CN116285575A - 一种焰流烧蚀实验背温微区成像涂料、制备及使用方法 - Google Patents

一种焰流烧蚀实验背温微区成像涂料、制备及使用方法 Download PDF

Info

Publication number
CN116285575A
CN116285575A CN202310243635.3A CN202310243635A CN116285575A CN 116285575 A CN116285575 A CN 116285575A CN 202310243635 A CN202310243635 A CN 202310243635A CN 116285575 A CN116285575 A CN 116285575A
Authority
CN
China
Prior art keywords
temperature
coating
imaging
parts
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310243635.3A
Other languages
English (en)
Other versions
CN116285575B (zh
Inventor
赵路
李茂源
崔光
卢林
王施达
曹淑波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Mechanical And Electrical Engineering General Design Department
Original Assignee
Beijing Mechanical And Electrical Engineering General Design Department
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Mechanical And Electrical Engineering General Design Department filed Critical Beijing Mechanical And Electrical Engineering General Design Department
Priority to CN202310243635.3A priority Critical patent/CN116285575B/zh
Publication of CN116285575A publication Critical patent/CN116285575A/zh
Application granted granted Critical
Publication of CN116285575B publication Critical patent/CN116285575B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种焰流烧蚀实验背温微区成像涂料、制备及使用方法,包括:100质量份环氧树脂、10‑20质量份环氧树脂偶联剂、5‑40质量份稀土感温粉末;将温度成像涂料各组分混合后搅拌均匀;经涂覆、烘干和固化工序形成背温微区成像涂料。温度成像方法为使用980nm面光源照射,并监测涂覆面发光,根据铒离子2H11/24S3/2两个能级向基态4I15/2跃迁发光(典型发光峰分别为521nm和539nm)的荧光强度比来表征温度,温度分辨率可达毫米级别。本发明适用于焰流烧蚀考核、石英灯高温辐射考核等高温考核方式,可满足对样品背面进行微区温度成像的要求。

Description

一种焰流烧蚀实验背温微区成像涂料、制备及使用方法
技术领域
本发明涉及一种焰流烧蚀实验背温微区成像涂料制备及使用方法,特别是一种适用于需要进行高分辨率表面温度成像的应用领域。
背景技术
焰流烧蚀或辐射烧蚀是碳/碳、碳/陶复合材料领域重要的耐热、耐烧蚀考核试验方法,已广泛用于飞行器气动热防护材料、发动机喷管材料的研究工作中。目前常用的高温烧蚀考核方案主要包扩超音速火焰冲刷烧蚀、氧乙炔火焰烧蚀、风洞烧蚀等。碳/碳、碳/陶复合材料在烧蚀过程中,其烧蚀面产生达2000摄氏度以上高温,且热量向材料内部传导,因此,材料背温对材料热疏导能力有着极为重要的表征意义。在实际试验中,可通过在烧蚀样件背部添加温度传感热电偶用来监测背温,然而,这种监测方式只能监测某一点的温度,无法对材料背面的温度梯度进行成像,不利于研究材料背部的温度分布。
三价稀土离子的发光可用于表征温度。三价稀土离子的能级非常丰富,可利用共振跃迁激发光将三价稀土离子从基态能级激发到能级间隔200~2000cm-1的两个相邻激发态能级,稀土离子在这两个相邻热耦合能级的分布将迅速达到玻尔兹曼平衡并向低能级跃迁发光。由于玻尔兹曼平衡仅与温度相关,所以两个热耦合能级的跃迁发光也仅与温度相关,这两个热耦合能级的荧光强度比可用来表征温度。
发明内容
本发明目的在于提供一种焰流烧蚀实验背温微区成像涂料、制备及使用方法,解决现有烧蚀试验样件背温测温点少、且难以形成温度图像的缺点,精确表征样品表面温度。
第一方面,提供一种温度成像涂料,组分配比为:100质量份环氧树脂、10-20质量份环氧树脂偶联剂、5-40质量份铒镱共掺氧化钆粉末;
涂料温度成像的原理为:经涂覆、烘干和固化后,采用使用980nm面光源照射,根据铒离子2H11/24S3/2两个能级作为热耦合能级向基态4I15/2跃迁发光的荧光强度比来表征涂敷面温度。
进一步的,所述铒镱共掺氧化钆粉末的化学式为ErxYbyGd1-x-y)2O3,原子数x分布在0.001-0.1,y的值分布在0.001-0.5。
进一步的,所述温度成像涂料的配比,包括:100质量份环氧树脂、10质量份环氧树脂偶联剂、5质量份Er0.01Yb0.1Gd0.89)2O3粉末;或者,包括:100质量份环氧树脂、15质量份环氧树脂偶联剂、20质量份Er0.02Yb0.08Gd0.9)2O3粉末;或者包括:100质量份环氧树脂、20质量份环氧树脂偶联剂、40质量份Er0.01Yb0.1Gd0.89)2O3粉末;
进一步的,根据所述铒离子2H11/24S3/2两个能级作为热耦合能级向基态4I15/2跃迁发光的荧光强度比所表征的涂敷面温度的具体范围为:室温~500摄氏度。
进一步的,在温度成像涂料受热条件下,实时获取涂覆面图像,根据两个能级铒离子发光的荧光强度比随温度的变化关系进行发光与温度转换计算,获取涂覆面温度成像。
进一步的,所述受热条件,包括:焰流烧蚀、石英灯烧蚀、氧乙炔焰烧蚀、风洞烧蚀。
进一步的,所述涂料均匀涂覆在烧蚀样件背面,用于在焰流烧蚀实验过程中实时获取试样背温微区成像结果。
进一步的,所述温度成像涂料涂覆试样材料包括:飞行器气动热防护材料、发动机喷管材料。
第二方面,提供一种焰流烧蚀实验背温微区成像涂料制备方法,该方法具体步骤为:
第一步 配制温度成像涂料
配制温度成像涂料,包括:100质量份环氧树脂、10-20质量份环氧树脂偶联剂、5-40质量份铒镱共掺氧化钆粉末;将温度成像涂料各组分混合后搅拌均匀;
第二步 温度成像涂料涂覆及固化
将温度成像涂料涂覆在烧蚀试样背温区表面,经烘干和固化工序形成烧蚀试样背温微区成像涂料,使涂料表面温度保持在室温范围内,经过3h后固化结束。
第三方面,提供一种利用上述方法制备得到焰流烧蚀实验背温微区成像涂料的使用方法,
基于试样背温区表面经涂覆、烘干、固化后获得的涂料试样,对试样进行焰流烧蚀实验,使用980nm面光源照射温度成像涂料,实时监测试样背温区涂覆面发光情况,获取涂覆面微区图像,根据铒离子2H11/24S3/2两个能级向基态4I15/2跃迁发光的荧光强度比与涂敷面温度的表征关系进行发光与温度转换计算,根据转换计算结果进行涂覆面温度成像。
本发明的温度成像涂料采用了ErxYbyGd1-x-y)2O3粉末中铒离子2H11/24S3/2两个能级作为热耦合能级,通过980nm红外光的上转换激发,保证两个发光峰(典型发光峰分别为521nm和539nm)的荧光强度比随温度变化具有较强烈的变化量,表现出较高的温度灵敏度。本发明采用非接触式的光学温度传感方式,具有非侵入性、远距离传感的特点。同时,由于ErxYbyGd1-x-y)2O3发光非常细小,可保证涂料的温度分辨率达毫米级以下,有利于监测烧蚀样件尤其是异型样件的表面温度分布,此数据将利于研究材料的热疏导原理。
说明书附图
图1本发明具体实施方式中所述温度成像涂料的荧光强度积分结果的比值与温度的对应关系示意图。
具体实施方式
为了解决现有烧蚀试验样件背温测温点少、且难以形成温度图像以及难以精确表征样品表面温度的问题,本发明提供了一种温度成像涂料、制备及其使用方法,采用ErxYbyGd1-x-y)2O3粉末中铒离子2H11/24S3/2两个能级作为热耦合能级,使用980nm面光源对腻子进行照射,通过观测其向基态4I15/2的跃迁发光的荧光强度比来表征温度;通过将粉末均匀涂覆在烧蚀样件背面实现对样品背温的高分辨测量;温度分辨率可达毫米级别。本发明适用于焰流烧蚀考核、石英灯高温辐射考核等高温考核方式,可满足对样品背面进行微区温度成像的要求。
温度成像涂料组分配比为:100质量份环氧树脂、10-20质量份环氧树脂偶联剂、5-40质量份铒镱共掺氧化钆粉末;其中,铒镱共掺氧化钆粉末的化学式表征为ErxYbyGd1-x-y)2O3,原子数x分布在0.001-0.1,y的值分布在0.001-0.5。将温度成像涂料制备成烧蚀试样,试样受热条件可以是焰流烧蚀、石英灯烧蚀、氧乙炔焰烧蚀和风洞烧蚀中的一种。对温度成像涂料制备成烧蚀试样施加受热条件,实时获取试样背温微区成像结果,铒离子2H11/24S3/2两个能级作为热耦合能级向基态4I15/2跃迁发光的荧光强度比所表征的涂敷面温度的具体范围为:室温~500摄氏度。其中,涂料发光与温度的转换对应方式为:对519-523nm(2H11/24I15/2)和537-541nm(4S3/24I15/2)的发光强度分别进行数值积分,荧光强度积分结果的比值与温度的对应关系如图1所示。具体实施时,上述温度成像涂料涂覆的试样材料包括:飞行器气动热防护材料、发动机喷管材料。
以下通过3个具体实施例阐述在焰流烧蚀实验背温微区成像应用领域,本发明的一种焰流烧蚀实验背温微区成像涂料的配比、制备及其使用的具体过程。
实施例1
一种焰流烧蚀实验背温微区成像涂料、制备及使用方法,具体步骤为:
第一步 配制温度成像涂料
温度成像涂料,包括:100质量份环氧树脂、10质量份环氧树脂偶联剂、5质量份Er0.01Yb0.1Gd0.89)2O3粉末;将温度成像涂料各组分混合后搅拌均匀;
第二步 温度成像涂料涂覆及固化
温度成像涂料经涂覆、烘干和固化工序形成背温微区成像涂料,使涂料表面温度保持在室温范围内,经过3h后固化结束;
第三步 光学温度成像
使用980nm面光源照射温度成像涂料,并监测涂覆面发光,根据铒离子2H11/24S3/2两个能级向基态4I15/2跃迁发光(典型发光峰分别为521nm和539nm)的荧光强度比来表征温度,进行面温度成像,成像分辨率为0.5mm,温度灵敏度分布在2.6*10-3K-1-3.5*10-3K-1,随着温度的升高,温度灵敏度上升。
至此,完成焰流烧蚀实验背温微区成像涂料的制备及使用。
实施例2
一种焰流烧蚀实验背温微区成像涂料、制备及使用方法,具体步骤为:
第一步 配制温度成像涂料
温度成像涂料,包括:100质量份环氧树脂、15质量份环氧树脂偶联剂、20质量份Er0.02Yb0.08Gd0.9)2O3粉末;将温度成像涂料各组分混合后搅拌均匀;
第二步 温度成像涂料涂覆及固化
温度成像涂料经涂覆、烘干和固化工序形成背温微区成像涂料,使涂料表面温度保持在室温范围内,经过3h后固化结束;
第三步 光学温度成像
使用980nm面光源照射温度成像涂料,并监测涂覆面发光,根据铒离子2H11/24S3/2两个能级向基态4I15/2跃迁发光(典型发光峰分别为521nm和539nm)的荧光强度比来表征温度,进行面温度成像,成像分辨率为0.8mm,温度灵敏度分布在2.4*10-3K-1-3.7*10-3K-1,随着温度的升高,温度灵敏度上升。
至此,完成焰流烧蚀实验背温微区成像涂料的制备及使用。
实施例3
一种焰流烧蚀实验背温微区成像涂料、制备及使用方法,具体步骤为:
第一步 配制温度成像涂料
温度成像涂料,包括:100质量份环氧树脂、20质量份环氧树脂偶联剂、40质量份Er0.01Yb0.1Gd0.89)2O3粉末;将温度成像涂料各组分混合后搅拌均匀;
第二步 温度成像涂料涂覆及固化
温度成像涂料经涂覆、烘干和固化工序形成背温微区成像涂料,使涂料表面温度保持在室温范围内,经过3h后固化结束;
第三步 光学温度成像
使用980nm面光源照射温度成像涂料,并监测涂覆面发光,根据铒离子2H11/24S3/2两个能级向基态4I15/2跃迁发光(典型发光峰分别为521nm和539nm)的荧光强度比来表征温度,进行面温度成像,成像分辨率为0.6mm,温度灵敏度分布在2.1*10-3K-1-3.2*10-3K-1,随着温度的升高,温度灵敏度上升。
至此,完成焰流烧蚀实验背温微区成像涂料的制备及使用。

Claims (10)

1.一种温度成像涂料,其特征在于,组分配比为:100质量份环氧树脂、10-20质量份环氧树脂偶联剂、5-40质量份铒镱共掺氧化钆粉末;
涂料温度成像的原理为:经涂覆、烘干和固化后,采用使用980nm面光源照射,根据铒离子2H11/24S3/2两个能级作为热耦合能级向基态4I15/2跃迁发光的荧光强度比来表征涂敷面温度。
2.根据权利要求1所述的温度成像涂料,其特征在于,所述铒镱共掺氧化钆粉末的化学式为ErxYbyGd1-x-y)2O3,原子数x分布在0.001-0.1,y的值分布在0.001-0.5。
3.根据权利要求1所述的温度成像涂料,其特征在于,所述温度成像涂料的配比,包括:100质量份环氧树脂、10质量份环氧树脂偶联剂、5质量份Er0.01Yb0.1Gd0.89)2O3粉末;或者,包括:100质量份环氧树脂、15质量份环氧树脂偶联剂、20质量份Er0.02Yb0.08Gd0.9)2O3粉末;或者包括:100质量份环氧树脂、20质量份环氧树脂偶联剂、40质量份Er0.01Yb0.1Gd0.89)2O3粉末。
4.根据权利要求1所述的温度成像涂料,其特征在于,根据所述铒离子2H11/24S3/2两个能级作为热耦合能级向基态4I15/2跃迁发光的荧光强度比所表征的涂敷面温度的具体范围为:室温~500摄氏度。
5.根据权利要求1所述的温度成像涂料,其特征在于,在温度成像涂料受热条件下,实时获取涂覆面图像,根据两个能级铒离子发光的荧光强度比随温度的变化关系进行发光与温度转换计算,获取涂覆面温度成像。
6.根据权利要求5所述的温度成像涂料,其特征在于,所述受热条件,包括:焰流烧蚀、石英灯烧蚀、氧乙炔焰烧蚀、风洞烧蚀。
7.根据权利要求6所述的温度成像涂料,其特征在于,所述涂料均匀涂覆在烧蚀样件背面,用于在焰流烧蚀实验过程中实时获取试样背温微区成像结果。
8.根据权利要求1至7任一权利要求所述的温度成像涂料,其特征在于,所述温度成像涂料涂覆试样材料包括:飞行器气动热防护材料、发动机喷管材料。
9.一种焰流烧蚀实验背温微区成像涂料制备方法,其特征在于,具体步骤为:
第一步 配制温度成像涂料
配制温度成像涂料,包括:100质量份环氧树脂、10-20质量份环氧树脂偶联剂、5-40质量份铒镱共掺氧化钆粉末;将温度成像涂料各组分混合后搅拌均匀;
第二步 温度成像涂料涂覆及固化
将温度成像涂料涂覆在烧蚀试样背温区表面,经烘干和固化工序形成烧蚀试样背温微区成像涂料,使涂料表面温度保持在室温范围内,经过3h后固化结束。
10.根据权利要求9所述方法制备得到焰流烧蚀实验背温微区成像涂料的使用方法,其特征在于,基于试样背温区表面经涂覆、烘干、固化后获得的涂料试样,对试样进行焰流烧蚀实验,使用980nm面光源照射温度成像涂料,实时监测试样背温区涂覆面发光情况,获取涂覆面微区图像,根据铒离子2H11/24S3/2两个能级向基态4I15/2跃迁发光的荧光强度比与涂敷面温度的表征关系进行发光与温度转换计算,根据转换计算结果进行涂覆面温度成像。
CN202310243635.3A 2023-03-15 2023-03-15 一种焰流烧蚀实验背温微区成像涂料、制备及使用方法 Active CN116285575B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310243635.3A CN116285575B (zh) 2023-03-15 2023-03-15 一种焰流烧蚀实验背温微区成像涂料、制备及使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310243635.3A CN116285575B (zh) 2023-03-15 2023-03-15 一种焰流烧蚀实验背温微区成像涂料、制备及使用方法

Publications (2)

Publication Number Publication Date
CN116285575A true CN116285575A (zh) 2023-06-23
CN116285575B CN116285575B (zh) 2024-03-29

Family

ID=86792043

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310243635.3A Active CN116285575B (zh) 2023-03-15 2023-03-15 一种焰流烧蚀实验背温微区成像涂料、制备及使用方法

Country Status (1)

Country Link
CN (1) CN116285575B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150196201A1 (en) * 2012-07-01 2015-07-16 Lumito Ab System and method for improved diffuse luminescent imaging or tomography in scattering media
CN115232618A (zh) * 2022-07-11 2022-10-25 电子科技大学 一种相变诱导上转换绿光近零热猝灭荧光粉及其制备方法
CN115557528A (zh) * 2022-09-29 2023-01-03 广州工程技术职业学院 稀土掺杂上转换发光粉及其制备方法
US20230071896A1 (en) * 2021-08-23 2023-03-09 Institut National De La Recherche Scientifique Method and system for real-time wide-field dynamic temperature sensing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150196201A1 (en) * 2012-07-01 2015-07-16 Lumito Ab System and method for improved diffuse luminescent imaging or tomography in scattering media
US20230071896A1 (en) * 2021-08-23 2023-03-09 Institut National De La Recherche Scientifique Method and system for real-time wide-field dynamic temperature sensing
CN115232618A (zh) * 2022-07-11 2022-10-25 电子科技大学 一种相变诱导上转换绿光近零热猝灭荧光粉及其制备方法
CN115557528A (zh) * 2022-09-29 2023-01-03 广州工程技术职业学院 稀土掺杂上转换发光粉及其制备方法

Also Published As

Publication number Publication date
CN116285575B (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
Allison et al. Remote thermometry with thermographic phosphors: Instrumentation and applications
Guo et al. Fabrication of highly porous Y2O3: Ho, Yb ceramic and its thermometric applications
Chen et al. A ratiometric optical thermometer based on Bi3+ and Mn4+ co-doped La2MgGeO6 phosphor with high sensitivity and signal discriminability
Kablov et al. Investigation of the oxidative resistance of high-temperature coating on a SiC material under exposure to high-enthalpy flow
Feist et al. Europium-doped yttria-stabilized zirconia for high-temperature phosphor thermometry
Rakov et al. Exploring the 4I13/2→ 4I15/2 radiative transition from Er3+ in Y2O3 for temperature sensing
Bao et al. Wide-range temperature sensor based on enhanced up-conversion luminescence in Er3+/Yb3+ co-doped Y2O3 crystal fiber
Li et al. Effect of oxygen partial pressure on the phosphorescence of different lanthanide ion (Ln3+)-doped yttria-stabilised zirconia
Yang et al. Evaluation of the in-depth temperature sensing performance of Eu-and Dy-doped YSZ in air plasma sprayed thermal barrier coatings
Fouliard et al. Phosphor thermometry instrumentation for synchronized acquisition of luminescence lifetime decay and intensity on thermal barrier coatings
CN116285575B (zh) 一种焰流烧蚀实验背温微区成像涂料、制备及使用方法
Wang et al. Exploration of up-conversion thermal enhancement mechanism and application on temperature sensing of Sc2W3O12: Yb3+, Er3+ materials
Li et al. Effect of silica surface coating on the luminescence lifetime and upconversion temperature sensing properties of semiconductor zinc oxide doped with gallium (III) and sensitized with rare earth ions Yb (III) and Tm (III)
Fouliard et al. Doped 8% yttria stabilized zirconia for temperature measurements on thermal barrier coatings using phosphor thermometry
Ran et al. Excellent upconversion luminescence and temperature sensing performance of CdMoO 4: Er 3+, Yb 3+ phosphors
Shi et al. Highly precise FIR thermometer based on the thermally enhanced upconversion luminescence for temperature feedback photothermal therapy
Ćirić et al. The spectroscopic quality factor, phase, morphological, structural, and photoluminescent analysis of ZrO2: Nd3+ coatings created by Plasma electrolytic oxidation
Nilsson et al. High temperature thermographic phosphors YAG: Tm; Li and YAG: Dy in reduced oxygen environments
Jurga et al. Lanthanide-based nanothermometers for bioapplications: excitation and temperature sensing in optical transparency windows
CN108709657B (zh) 一种双模纳米荧光温度计及其制备方法
CN116023931A (zh) 发光材料及其制备方法和应用
Dang et al. Crucial effect of SiC particles on in situ synthesized mullite whisker reinforced Al2O3-SiC composite during microwave sintering
Cheng et al. A phase transformation–phosphorescence model of europium-doped yttria-stabilized zirconia and its application in two-dimensional thermal history measurement
Xu et al. Study of non-contact temperature measurement technology based on phosphorescent composite film in high temperature environment
Lai et al. A pure tetragonal europium-doped yttrium-stabilized zirconia thermal barrier coating: Phase structure and luminescence

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant