现具有高相似度输出功率特性分布式光伏电站的聚类,特征向量ci可通过下式进行描述:ci={p1,p2,…,pj},其中:在任意时刻,分布式光伏功率的实际输出值表示为pj。
S120、获取与当前气象参数具有最大相似度的历史气象数据,构建相似日数据集。
在本实施例中,相似日数据集是指相似日的重组形成的数据。
具体地,在季节、天气类型一致的条件下,获取与当前气象参数具有最大相似度的历史气象数据,构建相似日数据集,即可完成相似日的重组,通过重组可实现传统相似日的进一步细分。分布式光伏功率预测可通过两步实现:对相似点进行选择,并确定与之相应的光伏功率;以上述步骤为基础,并结合预测日不同时刻的气象数据,实现其对应时刻的光伏功率的预测。
在一实施例中,请参阅图5,上述的步骤S120可包括步骤S121~S124。
S121、获取气象站发布的整点气象数据,进行相似点的选择,以确定与当前气象参数具有最大相似度的历史气象数据。
在本实施例中,根据气象站发布的整点气象数据完成相似点的选择,具体地,根据选择的相似点构建与当前气象参数具有最大相似度的历史气象数据。
具体地,根据气象站发布的整点气象数据完成相似点的选择,由于分布式光伏功率预测结果受太阳辐照度、温度、湿度气象特征影响较大,因此,构建的特征向量Y可用下式进行描述:Y=[Y1,Y2,Y3];其中:Y1、Y2、Y3分别表示太阳辐照度、温度、湿度数据。在整点时刻,历史气象特征向量表示为YN、预测气象特征向量表示为Yp,(N=1,2,…),其公式为:对于历史点n,当气象因素为i时的历史特征向量与预测特征向量之差可用下式进行描述:Qn(i)=|YNi-Ypi|,i=1,2,3;对Qn(i)=|YNi-Ypi|,i=1,2,3作归一化处理,可得到:/>对于因素i而言,Yp与YN之间存在相关性,二者的相关系数表示为:/>其中:分辨因子表示为ρ,设定其为0.5。对各特征的相关系数进行全面分析后,通过下式描述Yp、YN的相似程度:其中:缩减因子为β,在(0.9,0.98)区间内取值,对于历史、预测数据点,每增长7日其缩减程度可通过β进行描述,二者间隔天数表示为t,通过int可获得数值的整数部分。Y1、Y2、Y3气象特征的权重分别为0.7、0.2、0.1。
S122、对所述历史气象数据中的异常气象数据进行删除,以得到删除结果。
在本实施例中,删除结果是指对历史气象数据中的异常气象数据进行删除后形成的结果。
S123、对所述删除结果进行分类处理,以得到子类。
在本实施例中,子类是指对删除结果进行区别类型后形成各个子类型。
S124、根据所述子类构建相似点样本集,以得到相似日数据集。
具体地,对异常气象数据作删除后,依据季节顺序以及晴、阴、雨各气象类型对历史气象数据进行分类处理,得到12个子类,构建相似点样本集。当季节、气象条件一致时,将预测日前一日的历史数据点作为起始点,按逆时针顺序逐步求解FN,并按降序排序,选择前三个FN,即为预测点的相似点,并依据时间顺序进行重组,完成相似日的确定。
S130、构建基准光伏电站功率预测模型,并预测基准光伏。
在本实施例中,基准光伏是指基准光伏电站的功率。
在一实施例中,请参阅图5,上述的步骤S130可包括步骤S131~S132。
S131、利用粒子群算法优化后的核函数极限学习机构建基准光伏电站功率预测模型。
在本实施例中,由于核函数极限学习机(ELM_k)在回归预测问题方面具有快捷的运算效率和强大的预测准确度,因此,本实施例采用该算法对基准光伏电站的输出功率进行预测,以提升预测准确度。
在ELM算法中,其神经网络函数可通过下式进行描述:f(x)=λh(x),其中:网络神经元构成的向量表示为h(x),对于其输出层,其权值向量表示为λ。为使回归预测模型具有较好的预测效果,需对其输出误差进行控制,使其达到最低,其公式描述为:其中:对于网络隐含层,包含的神经元总数为L,待测目标的预测函数表示fo(x),由各目标值组成。控制λ值使其最低,以使该神经网络具有较强的泛化性。一般情况下,设定λ为其最小二乘解,其计算公式为:其中:该网络的隐含层矩阵表示为H,其广义逆矩阵表示为/>转置矩阵为HT,目标值向量表示为O。根据岭回归理论,通过引入大于0的常数C-1,可降低预测结果的波动性,并提升网络泛化性能。
与ELM算法相比,ELM_k算法的神经网络特性方程基本与之一致,但ELM_k算法能够选取合适的核函数有效提升该网络的预测性能,其公式描述为:
XELM=exp(-γ||xi-xj||2);其中:对于神经网络输入层,其维度表示为N。核函数表示为XELM,本文采用高斯核函数,此时,隐含层矩阵维度发生改变,原始维度为N×L,现调整为N×N,高维空间的维数为L。由于参数γ、C是影响回归预测效果的重要因素,因此需对其进行寻优处理。本文采用粒子群算法进行参数γ、C的寻优,以确定最佳值,由此确定基准光伏电站功率预测模型。
S132、利用所述基准光伏电站功率预测模型预测基准光伏。
S140、对所述基准光伏与目标光伏电站间的相关性分析,以得到平均关联度值。
在本实施例中,平均关联度值是指基准光伏与目标光伏电站间的相关性以数值的形式呈现的结果。
具体地,采用灰色关联度分析方法对基准电站与预测电站间的关联系数进行求解,以得到平均关联度值。
为使区域分布式光伏功率预测结果更为精准,本实施例采用灰色关联度分析方法对基准电站与预测电站间的关联系数进行求解,以此确定各特征间的相关性大小。在相同时刻,各分布式光伏电站输出功率之差ΔP(k)可利用下式进行求解:ΔP(k)=P0(k)-Pi(k),其中:对于目标分布式光伏电站,其输出功率表示为P0(k),对于基准光伏电站,其输出功率表示为Pi(k),其序号表示为i,在光伏电站的时间序列中,所含的功率数据总量表示为k。将运算得到的ΔP(k)代入到中,获取灰色关联系数ζi(k),其中:全局极小、极大值分别表示为/>调整因数表示为η,其所属范围为(0,1)。平均关联度值可通过下式进行计算:/>由此可获得基准、目标分布式光伏电站间的关联模型,在降低网络数据输入难度的同时,取得精准的功率预测结果。
S150、将所述平均关联度值输入至所述关联模型内预测目标分布式光伏功率。
在本实施例中,将所述平均关联度值作为输入值,利用所述关联模型内预测目标分布式光伏功率的一维卷积神经网络结合输入值对区域分布式光伏功率进行预测,以得到目标分布式光伏功率。
具体地,在气象数据信息不完备的情况下,本实施例采用一维卷积神经网络(1DCNN)对区域分布式光伏功率进行预测,其输入数据为Pcor-ave,经1DCNN网络的卷积处理后,可获得其中:对于1DCNN网络的l,其输出结果表示为/>输入为a为卷积核,其权值表示为/>
在确定基准、目标分布式光伏电站间的关联模型的基础上,利用1DCNN网络获取输入数据的特征信息,在对其进行多层卷积处理后,不断对其网络权值进行寻优,利用训练完毕的预测模型实现目标分布式光伏功率的预测。
上述的区域分布式光伏功率预测方法,通过获取分布式光伏电站的历史功率信息,采用K-means算法构建分布式光伏电站间的关联模型,实现多电站数据的共享,构建相似日数据集,实现相似日的重组,构建基准光伏电站功率预测模型,经灰色关联度分析方法确定基准电站与预测电站间的关联系数,确定平均关联度值后,将其作为一维CNN网络的输入,实现对不完备性的区域分布式光伏功率的精准预测。
图7是本发明实施例提供的一种区域分布式光伏功率预测装置300的示意性框图。如图7所示,对应于以上区域分布式光伏功率预测方法,本发明还提供一种区域分布式光伏功率预测装置300。该区域分布式光伏功率预测装置300包括用于执行上述区域分布式光伏功率预测方法的单元,该装置可以被配置于服务器中。具体地,请参阅图7,该区域分布式光伏功率预测装置300包括关联模型构建单元301、相似日数据集构建单元302、基准预测单元303、相关性分析单元304以及功率预测单元305。
关联模型构建单元301,用于构建分布式光伏电站间的关联模型,并进行不完备性区域分布式光伏功率相关性的聚类;相似日数据集构建单元302,用于获取与当前气象参数具有最大相似度的历史气象数据,构建相似日数据集;基准预测单元303,用于构建基准光伏电站功率预测模型,并预测基准光伏;相关性分析单元304,用于对所述基准光伏与目标光伏电站间的相关性分析,以得到平均关联度值;功率预测单元305,用于将所述平均关联度值输入至所述关联模型内预测目标分布式光伏功率。
在一实施例中,如图8所示,所述关联模型构建单元301包括历史信息获取子单元3011以及聚类子单元3012。
历史信息获取子单元3011,用于获取分布式光伏电站的历史功率信息;聚类子单元3012,用于采用K-means算法构建分布式光伏电站间的关联模型,并利用所述历史功率信息进行不完备性区域分布式光伏功率相关性的聚类。
在一实施例中,如图9所示,所述聚类子单元3012包括关联模型构建模块30121以及距离求解模块30122。
关联模型构建模块30121,用于采用K-means算法构建分布式光伏电站间的关联模型;距离求解模块30122,用于将所述历史功率信息视为特征变量,对各电站间的欧式距离进行求解,通过判断欧式距离的大小进行具有高相似度输出功率特性分布式光伏电站的聚类。
在一实施例中,如图10所示,所述相似日数据集构建单元302包括数据确定子单元3021、删除子单元3022、分类子单元3023以及相似点数据构建子单元3024。
数据确定子单元3021,用于获取气象站发布的整点气象数据,进行相似点的选择,以确定与当前气象参数具有最大相似度的历史气象数据;删除子单元3022,用于对所述历史气象数据中的异常气象数据进行删除,以得到删除结果;分类子单元3023,用于对所述删除结果进行分类处理,以得到子类;相似点数据构建子单元3024,用于根据所述子类构建相似点样本集,以得到相似日数据集。
在一实施例中,如图11所示,所述基准预测单元303包括预测模型构建子单元3031以及光伏预测子单元3032。
预测模型构建子单元3031,用于利用粒子群算法优化后的核函数极限学习机构建基准光伏电站功率预测模型;光伏预测子单元3032,用于利用所述基准光伏电站功率预测模型预测基准光伏。
在一实施例中,所述相关性分析单元304,用于采用灰色关联度分析方法对基准电站与预测电站间的关联系数进行求解,以得到平均关联度值。
在一实施例中,所述功率预测单元305,用于将所述平均关联度值作为输入值,利用所述关联模型内预测目标分布式光伏功率的一维卷积神经网络结合输入值对区域分布式光伏功率进行预测,以得到目标分布式光伏功率。
需要说明的是,所属领域的技术人员可以清楚地了解到,上述区域分布式光伏功率预测装置300和各单元的具体实现过程,可以参考前述方法实施例中的相应描述,为了描述的方便和简洁,在此不再赘述。
上述区域分布式光伏功率预测装置300可以实现为一种计算机程序的形式,该计算机程序可以在如图12所示的计算机设备上运行。
请参阅图12,图12是本申请实施例提供的一种计算机设备的示意性框图。该计算机设备500可以是服务器,其中,服务器可以是独立的服务器,也可以是多个服务器组成的服务器集群。
参阅图12,该计算机设备500包括通过系统总线501连接的处理器502、存储器和网络接口505,其中,存储器可以包括非易失性存储介质503和内存储器504。
该非易失性存储介质503可存储操作系统5031和计算机程序5032。该计算机程序5032包括程序指令,该程序指令被执行时,可使得处理器502执行一种区域分布式光伏功率预测方法。
该处理器502用于提供计算和控制能力,以支撑整个计算机设备500的运行。
该内存储器504为非易失性存储介质503中的计算机程序5032的运行提供环境,该计算机程序5032被处理器502执行时,可使得处理器502执行一种区域分布式光伏功率预测方法。
该网络接口505用于与其它设备进行网络通信。本领域技术人员可以理解,图12中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备500的限定,具体的计算机设备500可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
其中,所述处理器502用于运行存储在存储器中的计算机程序5032,以实现如下步骤:
构建分布式光伏电站间的关联模型,并进行不完备性区域分布式光伏功率相关性的聚类;获取与当前气象参数具有最大相似度的历史气象数据,构建相似日数据集;构建基准光伏电站功率预测模型,并预测基准光伏;对所述基准光伏与目标光伏电站间的相关性分析,以得到平均关联度值;将所述平均关联度值输入至所述关联模型内预测目标分布式光伏功率。
在一实施例中,处理器502在实现所述构建分布式光伏电站间的关联模型,并进行不完备性区域分布式光伏功率相关性的聚类步骤时,具体实现如下步骤:
获取分布式光伏电站的历史功率信息;采用K-means算法构建分布式光伏电站间的关联模型,并利用所述历史功率信息进行不完备性区域分布式光伏功率相关性的聚类。
在一实施例中,处理器502在实现所述采用K-means算法构建分布式光伏电站间的关联模型,并利用所述历史功率信息进行不完备性区域分布式光伏功率相关性的聚类步骤时,具体实现如下步骤:
采用K-means算法构建分布式光伏电站间的关联模型;将所述历史功率信息视为特征变量,对各电站间的欧式距离进行求解,通过判断欧式距离的大小进行具有高相似度输出功率特性分布式光伏电站的聚类。
在一实施例中,处理器502在实现所述获取与当前气象参数具有最大相似度的历史气象数据,构建相似日数据集步骤时,具体实现如下步骤:
获取气象站发布的整点气象数据,进行相似点的选择,以确定与当前气象参数具有最大相似度的历史气象数据;对所述历史气象数据中的异常气象数据进行删除,以得到删除结果;对所述删除结果进行分类处理,以得到子类;根据所述子类构建相似点样本集,以得到相似日数据集。
在一实施例中,处理器502在实现所述构建基准光伏电站功率预测模型,并预测基准光伏步骤时,具体实现如下步骤:
利用粒子群算法优化后的核函数极限学习机构建基准光伏电站功率预测模型;利用所述基准光伏电站功率预测模型预测基准光伏。
在一实施例中,处理器502在实现所述对所述基准光伏与目标光伏电站间的相关性分析,以得到平均关联度值步骤时,具体实现如下步骤:
采用灰色关联度分析方法对基准电站与预测电站间的关联系数进行求解,以得到平均关联度值。
在一实施例中,处理器502在实现所述将所述平均关联度值输入至所述关联模型内预测目标分布式光伏功率步骤时,具体实现如下步骤:
将所述平均关联度值作为输入值,利用所述关联模型内预测目标分布式光伏功率的一维卷积神经网络结合输入值对区域分布式光伏功率进行预测,以得到目标分布式光伏功率。
应当理解,在本申请实施例中,处理器502可以是中央处理单元(CentralProcessing Unit,CPU),该处理器502还可以是其他通用处理器、数字信号处理器(DigitalSignal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。其中,通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本领域普通技术人员可以理解的是实现上述实施例的方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成。该计算机程序包括程序指令,计算机程序可存储于一存储介质中,该存储介质为计算机可读存储介质。该程序指令被该计算机系统中的至少一个处理器执行,以实现上述方法的实施例的流程步骤。
因此,本发明还提供一种存储介质。该存储介质可以为计算机可读存储介质。该存储介质存储有计算机程序,其中该计算机程序被处理器执行时使处理器执行如下步骤:
构建分布式光伏电站间的关联模型,并进行不完备性区域分布式光伏功率相关性的聚类;获取与当前气象参数具有最大相似度的历史气象数据,构建相似日数据集;构建基准光伏电站功率预测模型,并预测基准光伏;对所述基准光伏与目标光伏电站间的相关性分析,以得到平均关联度值;将所述平均关联度值输入至所述关联模型内预测目标分布式光伏功率。
在一实施例中,所述处理器在执行所述计算机程序而实现所述构建分布式光伏电站间的关联模型,并进行不完备性区域分布式光伏功率相关性的聚类步骤时,具体实现如下步骤:
获取分布式光伏电站的历史功率信息;采用K-means算法构建分布式光伏电站间的关联模型,并利用所述历史功率信息进行不完备性区域分布式光伏功率相关性的聚类。
在一实施例中,所述处理器在执行所述计算机程序而实现所述采用K-means算法构建分布式光伏电站间的关联模型,并利用所述历史功率信息进行不完备性区域分布式光伏功率相关性的聚类步骤时,具体实现如下步骤:
采用K-means算法构建分布式光伏电站间的关联模型;将所述历史功率信息视为特征变量,对各电站间的欧式距离进行求解,通过判断欧式距离的大小进行具有高相似度输出功率特性分布式光伏电站的聚类。
在一实施例中,所述处理器在执行所述计算机程序而实现所述获取与当前气象参数具有最大相似度的历史气象数据,构建相似日数据集步骤时,具体实现如下步骤:
获取气象站发布的整点气象数据,进行相似点的选择,以确定与当前气象参数具有最大相似度的历史气象数据;对所述历史气象数据中的异常气象数据进行删除,以得到删除结果;对所述删除结果进行分类处理,以得到子类;根据所述子类构建相似点样本集,以得到相似日数据集。
在一实施例中,所述处理器在执行所述计算机程序而实现所述构建基准光伏电站功率预测模型,并预测基准光伏步骤时,具体实现如下步骤:
利用粒子群算法优化后的核函数极限学习机构建基准光伏电站功率预测模型;利用所述基准光伏电站功率预测模型预测基准光伏。
在一实施例中,所述处理器在执行所述计算机程序而实现所述对所述基准光伏与目标光伏电站间的相关性分析,以得到平均关联度值步骤时,具体实现如下步骤:
采用灰色关联度分析方法对基准电站与预测电站间的关联系数进行求解,以得到平均关联度值。
在一实施例中,所述处理器在执行所述计算机程序而实现所述将所述平均关联度值输入至所述关联模型内预测目标分布式光伏功率步骤时,具体实现如下步骤:
将所述平均关联度值作为输入值,利用所述关联模型内预测目标分布式光伏功率的一维卷积神经网络结合输入值对区域分布式光伏功率进行预测,以得到目标分布式光伏功率。
所述存储介质可以是U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的计算机可读存储介质。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的。例如,各个单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
本发明实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。本发明实施例装置中的单元可以根据实际需要进行合并、划分和删减。另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。
该集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,终端,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。
Claims (10)
1.区域分布式光伏功率预测方法,其特征在于,包括:
构建分布式光伏电站间的关联模型,并进行不完备性区域分布式光伏功率相关性的聚类;
获取与当前气象参数具有最大相似度的历史气象数据,构建相似日数据集;
构建基准光伏电站功率预测模型,并预测基准光伏;
对所述基准光伏与目标光伏电站间的相关性分析,以得到平均关联度值;
将所述平均关联度值输入至所述关联模型内预测目标分布式光伏功率。
2.根据权利要求1所述的区域分布式光伏功率预测方法,其特征在于,所述构建分布式光伏电站间的关联模型,并进行不完备性区域分布式光伏功率相关性的聚类,包括:
获取分布式光伏电站的历史功率信息;
采用K-means算法构建分布式光伏电站间的关联模型,并利用所述历史功率信息进行不完备性区域分布式光伏功率相关性的聚类。
3.根据权利要求2所述的区域分布式光伏功率预测方法,其特征在于,所述采用K-means算法构建分布式光伏电站间的关联模型,并利用所述历史功率信息进行不完备性区域分布式光伏功率相关性的聚类,包括:
采用K-means算法构建分布式光伏电站间的关联模型;
将所述历史功率信息视为特征变量,对各电站间的欧式距离进行求解,通过判断欧式距离的大小进行具有高相似度输出功率特性分布式光伏电站的聚类。
4.根据权利要求1所述的区域分布式光伏功率预测方法,其特征在于,所述获取与当前气象参数具有最大相似度的历史气象数据,构建相似日数据集,包括:
获取气象站发布的整点气象数据,进行相似点的选择,以确定与当前气象参数具有最大相似度的历史气象数据;
对所述历史气象数据中的异常气象数据进行删除,以得到删除结果;
对所述删除结果进行分类处理,以得到子类;
根据所述子类构建相似点样本集,以得到相似日数据集。
5.根据权利要求1所述的区域分布式光伏功率预测方法,其特征在于,所述构建基准光伏电站功率预测模型,并预测基准光伏,包括:
利用粒子群算法优化后的核函数极限学习机构建基准光伏电站功率预测模型;
利用所述基准光伏电站功率预测模型预测基准光伏。
6.根据权利要求1所述的区域分布式光伏功率预测方法,其特征在于,所述对所述基准光伏与目标光伏电站间的相关性分析,以得到平均关联度值,包括:
采用灰色关联度分析方法对基准电站与预测电站间的关联系数进行求解,以得到平均关联度值。
7.根据权利要求1所述的区域分布式光伏功率预测方法,其特征在于,所述将所述平均关联度值输入至所述关联模型内预测目标分布式光伏功率,包括:
将所述平均关联度值作为输入值,利用所述关联模型内预测目标分布式光伏功率的一维卷积神经网络结合输入值对区域分布式光伏功率进行预测,以得到目标分布式光伏功率。
8.区域分布式光伏功率预测装置,其特征在于,包括:
关联模型构建单元,用于构建分布式光伏电站间的关联模型,并进行不完备性区域分布式光伏功率相关性的聚类;
相似日数据集构建单元,用于获取与当前气象参数具有最大相似度的历史气象数据,构建相似日数据集;
基准预测单元,用于构建基准光伏电站功率预测模型,并预测基准光伏;
相关性分析单元,用于对所述基准光伏与目标光伏电站间的相关性分析,以得到平均关联度值;
功率预测单元,用于将所述平均关联度值输入至所述关联模型内预测目标分布式光伏功率。
9.一种计算机设备,其特征在于,所述计算机设备包括存储器及处理器,所述存储器上存储有计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至7中任一项所述的方法。
10.一种存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至7中任一项所述的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211426171.1A CN116316542A (zh) | 2022-11-14 | 2022-11-14 | 区域分布式光伏功率预测方法、装置、计算机设备及存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211426171.1A CN116316542A (zh) | 2022-11-14 | 2022-11-14 | 区域分布式光伏功率预测方法、装置、计算机设备及存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116316542A true CN116316542A (zh) | 2023-06-23 |
Family
ID=86776759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211426171.1A Pending CN116316542A (zh) | 2022-11-14 | 2022-11-14 | 区域分布式光伏功率预测方法、装置、计算机设备及存储介质 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116316542A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117150891A (zh) * | 2023-08-15 | 2023-12-01 | 幂光新材料科技(上海)有限公司 | 基于数据驱动的led灯珠功率智能预测方法及系统 |
CN117613850A (zh) * | 2023-09-21 | 2024-02-27 | 国网江苏省电力有限公司信息通信分公司 | 分布式光伏发电功率预测方法、装置、设备和存储介质 |
-
2022
- 2022-11-14 CN CN202211426171.1A patent/CN116316542A/zh active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117150891A (zh) * | 2023-08-15 | 2023-12-01 | 幂光新材料科技(上海)有限公司 | 基于数据驱动的led灯珠功率智能预测方法及系统 |
CN117150891B (zh) * | 2023-08-15 | 2024-04-26 | 幂光新材料科技(上海)有限公司 | 基于数据驱动的led灯珠功率智能预测方法及系统 |
CN117613850A (zh) * | 2023-09-21 | 2024-02-27 | 国网江苏省电力有限公司信息通信分公司 | 分布式光伏发电功率预测方法、装置、设备和存储介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108921339B (zh) | 基于分位数回归的遗传支持向量机光伏功率区间预测方法 | |
CN110619360A (zh) | 一种考虑历史样本相似性的超短期风功率预测方法 | |
He et al. | A combined model for short-term wind power forecasting based on the analysis of numerical weather prediction data | |
CN116316542A (zh) | 区域分布式光伏功率预测方法、装置、计算机设备及存储介质 | |
Junior et al. | Optimized hybrid ensemble learning approaches applied to very short-term load forecasting | |
CN106251001A (zh) | 一种基于改进模糊聚类算法的光伏功率预测方法 | |
CN110866633B (zh) | 一种基于svr支持向量回归的微电网超短期负荷预测方法 | |
Li et al. | A novel combined prediction model for monthly mean precipitation with error correction strategy | |
CN111008726B (zh) | 一种电力负荷预测中类图片转换方法 | |
CN109344990A (zh) | 一种基于dfs和svm特征选择的短期负荷预测方法及系统 | |
CN115481788B (zh) | 相变储能系统负荷预测方法及系统 | |
CN106845694A (zh) | 一种风能、太阳能管理系统 | |
CN116070769A (zh) | 一种超短期风电场功率多步区间预测模块化方法及其设备 | |
Shi et al. | Four-stage space-time hybrid model for distributed photovoltaic power forecasting | |
CN116826710A (zh) | 基于负荷预测的削峰策略推荐方法、装置及存储介质 | |
CN111815039A (zh) | 基于天气分类的周尺度风电功率概率预测方法及系统 | |
CN112288157A (zh) | 一种基于模糊聚类与深度强化学习的风电场功率预测方法 | |
CN116701868A (zh) | 一种短期风电功率区段概率预测方法 | |
CN117132132A (zh) | 基于气象数据的光伏发电功率预测方法 | |
Das et al. | Optimized support vector regression-based model for solar power generation forecasting on the basis of online weather reports | |
Wang et al. | A hybrid model with combined feature selection based on optimized VMD and improved multi-objective coati optimization algorithm for short-term wind power prediction | |
CN118157127A (zh) | 基于lstm-mm模型的多天气光伏发电功率预测数字孪生系统 | |
CN113762591A (zh) | 一种基于gru和多核svm对抗学习的短期电量预测方法及系统 | |
CN110276478B (zh) | 基于分段蚁群算法优化svm的短期风电功率预测方法 | |
CN112801356A (zh) | 一种基于ma-lssvm的电力负荷预测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication |