CN116285017A - 一种温敏性改性壳聚糖水凝胶及其制备方法 - Google Patents

一种温敏性改性壳聚糖水凝胶及其制备方法 Download PDF

Info

Publication number
CN116285017A
CN116285017A CN202310057146.9A CN202310057146A CN116285017A CN 116285017 A CN116285017 A CN 116285017A CN 202310057146 A CN202310057146 A CN 202310057146A CN 116285017 A CN116285017 A CN 116285017A
Authority
CN
China
Prior art keywords
chitosan
solution
hydroxybutyl
hydrochloric acid
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310057146.9A
Other languages
English (en)
Inventor
刘杰
唐俊杰
伍震懿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yimei Times Shenzhen Biotechnology Co ltd
Sun Yat Sen University
Original Assignee
Yimei Times Shenzhen Biotechnology Co ltd
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yimei Times Shenzhen Biotechnology Co ltd, Sun Yat Sen University filed Critical Yimei Times Shenzhen Biotechnology Co ltd
Priority to CN202310057146.9A priority Critical patent/CN116285017A/zh
Publication of CN116285017A publication Critical patent/CN116285017A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0484Elimination of a frozen liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • C08J2207/10Medical applications, e.g. biocompatible scaffolds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本发明公开了一种温敏性改性壳聚糖水凝胶及其制备方法,为羟丁基和多酚共同改性的壳聚糖。其制备方法包括以下步骤,首先以1,2‑环氧丁烷为醚化剂,在壳聚糖分子链上引入羟丁基;其次多酚部分由羟丁基壳聚糖的游离氨基和没食子酸的羧基发生缩合反应引入多酚基团。本发明的多酚改性壳聚糖水溶液在低温下呈溶液流动状态,可以注射使用,当温度上升到37℃附近时,即可形成温敏性的水凝胶。由于多酚基团的引入,增加了材料的抗氧化能力和组织黏附能力。该法制备的多酚改性壳聚糖组分安全性高,生物相容性好,在药物递送、组织工程和细胞培养等领域具有广泛的应用前景。

Description

一种温敏性改性壳聚糖水凝胶及其制备方法
技术领域:
本发明涉及生物医药材料和水凝胶制备技术领域,具体地说,涉及一种温敏性改性壳聚糖水凝胶及其制备方法。
背景技术:
壳聚糖是一种天然阳离子聚合物,也是天然多糖中唯一的碱性多糖,由氨基葡萄糖和N-乙酰氨基葡萄糖单元组成,通过β(1-4)糖苷键连接。作为一种天然生物材料,现出显着的生物特性,例如生物相容性、生物降解性、抗菌活性和抗氧化活性。最近,壳聚糖水凝胶已经在各种制药和生物医学应用中进行了研究,包括药物递送,伤口敷料和组织工程支架。
然而,壳聚糖由于其分子内和分子间强烈的氢键作用导致其结晶度高,水溶性差,可以通过引入取代基获得多种具备高水溶性的壳聚糖衍生物。因此,壳聚糖衍生物作为生物材料更广泛地被研究,而不仅仅是壳聚糖本身。化学改性是提高壳聚糖溶解度的有效方法,还可以改善壳聚糖的特殊性能,如热稳定性、流变性能和抗氧化性能。
此外,在壳聚糖分子内和分子间氢键作用下,壳聚糖的抗氧化活性随其脱乙酰化程度的增加而增加。相反,其抗氧化能力与分子量成反比,其形成凝胶的能力随其分子量的增加而增加。因此,提高大分子壳聚糖的抗氧化能力是壳聚糖水凝胶在组织工程中应用的挑战。壳聚糖的溶解度很差,这限制了它的应用。
发明内容:
本发明的目的在于克服现有壳聚糖水凝胶的不足,提供一种温敏性改性壳聚糖水凝胶及其制备方法,其具备良好的水溶性、温敏性、抗氧化性和生物相容性,可用于药物递送,伤口敷料和组织工程等生物医药领域。
为达到上述目的,本发明采用下述技术方案:
一种温敏性改性壳聚糖水凝胶,是由羟丁基和多酚共同修饰改性的壳聚糖。
作为优选的,在上述的温敏性改性壳聚糖水凝胶中,所述壳聚糖的分子量为50~200KDa,脱乙酰度为85~99%。
上述温敏性改性壳聚糖水凝胶的制备方法,包括以下步骤:
(1)将壳聚糖(CS)溶于盐酸溶液,过滤,加入NaOH溶液得沉淀,过滤后用乙醇洗涤两次,干燥;
(2)将步骤(1)所得干燥壳聚糖在NaOH溶液中碱化,减压抽滤除多余碱液得到固体碱化壳聚糖;
(3)将步骤(2)所得固体碱化壳聚糖以水和异丙醇为分散相,加入1,2-环氧丁烷进行反应,反应结束用盐酸溶液中和至中性;
(4)将步骤(3)所得溶液透析抽滤冻干后得到白色絮状固体羟丁基壳聚糖HBC;
(5)将步骤(4)所得羟丁基壳聚糖(HBC)溶于盐酸溶液,向其中加入酰胺偶联剂,随后加入没食子酸(GA),避光反应;
(6)将步骤(5)所得溶液透析抽滤冻干后得到温敏性改性壳聚糖水凝胶(HBC-GA)。
作为优选的,在上述的制备方法中,步骤(1)所述壳聚糖(CS)溶于盐酸溶液后壳聚糖的质量分数为1~10%,盐酸溶液质量分数为0.1~10%,NaOH溶液质量分数为0.1~10%,所述用乙醇洗涤两次的乙醇浓度分别为70~80%和90~98%,所述干燥温度为40~50℃。
作为优选的,在上述的制备方法中,步骤(2)所述壳聚糖在NaOH溶液中的质量分数为1~20%,NaOH溶液的质量分数为40~60%。
作为优选的,在上述的制备方法中,步骤(3)所述固体碱化壳聚糖分散于水和异丙醇混合液中的浓度为1~5%,水和异丙醇的混合体积比为1:1~10,所述1,2-环氧丁烷和壳聚糖质量比为1:1~10,所述盐酸溶液的质量浓度为1~20%。
作为优选的,在上述的制备方法中,步骤(4)和步骤(6)所述透析使用的溶液为纯水,透析时间为12~48h。
作为优选的,在上述的制备方法中,步骤(5)所述羟丁基壳聚糖溶于盐酸溶液的质量分数为1~20%,盐酸溶液为0.1~5%,所述羟丁基壳聚糖与酰胺偶联剂的摩尔比为1:1~20。
作为优选的,在上述的制备方法中,步骤(5)所述酰胺偶联剂为N-羟基琥珀酰亚胺(NHS)和1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC.HCl),摩尔比例为1:1~3。
与现有技术相比,本发明具有如下有益效果:
1.本发明首次制备了羟丁基和多酚共同修饰改性的壳聚糖,其水溶液在低温下呈溶液状态,可以流动注射,所得到的改性壳聚糖水凝胶的相转变温度为37℃,当温度上升至37℃附近时,由于分子亲水-疏水性质的变化迅速发生溶胶-凝胶转变形成水凝胶;在温度低于4℃时从水凝胶可逆地转化为溶液,该特性为医疗操作、细胞培养和组织工程提供了极大的便利。
2.本发明可以在生理条件下形成原位凝胶,在保证其保留羟丁基壳聚糖温敏性能力的同时,由于没食子酸的接枝引入了多酚基团,增加了材料的抗氧化能力和组织黏附能力,使得制备的温敏性改性壳聚糖水凝胶在药物递送、伤口敷料和组织工程等生物医药领域都具有广泛应用潜力。
附图说明
图1为本发明制备的羟丁基和多酚改性的壳聚糖HBC-GA的合成路线图;
图2为本发明制备的羟丁基和多酚改性的壳聚糖HBC-GA在改性前后的核磁共振氢谱图;
图3为本发明制备的羟丁基和多酚改性的壳聚糖HBC-GA在改性前后的核磁共振碳谱图;
图4为本发明制备的羟丁基和多酚改性的壳聚糖HBC-GA在改性前后的傅里叶红外光谱图;
图5为本发明制备的羟丁基和多酚改性的壳聚糖HBC-GA溶液温度响应测试照片;
图6为本发明制备的羟丁基和多酚改性的壳聚糖HBC-GA溶液还原能力测试的柱状图;
图7为使用流变仪测量发明制备的羟丁基和多酚改性的壳聚糖HBC-GA溶液温度变化中的力学性能变化曲线图;
图8为MTT法研究发明制备的羟丁基和多酚改性的壳聚糖HBC-GA水凝胶体外细胞相容性柱状图。
具体实施方式
为了进一步理解本发明,下面结合附图所描述的实施方式对本发明进行详细说明,其中附图中呈现的数据包括但不限制本发明羟丁基和多酚改性的壳聚糖水凝胶的性能及功效。虽然附图中显示了本发明的具体实施例,然而应理解为可以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
需要说明的是,根据本发明的技术方案,在不变更本发明实质精神下,本领域的一般技术人员可以提出可相互替换的多种结构方式以及实现方式。然而描述以说明书的一般原则为目的,并非用以限定本发明的范围,本发明的保护范围当视所附权利要求书所界定者为准。
实施例1:改性壳聚糖HBC-GA-1的制备和核磁共振氢谱表征(1)称量20g壳聚糖粗产品溶于1000mL体积分数为1%的HCl水溶液中,搅拌使其完全溶解,过滤除杂收集滤液。搅拌滴加1mol/L的NaOH溶液得到絮状沉淀,过滤收集沉淀。用超纯水多次洗涤沉淀至中性,先用体积分数为70%的乙醇除盐,再用体积分数为95%的乙醇除水,在50℃干燥得到纯化的壳聚糖;
(2)取1g纯化后的壳聚糖分散于10mL质量分数为50%的NaOH水溶液,N2保护下室温搅拌24h进行碱化处理,过滤收集沉淀;
(3)将所得沉淀加入到20mL异丙醇水溶液(V:V异丙醇=1:1)中搅拌2h使其完全分散,升温至60℃,滴加20mL的1,2-环氧丁烷,回流反应24h;
(4)反应结束后,加入5M的盐酸水溶液调节pH至中性,过滤除不溶物,室温下在超纯水中透析24h后冻干得到羟丁基壳聚糖HBC;
(5)将羟丁基壳聚糖HBC溶于2%的盐酸,室温搅拌使其完全溶解;
(6)将没食子酸GA(5g)和EDC.HCl(7.7g)加入超纯水(200mL)搅拌30min,再加入NHS(3.5g)活化1h;
(7)将活化后的没食子酸(GA)缓慢滴加至HBC溶液,在N2保护下搅拌反应24h;
(8)反应结束,于超纯水中透析(14kDa)24h,经冷冻干燥即可得灰色海绵状的多酚改性壳聚糖HBC-GA。
多酚改性壳聚糖HBC-GA的制备流程图1所示。冻干后的羟丁基壳聚糖HBC和多酚改性壳聚糖HBC-GA通过核磁共振氢谱进行结构验证,如图2所示,0.9–1.0ppm处的峰为羟丁基上甲基的H,7.1ppm处的峰为没食子酸(GA)的苯环结构,说明成功制备得到了羟丁基和多酚共同改性壳聚糖。
实施例2:改性壳聚糖HBC-GA-2的制备和碳谱表征
(1)称量20g壳聚糖粗产品溶于1000mL体积分数为1%的HCl水溶液中,搅拌使其完全溶解,过滤除杂收集滤液。搅拌滴加1mol/L的NaOH溶液得到絮状沉淀,过滤收集沉淀。用超纯水多次洗涤沉淀至中性,先用体积分数为70%的乙醇除盐,再用体积分数为95%的乙醇除水,在50℃干燥得到纯化的壳聚糖;
(2)取1g纯化后的壳聚糖分散于10mL质量分数为50%的NaOH水溶液,N2保护下室温搅拌24h进行碱化处理,过滤收集沉淀;
(3)将所得沉淀加入到20mL异丙醇水溶液(V:V异丙醇=1:5)中搅拌2h使其完全分散,升温至60℃,滴加30mL的1,2-环氧丁烷,回流反应24h;
(4)反应结束后,加入5M的盐酸水溶液调节pH至中性,过滤除不溶物,室温下在超纯水中透析24h后冻干得到羟丁基壳聚糖HBC;
(5)将羟丁基壳聚糖HBC溶于2%的盐酸,室温搅拌使其完全溶解;
(6)将没食子酸GA(15g)和EDC.HCl(11.6g)加入超纯水(200mL)搅拌30min,再加入NHS(3.5g)活化1h;
(7)将活化后的没食子酸(GA)缓慢滴加至HBC溶液,在N2保护下搅拌反应24h;
(8)反应结束,于超纯水中透析(14kDa)24h,经冷冻干燥即可得灰色海绵状的多酚改性壳聚糖HBC-GA。
冻干后的羟丁基壳聚糖HBC和多酚改性壳聚糖HBC-GA通过核磁共振碳谱进行结构验证,如图3所示,HBC-GA引入了新的甲基和亚甲基的峰位置,以及苯环的核磁共振碳谱吸收,说明成功制备得到了羟丁基和多酚共同改性壳聚糖。
实施例3:改性壳聚糖HBC-GA-3的制备和红外光谱表征
(1)称量20g壳聚糖粗产品溶于1000mL体积分数为1%的HCl水溶液中,搅拌使其完全溶解,过滤除杂收集滤液。搅拌滴加1mol/L的NaOH溶液得到絮状沉淀,过滤收集沉淀。用超纯水多次洗涤沉淀至中性,先用体积分数为70%的乙醇除盐,再用体积分数为95%的乙醇除水,在50℃干燥得到纯化的壳聚糖;
(2)取1g纯化后的壳聚糖分散于10mL质量分数为50%的NaOH水溶液,N2保护下室温搅拌24h进行碱化处理,过滤收集沉淀;
(3)将所得沉淀加入到20mL异丙醇水溶液(V:V异丙醇=1:10)中搅拌2h使其完全分散,升温至60℃,滴加40mL的1,2-环氧丁烷,回流反应24h;
(4)反应结束后,加入5M的盐酸水溶液调节pH至中性,过滤除不溶物,室温下在超纯水中透析24h后冻干得到羟丁基壳聚糖HBC;
(5)将羟丁基壳聚糖HBC溶于2%的盐酸,室温搅拌使其完全溶解;
(6)将没食子酸GA(20g)和EDC.HCl(17.4g)加入超纯水(200mL)搅拌30min,再加入NHS(3.5g)活化1h;
(7)将活化后的没食子酸(GA)缓慢滴加至HBC溶液,在N2保护下搅拌反应24h;
(8)反应结束,于超纯水中透析(14kDa)24h,经冷冻干燥即可得灰色海绵状的多酚改性壳聚糖HBC-GA。
冻干后的羟丁基壳聚糖HBC和多酚改性壳聚糖HBC-GA通过傅里叶红外光谱仪进行结构验证,如图4所示,1649cm-1(酯基的C=O拉伸)的吸收峰表明GA和HBC之间存在酰胺键,1457cm-1和1060cm-1代表核苯环和葡萄糖环吸收,说明成功制备得到了羟丁基和多酚共同改性壳聚糖。
实施例4:改性壳聚糖HBC-GA的温度响应测试
取HBC-GA在4℃溶于水,配置成3%的HBC-GA水溶液,将该溶液多次至于4℃和37℃环境中,观察其性状。实验结果如图5所示,该溶液在4℃为透明溶液,37℃下成透明凝胶,且该转变随着温度变化具有可逆性,说明该羟丁基和多酚改性壳聚糖HBC-GA的水溶液具备温度响应性成胶能力。
实施例5:改性壳聚糖HBC-GA的还原能力测试
在避光条件下,用超纯水配置各浓度的HBC-GA水溶液,分别为0.1mg/mL、1mg/mL、10mg/mL、50mg/mL和100mg/mL,将其和现配的1,1-二苯基-2-甲基苯肼(DPPH)的甲醇溶液(200μM)等体积混合,避光孵育30min。其中,单独的HBC-GA水溶液和单独的DPPH溶液为对照组。然后,在517nm处测定吸光度值,HBC-GA的DPPH自由基清除率(DPPH RadicalScavengingRate,DRSR)按如下公式计算:
DRSR=[1-(As–A0)/Ac]×100%
其中,A0是样品的吸光值,Ac是DPPH的吸光值,As是实验组的吸光值。实验结果如图6所示,不同浓度的改性壳聚糖水溶液在517nm处的吸光度均出现明显降低,结果表明改性壳聚糖呈现一定的还原能力。
实施例6:改性壳聚糖HBC-GA的温敏性成胶性能
取HBC-GA在4℃溶于水,配置成3%的HBC-GA水溶液,取2mL该溶液溶液均匀铺在在具有平行板配置(直径20mm,间隙1mm)的旋转流变仪(DHR-1,TA,USA)的样品台上,样品加载好后,设置升温速率为2℃/min的速率从0℃升温到50℃。在此期间内测量动态储能模量(G')和损耗模量(G″)随温度变化的数据图。如图7所示,水凝胶溶液随着测试温度的上升,储能模量(G')出现明显上升,说明其具备温度响应性。
实施例7:改性壳聚糖HBC-GA的生物相容性
实验步骤如下,在24孔板中均匀铺上实施例1所制备的多酚改性壳聚糖HBC-GA水凝胶材料,孵育24h后,加入HUVEC细胞和MRC-5细胞进行共孵育24h,用MTT法检测细胞存活率。如图8所示,在使用的透明质酸水凝胶浓度范围内,对HUVEC细胞和MRC-5细胞均无明显毒性,因此透明质酸水凝胶具有优异的生物相容性。
综上所述,本发明公开了一种温敏性多酚改性壳聚糖水凝胶的制备方法,为羟丁基和多酚共同改性的壳聚糖。本发明制备的羟丁基和多酚改性的壳聚糖,在保证其保留羟丁基壳聚糖温敏性能力的同时,引入多酚基团,赋予其更好的组织黏附能力和抗氧化能力。在低温下水溶液呈流动可注射状态,温度升至37℃附近时,即可形成水凝胶,在温度低于4℃时从水凝胶可逆地转化为溶液,该特性为医疗操作、细胞培养和组织工程提供了极大的便利。使得制备的温敏性多酚改性壳聚糖水凝胶在药物递送,伤口敷料和组织工程等生物医药领域都具有广泛应用潜力。

Claims (9)

1.一种温敏性改性壳聚糖水凝胶,其特征是由羟丁基和多酚共同修饰改性的壳聚糖。
2.根据权利要求1所述的温敏性改性壳聚糖水凝胶,其特征在于,所述壳聚糖的分子量为50~200KDa,脱乙酰度为85~99%。
3.权利要求1所述温敏性改性壳聚糖水凝胶的制备方法,其特征在于包括以下步骤:
(1)将壳聚糖溶于盐酸溶液,过滤,加入NaOH溶液得沉淀,过滤后用乙醇洗涤两次,干燥;
(2)将步骤(1)所得干燥壳聚糖在NaOH溶液中碱化,减压抽滤除多余碱液得到固体碱化壳聚糖;
(3)将步骤(2)所得固体碱化壳聚糖以水和异丙醇为分散相,加入1,2-环氧丁烷进行反应,反应结束用盐酸溶液中和至中性;
(4)将步骤(3)所得溶液透析抽滤冻干后得到白色絮状固体羟丁基壳聚糖HBC;
(5)将步骤(4)所得羟丁基壳聚糖溶于盐酸溶液,向其中加入酰胺偶联剂,随后加入没食子酸,避光反应;
(6)将步骤(5)所得溶液透析抽滤冻干后得到温敏性改性壳聚糖水凝胶。
4.根据权利要求3所述的制备方法,其特征在于步骤(1)所述壳聚糖溶于盐酸溶液后壳聚糖的质量分数为1~10%,盐酸溶液质量分数为0.1~10%,NaOH溶液质量分数为0.1~10%,所述用乙醇洗涤两次的乙醇浓度分别为70~80%和90~98%,所述干燥温度为40~50℃。
5.根据权利要求3所述的制备方法,其特征在于步骤(2)所述壳聚糖在NaOH溶液中的质量分数为1~20%,NaOH溶液的质量分数为40~60%。
6.根据权利要求3所述的制备方法,其特征在于步骤(3)所述固体碱化壳聚糖分散于水和异丙醇混合液中的浓度为1~5%,水和异丙醇的混合体积比为1:1~10,所述1,2-环氧丁烷和壳聚糖质量比为1:1~10,所述盐酸溶液的质量浓度为1~20%。
7.根据权利要求3所述的制备方法,其特征在于步骤(4)和步骤(6)所述透析使用的溶液为纯水,透析时间为12~48h。
8.根据权利要求3所述的制备方法,其特征在于步骤(5)所述羟丁基壳聚糖溶 于盐酸溶液的质量分数为1~20%,没食子酸溶于盐酸溶液的质量分数为1~20%,盐酸溶液的质量分数为0.1~5%,所述羟丁基壳聚糖与酰胺偶联剂的摩尔比为1:1~20。
9.根据权利要求3所述的制备方法,其特征在于步骤(5)所述酰胺偶联剂为N-羟基琥珀酰亚胺和1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐,摩尔比例为1:1~3。
CN202310057146.9A 2023-01-13 2023-01-13 一种温敏性改性壳聚糖水凝胶及其制备方法 Pending CN116285017A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310057146.9A CN116285017A (zh) 2023-01-13 2023-01-13 一种温敏性改性壳聚糖水凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310057146.9A CN116285017A (zh) 2023-01-13 2023-01-13 一种温敏性改性壳聚糖水凝胶及其制备方法

Publications (1)

Publication Number Publication Date
CN116285017A true CN116285017A (zh) 2023-06-23

Family

ID=86833206

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310057146.9A Pending CN116285017A (zh) 2023-01-13 2023-01-13 一种温敏性改性壳聚糖水凝胶及其制备方法

Country Status (1)

Country Link
CN (1) CN116285017A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108976317A (zh) * 2018-06-29 2018-12-11 中国科学院兰州化学物理研究所 一种壳聚糖生物大分子及其制备方法和应用
CN113174063A (zh) * 2021-04-30 2021-07-27 北京大学 一种生物黏附增强型温敏壳聚糖基防术后粘连水凝胶的制备及应用
CN115536919A (zh) * 2022-08-26 2022-12-30 武汉理工大学 一种改性壳聚糖粘附水凝胶及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108976317A (zh) * 2018-06-29 2018-12-11 中国科学院兰州化学物理研究所 一种壳聚糖生物大分子及其制备方法和应用
CN113174063A (zh) * 2021-04-30 2021-07-27 北京大学 一种生物黏附增强型温敏壳聚糖基防术后粘连水凝胶的制备及应用
CN115536919A (zh) * 2022-08-26 2022-12-30 武汉理工大学 一种改性壳聚糖粘附水凝胶及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAMID HAMEDI等: "Chitosan based bioadhesives for biomedical applications: A review", CARBOHYDRATE POLYMERS, 7 January 2022 (2022-01-07), pages 119100 *
YUFENG SHOU等: "Thermoresponsive Chitosan、DOPA-Based Hydrogel as an injectable Therapy Approach for Tissue-Adhesion and Hemostasis", ACS, no. 6, 11 May 2022 (2022-05-11), pages 3619 - 3629 *

Similar Documents

Publication Publication Date Title
EP0328050B1 (en) High strength chitosan fibers and fabrics thereof
CN101284884B (zh) 一种温敏性壳聚糖衍生物-羟丁基壳聚糖的制备方法
EP0271887B1 (en) High strength fibers from chitin derivatives
US5021207A (en) High strength fibers from chitin derivatives
CN111732741B (zh) 一种透明质酸与ε-聚赖氨酸交联的方法及所得复合交联物和应用
Xia et al. Preparation and characterization of a poly (ethylene glycol) grafted carboxymethyl konjac glucomannan copolymer
CN109796606A (zh) 一种基于多重动态化学键的自愈合水凝胶及其制备方法
WO2019227525A1 (zh) 一种壳寡糖基化合物的应用及其制备方法
Maity et al. A dynamic sugar based bio-inspired, self-healing hydrogel exhibiting ESIPT
CN102702389A (zh) 一种温敏性壳聚糖衍生物―羟戊基壳聚糖及其制备方法
CN116239708A (zh) 一种封端聚轮烷及其制备方法和应用
CN101367886A (zh) 一种反应性壳聚糖衍生物的制备方法
Zhang et al. Dess-Martin oxidation of hydroxypropyl and hydroxyethyl cellulose, and exploration of their polysaccharide/polypeptide hydrogels
Liu et al. Study on antibacterial activity of O-carboxymethyl chitosan sodium salt and spinnability of O-carboxymethyl chitosan sodium salt/cellulose polyblends in N-methylmorpholine-N-oxide system
CN116285017A (zh) 一种温敏性改性壳聚糖水凝胶及其制备方法
CN107417801B (zh) 一种可注射水凝胶及其制备方法与应用
CN114957720B (zh) 一种自交联的抗氧化型PCA-g-CMCS/OSA席夫碱水凝胶及其制备方法
CN111793146B (zh) 一种pH敏感型PCA-g-CMCS聚合物及其水凝胶的制备方法
McTaggart et al. Assessment of polysaccharide gels as drug delivery vehicles
CN113980294A (zh) 一种基于海藻酸钠的导电性可自愈合水凝胶及其制备方法与应用
CN111808206A (zh) 一种具有紫外吸收的改性生物质、制备方法及应用
CN114585652B (zh) 在有机溶剂中进行的透明质酸钠盐纯化方法
CN112876696B (zh) 一种生物医用聚甘油基水凝胶及其制备方法
CN117285724B (zh) 一种壳聚糖均相溶液及其制备方法与应用
CN117050341B (zh) 一种单相室温可注射温敏性几丁糖水凝胶及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination