CN116285009A - 一种纤维素基感湿变色材料的制备方法 - Google Patents

一种纤维素基感湿变色材料的制备方法 Download PDF

Info

Publication number
CN116285009A
CN116285009A CN202310181983.2A CN202310181983A CN116285009A CN 116285009 A CN116285009 A CN 116285009A CN 202310181983 A CN202310181983 A CN 202310181983A CN 116285009 A CN116285009 A CN 116285009A
Authority
CN
China
Prior art keywords
cellulose
ionic liquid
sensitive color
color change
based humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310181983.2A
Other languages
English (en)
Inventor
薛玉
陈嘉川
杨桂花
齐乐天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN202310181983.2A priority Critical patent/CN116285009A/zh
Publication of CN116285009A publication Critical patent/CN116285009A/zh
Priority to PCT/CN2023/120942 priority patent/WO2024174521A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/81Indicating humidity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/14Chemical modification with acids, their salts or anhydrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/07Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof
    • D06M11/11Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof with halogen acids or salts thereof
    • D06M11/28Halides of elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/145Heterocyclic containing oxygen as the only heteroatom
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Artificial Filaments (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明属于生物基材料制备领域,提供了一种纤维素基感湿变色材料的制备方法。包括以针叶木硫酸盐浆为原料在离子液体体系中溶解,其溶解体系离子液体、氢键配体、强化剂和驻留剂进行复配得到复合离子液体体系,纤维素溶解后,通过挤出机或者制膜器制备不同形态的纤维素材料,然后进入凝固浴进行再生,在洗涤过程中将得到的纤维素湿材料浸渍在适当浓度的氯化钴水溶液中,然后干燥得到纤维素基感湿材料,在不增加生产工序的情况下,赋予纤维素感湿变色性能的同时增强强度,降低成本。

Description

一种纤维素基感湿变色材料的制备方法
技术领域
本发明属于生物基材料制备领域,涉及一种纤维素基感湿变色材料的制备方法。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
感湿变色材料是指材料吸收水分后导致其结构变化,从而改变材料的吸收光谱,导致材料的颜色发生改变,在不同湿度下表现出不同颜色的材料,其具有可肉眼观察和响应迅速的优点,现阶段的感湿材料多为有机化合物及合成化合物,存在难以降解、成本较高、制备过程复杂等缺点。
纤维素作为在自然界中大量存在一种天然高分子,可自然降解且可持续再生。纤维素基材料具有轻量、透气度较好、环境友好、来源广泛等诸多优点。纤维素的基本结构为β-D-吡喃葡萄糖基以1,4-β-苷键连接而成的高分子,分子间存在较多的羟基和氢键,因此具有较好的吸水能力和溶胀能力,这使得纤维素成为制备湿度传感器的良好选择,同时纤维的可降解、可再生和生物友好性也使其成为替代化石原料的良好选择,现阶段制备的纤维素基感湿材料存在强度较低、灵敏度不高等缺点,制约了纤维素基感湿材料的应用和发展。
发明内容
为了克服上述不足,本发明提供了一种纤维素基感湿变色材料的制备方法。以针叶木硫酸盐浆为原料在复合离子液体体系中溶解,随后通过挤出机或者制膜器制备不同状态的纤维素材料,然后进入凝固浴进行再生,在洗涤过程中将得到的纤维素湿材料浸渍在适当浓度的氯化钴水溶液中,然后干燥得到纤维素基感湿材料。
为了实现上述目的,本发明采用如下技术方案:
本发明的第一个方面,提供了一种纤维素基感湿变色材料的制备方法,包括:
将纸浆与复合离子液体溶解体系于60~75℃下真空混合20min~30min,使纤维素溶解,得到纤维素溶液;
将纤维素溶液再生,得到纤维素湿材料;
将所述纤维素湿材料浸渍在浓度为2wt%~25wt%的氯化钴水溶液10~60s中,干燥,即得;
所述复合离子液体溶解体系包括:离子液体、氢键配体、强化剂、驻留剂,
其中,氢键配体的用量为离子液体的0.5~5%,强化剂的用量为离子液体的0.5~10%,驻留剂的用量为离子液体的0.5~5%,以摩尔分数计。
本申请研究发现:采用离子液体、氢键配体、强化剂和驻留剂体系组成的复合离子液体溶解体系制备纤维素材料,体系粘度低、溶解效果较好,可提升纤维素在体系内溶解的质量分数;溶剂体系价格低、可回收,可行性好。
再生得到的纤维素材料表面光滑、结构缺陷少、材料强度高。基于该材料可直接使用浸渍法制备纤维素基感湿材料,过程简单且成本低廉。
本发明的第二个方面,提供了上述的方法制备的纤维素基感湿变色材料,随着湿度从0%~97%RH增加,变色材料由蓝色变为红色。
天然纤维素材料溶于离子液体体系后成为纤维素溶液,然后在凝固浴内再生,再生过程中对纤维素材料进行改性得到感湿变色的纤维素材料,包括纤维素纤维、纤维素膜、纤维素凝胶等。感湿变色的纤维素材料可根据需要检测的湿度的不同调整,可应用于电子、医药、材料、能源等多个领域的湿度检测和表征,如呼吸检测、尿不湿检测、密封食品检测等,应用范围广,应用前景广阔。
本发明的第三个方面,提供了上述的纤维素基感湿变色材料在电子、医药、材料、能源领域中的应用。
本发明的有益效果
(1)本发明通过复合离子液体混合体系溶解针叶木硫酸盐浆,使纤维素在再生的过程中,纤维素和氢键配体、强化剂、驻留剂等进行结合,增强纤维素材料的物理强度。
(2)本发明制备的纤维素基感湿变色具有灵敏度高、变色效果明显、强度高、伸长率高、柔软度好等优点,可推广至多种原材料,如阔叶木硫酸盐浆、棉浆粕、竹浆粕、针叶木溶解浆等。
(3)本发明制备纤维素基感湿变色感湿范围可控,可根据使用需求通过简单的工艺调整实现对不同范围湿度的准确检测,变色可由蓝色变为红色,变化明显,观察方便。
(4)本发明的处理方法简单、实用性强,易于推广,材料降解,便于产业化生产。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示例性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为对比例样品在11%RH、33%RH、67%RH和97%RH湿度下的颜色变化;
图2为实施例2样品在11%RH、33%RH、67%RH和97%RH湿度下的颜色变化;
图3为实施例3样品在11%RH、33%RH、67%RH和97%RH湿度下的颜色变化;
图4为对比例样品和实施例3样品的纤维素溶液的黏度;
图5为对比例样品(左)和实施例3样品(右)的纤维截面SEM图;
图6为对比例样品、实施例1样品和实施例3样品的红外光谱谱图。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
正如背景技术所介绍的,针对目前感湿材料多为不可降解的化合物且制备过程复杂,生物基类感湿材料强度较低灵敏度较差。因此,本发明提出本发明提供了一种纤维素基感湿变色材料的制备方法。以针叶木硫酸盐浆为原料在复合离子液体体系,纤维素溶解后,通过挤出机或者制膜器制备不同状态的纤维素材料,然后浸入凝固浴进行再生,在洗涤过程中将得到的纤维素湿材料浸渍在适当浓度的氯化钴水溶液中,干燥得到纤维素基感湿材料,从而得到高效低成本的纤维素基感湿变色材料,同时材料可降解。
其实验包括以下详细步骤:
将离子液体、氢键配体、强化剂和驻留剂进行复配,合成复合离子液体溶解体系;
将针叶木硫酸盐浆和复合离子液体溶解体系于60~75℃下在高速混合机内真空混合20min~30min直至纤维素溶解。
纤维素纤维:将纤维素溶液倒入带计量装置的挤出机内进行纺丝或制膜,纤维素溶液经过纺丝头进入凝固浴中,得到纤维素湿纤维或者纤维素湿膜。
得到的湿纤维素材料进行洗涤,浸渍于氯化钴水溶液中10~60s,烘干卷曲得到再生纤维素纤维。
在一些实施例中,所述的溶解体系混合步骤为:取氢键配体、强化剂和驻留剂混合在离子液体中,加热搅拌混合均匀,同时将复合离子液体溶解体系加热至60~75℃备用。氢键配体的用量为离子液体的0.5~5%(摩尔分数),强化剂的用量为离子液体的0.5~10%(摩尔分数),驻留剂的用量为离子液体的0.5~5%(摩尔分数)。
在一些实施例中,针叶木硫酸盐浆为疏解分散后的浆料,水分含量在10%左右。
本申请对浆料的水分并不作特殊的限定,在一些实施例中,针叶木硫酸盐浆的水分含量在6%~15%之间,可以有效地缩短纤维素在体系内的溶解时间;
在一些实施例中,针叶木硫酸盐浆的用量为溶解体系的8~15%(质量分数),针叶木硫酸盐浆和复合离子液体溶解体系预混合后加入1L的捏合机进行溶解,搅拌速度为100转/分钟,温度为70~80℃,溶解时间一般为30~60分钟。
在一些实施例中,溶解后的纤维素溶液倒入挤出机内进行纺丝或制膜,螺杆长径比为20:1~30:1,螺杆转速为50~60转/每分钟,纺丝挤出头为黄铜材质直径0.6mm~0.8mm的垂直单孔纺丝头,制膜模具为合金材质缝隙为0.1mm~1mm的双片式喷头,挤出方式为干喷湿纺;
本申请对挤出机转速、纺丝头孔径和制膜模具缝隙并不作特殊的限定,只对纤维和膜形态有影响;
在一些实施例中,挤出的纤维素溶液垂直落入凝固液,气隙为10mm~30mm,凝固液中复合离子液体溶解体系的浓度为0%~20%,温度20~30℃;
本申请对凝固液的浓度并不作特殊的限定,在一些实施例中,凝固液的浓度对再生纤维的强度有一定影响,随着凝固液浓度的提高,纤维强度增加,增加至一定程度后开始降低;
在一些实施例中,凝固后的纤维进入洗涤槽脱除复合离子液体。
在一些实施例中,凝固后的纤维素基材料进入洗涤槽脱除复合离子液体。
在一些实施例中,浸洗涤完毕后的纤维素材料进入浸渍槽,浸渍槽内的氯化钴浓度为2%~25%(质量分数)浸渍时间为10~60s,烘干卷曲得到纤维素基感湿变色材料。
本发明的另一种实施方式,提供了一种制备纤维素感湿变色材料的方法,由上述方法获得。
本发明提供的制备纤维素基感湿变色材料可在不同湿度中显示红色或蓝色。
下面结合具体的实施例,对本发明做进一步的详细说明,应该指出,所述具体实施例是对本发明的解释而不是限定。
对比例:
(1)取150g的1-烯丙基-3-甲基咪唑氯盐(水分含量0.72%)中,混合均匀,同时将体系加热至80℃备用。
(2)将针叶木硫酸盐浆疏解分散,水分含量为9.7%左右。
(3)将15.21g针叶木硫酸盐浆和溶解体系预混合后加入500ml的捏合机进行溶解,搅拌速度为60转/分钟,温度为75℃,溶解时间为30min。
(4)溶解后的纤维素溶液倒入挤出机内进行纺丝,螺杆长径比为27:1,螺杆转速为60转/每分钟,挤出头为黄铜材质直径0.6mm的垂直单孔纺丝头,挤出方式为干喷湿纺;
(5)从纺丝头挤出的纤维素溶液垂直落入凝固液,气隙为15mm,凝固浴采用水,凝固浴温度25℃;
(6)凝固后的纤维进入洗涤槽脱除离子液体,洗涤槽长度1m,洗涤液为蒸馏水,洗涤槽温度60℃。
(7)得到的湿纤维素材料放入浸渍槽,浸渍槽长0.5m,浸渍液为蒸馏水,浸渍槽温度25℃,浸渍时间30s。
(8)浸渍处理完成后的纤维进行热风烘干(120℃,2min),烘干后的纤维卷曲至收丝盘,收丝盘线速度和挤出速度的速比为1:1。
实施例1
一种纤维素基感湿变色材料制备方法,具体步骤如下:
(1)取三甘醇1.86g、氯化胆碱3.96g、纳米二氧化硅0.8g加入缓慢搅拌的159.32g的1-烯丙基-3-甲基咪唑氯盐(水分含量0.47%)中,高速混合均匀后超声振动10min,同时将体系加热至70℃备用。
(2)将17.15g针叶木硫酸盐浆(水分含量9.8%)和复合离子液体体系预混合后真空搅拌,搅拌速度为60转/分钟,温度为70℃,溶解时间为30min。
(3)溶解后的纤维素溶液倒入挤出机螺杆长径比为23:1,螺杆转速为56转/每分钟,挤出溶液20g置于方形模具中,模具为方形,尺寸为10cm×10cm,材质为玻璃,使用刮膜器平整溶液表面。
(4)方形模具水平放入凝固液,气隙为15mm,凝固浴采用水,凝固浴温度25℃;
(5)凝固后的纤维素膜进入洗涤槽脱除离子液体,洗涤槽长度1m,洗涤液为蒸馏水,洗涤槽温度60℃。
(6)得到的湿纤维素膜放入浸渍槽,浸渍槽长0.5m,浸渍液为2.5%(质量分数)的氯化钴溶液,浸渍槽温度25℃,浸渍时间30s。
(7)浸渍处理完成后的纤维素膜进行热风烘干(120℃,2min),干燥时四周拉伸比为1:1。
实施例2
一种纤维素基感湿变色材料制备方法,具体步骤如下:
(1)取三甘醇2.12g、氯化胆碱4.05、纳米纤维素纤丝1.08g加入缓慢搅拌的150.34g的1-烯丙基-3-甲基咪唑氯盐(水分含量0.47%)和12.29g的1-丁基-3-甲基咪唑氯盐中,混合均匀,同时将体系加热至70℃备用。
(2)将18.47g针叶木硫酸盐浆(水分含量9.8%)和复合离子液体体系预混合后真空搅拌,搅拌速度为80转/分钟,温度为70℃,溶解时间为30min。
(3)溶解后的纤维素溶液倒入单螺杆挤出机内进行纺丝,螺杆长径比为26:1,螺杆转速为60转/每分钟,从喂料口至挤出口的五段温区为90℃、170℃、165℃、130℃、120℃,挤出头为黄铜材质直径0.7mm的垂直单孔纺丝头,挤出方式为干喷湿纺;
(4)从纺丝头挤出的纤维素溶液垂直落入凝固液,气隙为20mm,凝固浴采用水/1-烯丙基-3-甲基咪唑氯盐组成的水溶液体系,水和1-烯丙基-3-甲基咪唑氯盐的质量比为9:1,凝固浴温度25℃;
(5)凝固后的纤维进入洗涤槽脱除离子液体,洗涤槽长1m,洗涤液为蒸馏水,温洗涤槽温度60℃。
(6)得到的湿纤维素膜放入浸渍槽,浸渍槽长0.5m,浸渍液为2.5%(质量分数)的氯化钴溶液,浸渍槽温度25℃,浸渍时间30s。
(7)浸渍完成后的纤维进行热风烘干(120℃,2min),烘干后的纤维卷曲至收丝盘,收丝盘线速度和挤出速度的速比为1.1:1。
实施例3
一种纤维素基感湿变色材料制备方法,具体步骤如下:
(1)取尿素2.86g、氯化胆碱3.98g和纳米纤维素0.4g加入缓慢搅拌的158.32g的1-烯丙基-3-甲基咪唑氯盐(水分含量0.47%)中,在80℃下高速搅拌15min,同时将体系加热至70℃备用。
(2)将16.93g针叶木硫酸盐浆(水分含量9.8%)和复合离子液体体系预混合后真空搅拌,搅拌速度为60转/分钟,温度为70℃,溶解时间为30min。
(3)溶解后的纤维素溶液倒入单螺杆挤出机内进行纺丝,螺杆长径比为26:1,螺杆转速为50转/每分钟,从喂料口至挤出口的五段温区为85℃、170℃、165℃、130℃、120℃,挤出头为黄铜材质直径0.6mm的垂直单孔纺丝头,挤出方式为干喷湿纺;
(4)从纺丝头挤出的纤维素溶液垂直落入凝固液,气隙为10mm,凝固浴采用水/1-烯丙基-3-甲基咪唑氯盐组成的水溶液体系,水和1-烯丙基-3-甲基咪唑氯盐的质量比为8:2,凝固浴温度30℃;
(5)凝固后的纤维进入洗涤槽脱除离子液体,洗涤槽长1m,洗涤液为蒸馏水,温洗涤槽温度60℃。
(6)得到的湿纤维素膜放入浸渍槽,浸渍槽长0.5m,浸渍液为5.0%(质量分数)的氯化钴溶液,浸渍槽温度30℃,浸渍时间25s。
(7)浸渍完成后的纤维进行热风烘干(120℃,2min),烘干后的纤维卷曲至收丝盘,收丝盘线速度和挤出速度的速比为1.1:1。
实验测试:
对对比例和实施例1-3制备的再生纤维素纤维的性能进行测试,具体测试方法如下:
感湿变色测试。在250ml的广口试剂瓶中制备100ml溶液的11%、33%、67%、87%和97%的相对湿度环境,将再生纤维素感湿响应纤维置于液面上5cm,静止5min后观察其颜色变化。
感湿电响应测试。将在250ml的广口试剂瓶中制备100ml溶液的11%、33%、67%、87%和97%的相对湿度环境,将电化学工作站的电极分别夹在感湿响应纤维的两端,间隔距离为1cm,纤维素基感湿材料置于液面上5cm,利用电化学工作站(上海辰华公司生产,型号为CHI760E)和电脑记录电阻的变化情况。
裂断强度及裂断伸长:使用的仪器为Stable Microsystems公司的生产的质构仪,型号为PL/CEL5,测试方法参考GBT14337-2008),结果如表1所示。
纤维素/离子液体溶液的黏度测量采用ES-G2旋转流变仪(TA Instruments,NewCastle,USA),测量板采用直径20毫米的平行板。所有测量的间隙为均为1毫米。剪切速率范围为0.1~100s-1,扫描角频率(w)为6.28rad/s。
扫描电镜测量(SEM)及能谱测量(EDS)。SEM测试采用肖特基场发射电子枪;分辨率:0.9nm@15Kv(二次电子图像);2.0nm@30Kv(背散射电子图像);电子光路为镜筒内电子束无交叉光路,加速电压:200v-30kv;探针束流:1pA-100nA,稳定度优于0.2%/h;放大倍数:8×~100,000×;物镜使用电磁/静电复合透镜;探测器:In-Beam SE及SE二次电子探测器、背散射探测器、EDS能谱仪。EDS能谱型号:Xplore 30,能谱分析工作距离:15mm;样品台行程:X=125mm;Y=125mm;Z=50mm;T=-60°to 60°;R=360°(连续可调)。样品测试前,使用喷金台对纤维表面及截面喷金以增加导电性。
红外分析用ALPHA FTIR分光光度计(Bruker Corporation,Billerica,MA,USA)记录再生纤维素纤维的傅里叶变换红外(FTIR)光谱,使用衰减的总反射率(ATR)模式测量,探头为金刚石-ZnSe晶体。波长范围为500~4000cm-1,分辨率为4cm-1。将10根纤维紧密排列后放置在探头下进行测试,每个样本至少重复三次。所有的光谱都进行了空气校正、水蒸气校正、自动基线校正、MONIC9.0软件平滑处理,无ATR校正
表1对比例、实施例1~3制备的再生纤维素纤维性能
Figure BDA0004102609880000111
由图1~图3和表1可知,与对比例相比,进行氯化钴浸渍处理后的纤维素纤维在不同湿度下表现出不同的颜色,其中,对比例样品在11%RH、33%RH、67%RH和97%RH湿度下的颜色无变化。实施例2样品在11%RH的颜色为深蓝色、33%RH为浅蓝色、67%RH为紫色,97%RH为红色。实施例3样品在11%RH为墨蓝色、33%RH为深蓝色、67%RH为淡蓝色和97%RH为红色。随着相对湿度的增大,纤维素材料从蓝色逐渐变为红色,实施例1的湿度响应时间为367s,实施例2的湿度响应时间为380s,实施例3的湿度响应时间为248s,所有实施案例均有良好的变色响应和电响应。
由表1中数据可以得出,添加氯化胆碱和多元醇后浸渍氯化钴的再生纤维的强度对于不添加的再生纤维素纤维的强度有了大幅度的提升。对比例的裂断强度为58.43MPa,裂断伸长率为15.23%;实施例1裂断强度为153.32MPa,提高了162.40%,裂断伸长率为10.34%;实施例2裂断强度为150.36MPa,提高了157.16%,裂断伸长率为8.73%;实施例3裂断强度为132.37MPa,提高了126.54%,裂断伸长率为4.23%。本发明制备纤维素基感湿变色材料的方法也可提升纤维素材料的强度。
从图4可以看出,实施例3的纤维素溶液的黏度明显低于对比例,采用离子液体、氢键配体、强化剂和驻留剂体系组成的复合离子液体溶解体系制备纤维素材料,体系粘度低、溶解效果较好,可提升纤维素在体系内溶解的质量分数。
图5显示的是对比例和实施例3的样品截面的SEM图。对比例样品的内部表现为大孔状结构,孔洞的大小和形状不一致,复合离子液体体系制备的感湿变色纤维素纤维截面的孔洞结构的直径明显变小,同时孔洞排列有规则。通过截面的SEM图该专利制备的纤维内部的纤维素结构排列更为紧密且均匀,从而改善再生纤维素纤维的强度。
从图6可以看出氯化胆碱作为驻留剂可参与纤维素基感湿变色材料的制备,波长2920~2885cm-1之间的峰被认为是纤维素纤维素的-CH和CH2伸缩键的特征峰,实施例1和实施例3的样品在该处的特征波长发生变化,其中-CH拉伸键蓝移,-CH2拉伸键红移。实施例1和实施例3的样品在1425cm-1处的-CH2弯曲键轻微偏移,这样处理改变了葡萄糖单元中与C6相连的羟甲基的化学环境,证明纤维素材料中存在驻留剂氯化胆碱。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

1.一种纤维素基感湿变色材料的制备方法,其特征在于,包括:
将纸浆与复合离子液体溶解体系于60~75℃下真空混合20min~30min,使纤维素溶解,得到纤维素溶液;
将纤维素溶液再生,得到纤维素湿材料;
将所述纤维素湿材料浸渍在浓度为2wt%~25wt%的氯化钴水溶液10~60s中,干燥,即得;
所述复合离子液体溶解体系包括:离子液体、氢键配体、强化剂、驻留剂,
其中,氢键配体的用量为离子液体的0.5~5%,强化剂的用量为离子液体的0.5~10%,驻留剂的用量为离子液体的0.5~5%,以摩尔分数计。
2.如权利要求1所述的纤维素基感湿变色材料的制备方法,其特征在于,所述离子液体为咪唑类离子液体,选自1-烯丙基-3-甲基咪唑氯盐、1-烯丙基-3-甲基咪唑溴盐、1-丁基-3-甲基咪唑氯盐、1-丁基-3-甲基咪唑溴盐、1-乙基-3-甲基咪唑氯盐、1-乙基-3-甲基咪唑醋酸盐中的至少一种。
3.如权利要求1所述的纤维素基感湿变色材料的制备方法,其特征在于,所述氢键配体为氢键供体,选自尿素、乙二醇、丙三醇中的至少一种。
4.如权利要求1所述的纤维素基感湿变色材料的制备方法,其特征在于,所述强化剂为纳米纤维素纤丝、纳米纤维素纤维、纳米二氧化硅中的至少一种。
5.如权利要求1所述的纤维素基感湿变色材料的制备方法,其特征在于,所述驻留剂为氯化胆碱。
6.如权利要求1所述的纤维素基感湿变色材料的制备方法,其特征在于,所述复合离子液体溶解体系的混合步骤为:取氢键配体、强化剂和驻留剂混合在离子液体中,加热搅拌混合均匀,同时将复合离子液体溶解体系加热至60~75℃备用。
7.如权利要求1所述的纤维素基感湿变色材料的制备方法,其特征在于,纸浆的用量为溶解体系的8~15wt%。
8.如权利要求1所述的纤维素基感湿变色材料的制备方法,其特征在于,溶解后的纤维素溶液倒入挤出机内进行纺丝或制膜,螺杆长径比为20:1~30:1,螺杆转速为50~60转/每分钟,纺丝挤出头为黄铜材质直径0.6mm~0.8mm的垂直单孔纺丝头,制膜模具为合金材质缝隙为0.1mm~1mm的双片式喷头,挤出方式为干喷湿纺。
9.如权利要求1所述的纤维素基感湿变色材料的制备方法,其特征在于,挤出的纤维素溶液垂直落入凝固液,气隙为10mm~30mm,凝固液中复合离子液体溶解体系的浓度为0%~20%,温度20~30℃。
10.权利要求1-9任一项所述的方法制备的纤维素基感湿变色材料。
11.权利要求10所述的纤维素基感湿变色材料在电子、医药、材料、能源领域中的应用。
CN202310181983.2A 2023-02-24 2023-02-24 一种纤维素基感湿变色材料的制备方法 Pending CN116285009A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202310181983.2A CN116285009A (zh) 2023-02-24 2023-02-24 一种纤维素基感湿变色材料的制备方法
PCT/CN2023/120942 WO2024174521A1 (zh) 2023-02-24 2023-09-25 一种纤维素基感湿变色材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310181983.2A CN116285009A (zh) 2023-02-24 2023-02-24 一种纤维素基感湿变色材料的制备方法

Publications (1)

Publication Number Publication Date
CN116285009A true CN116285009A (zh) 2023-06-23

Family

ID=86800677

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310181983.2A Pending CN116285009A (zh) 2023-02-24 2023-02-24 一种纤维素基感湿变色材料的制备方法

Country Status (2)

Country Link
CN (1) CN116285009A (zh)
WO (1) WO2024174521A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024174521A1 (zh) * 2023-02-24 2024-08-29 齐鲁工业大学(山东省科学院) 一种纤维素基感湿变色材料的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114775087A (zh) * 2022-04-29 2022-07-22 齐鲁工业大学 一种改善再生纤维素纤维表面结构的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113481619B (zh) * 2021-07-27 2023-11-03 齐鲁工业大学 一种高强度再生纤维素纤维的制备方法
CN116285009A (zh) * 2023-02-24 2023-06-23 齐鲁工业大学(山东省科学院) 一种纤维素基感湿变色材料的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114775087A (zh) * 2022-04-29 2022-07-22 齐鲁工业大学 一种改善再生纤维素纤维表面结构的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024174521A1 (zh) * 2023-02-24 2024-08-29 齐鲁工业大学(山东省科学院) 一种纤维素基感湿变色材料的制备方法

Also Published As

Publication number Publication date
WO2024174521A1 (zh) 2024-08-29

Similar Documents

Publication Publication Date Title
Chen et al. Comparative characteristics of TEMPO-oxidized cellulose nanofibers and resulting nanopapers from bamboo, softwood, and hardwood pulps
Çay et al. Characterization and swelling performance of physically stabilized electrospun poly (vinyl alcohol)/chitosan nanofibres
Ghorani et al. Controlled morphology and mechanical characterisation of electrospun cellulose acetate fibre webs
Minelli et al. Investigation of mass transport properties of microfibrillated cellulose (MFC) films
Liu et al. Preparation and characterization of carboxymethylcellulose hydrogel fibers
Ruan et al. Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution
ES2607832T3 (es) Método para la producción de fibras precursoras que contienen lignina y también de fibras de carbono
Aluigi et al. Morphological and structural investigation of wool-derived keratin nanofibres crosslinked by thermal treatment
Jiang et al. Analysis of regenerated cellulose fibers with ionic liquids as a solvent as spinning speed is increased
Vocht et al. High-performance cellulosic filament fibers prepared via dry-jet wet spinning from ionic liquids
WO2016135385A1 (en) Process for producing shaped articles based on cellulose
Okugawa et al. Relaxation phenomenon and swelling behavior of regenerated cellulose fibers affected by water
WO2024174521A1 (zh) 一种纤维素基感湿变色材料的制备方法
From et al. Tuning the properties of regenerated cellulose: Effects of polarity and water solubility of the coagulation medium
Tulos et al. Kinetic analysis of cellulose acetate/cellulose II hybrid fiber formation by alkaline hydrolysis
De Silva et al. Understanding key wet spinning parameters in an ionic liquid spun regenerated cellulosic fibre
Wang et al. Effects of coagulating conditions on the crystallinity, orientation and mechanical properties of regenerated cellulose fibers
Yang et al. Influence of γ-ray radiation on the structure and properties of paper grade bamboo pulp
Li et al. Facile preparation for robust and freestanding silk fibroin films in a 1‐butyl‐3‐methyl imidazolium acetate ionic liquid system
TWI766149B (zh) 具有仿膠絲性質的萊纖纖維
CN113481619B (zh) 一种高强度再生纤维素纤维的制备方法
JP2001507089A (ja) ポリ(テトラフルオロエチレン)および関連ポリマー類の分散紡糸方法
Leppänen et al. Hybrid films from cellulose nanomaterials—properties and defined optical patterns
Jiang et al. Diffusion dynamics of 1-Butyl-3-methylimidazolium chloride from cellulose filament during coagulation process
Desorme et al. Spinning of hydroalcoholic chitosan solutions: Mechanical behavior and multiscale microstructure of resulting fibers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination