CN116284967B - Tröger’s Base连接的多孔有机聚合物凝胶及其制备和应用 - Google Patents

Tröger’s Base连接的多孔有机聚合物凝胶及其制备和应用 Download PDF

Info

Publication number
CN116284967B
CN116284967B CN202310283290.4A CN202310283290A CN116284967B CN 116284967 B CN116284967 B CN 116284967B CN 202310283290 A CN202310283290 A CN 202310283290A CN 116284967 B CN116284967 B CN 116284967B
Authority
CN
China
Prior art keywords
organic polymer
polymer gel
proton
porous organic
conducting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310283290.4A
Other languages
English (en)
Other versions
CN116284967A (zh
Inventor
顾成
陈斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202310283290.4A priority Critical patent/CN116284967B/zh
Publication of CN116284967A publication Critical patent/CN116284967A/zh
Application granted granted Critical
Publication of CN116284967B publication Critical patent/CN116284967B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0683Polycondensates containing six-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0694Polycondensates containing six-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only two nitrogen atoms in the ring, e.g. polyquinoxalines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及一种Base连接的多孔有机聚合物凝胶及其制备和应用,属于功能多孔材料领域。本发明提供一种多孔有机聚合物凝胶的制备方法:将含胺基的有机单体、反应溶剂和质子化试剂,通过Base反应制得多孔有机聚合物凝胶,含胺基的有机单体至少含有两个胺基。本发明提供了一种普适的方法合成多孔有机聚合物凝胶,合成的凝胶不仅具有优异的可加工能力,而且通过Base连接的多孔有机聚合物凝表现出优异的质子传导性能;其在75度90%RH条件下质子传导率达到2.72×10‑1S cm‑1,在‑40度0%RH的条件下质子传导率可以达到7.7×10‑3S cm‑1

Description

Tröger’s Base连接的多孔有机聚合物凝胶及其制备和应用
技术领域
本发明涉及一种 Base连接的多孔有机聚合物凝胶及其制备和应用,属于功能多孔材料领域。
背景技术
化石燃料使用增加以及大量的CO2排放加剧环境的污染,急需寻找一种清洁能源代替化石能源。在这方面,质子交换膜燃料电池因其高能效和环境友好性而成为有前途的替代能源。然而质子交换膜燃料电池核心部件为质子传导材料,尽管目前商用的质子传导材料为Nafion膜,但其成本高、制造复杂、操作条件狭窄等缺陷促使人们设计更多的替代它的材料。
多孔有机聚合物是近几十年来出现的一类新型多孔材料,由于多孔有机聚合物不仅具有高的孔隙率而且具有低的骨架密度、结构可设计、骨架可官能团化、稳定性高的特点。因此越来越多的人关注于这类材料,其中根据其结构特征和制备方法,有机多孔材料可分为固有微孔聚合物(PIMs)、超交联聚合物(HCPs)、共轭微孔聚合物(CMPs)、共价有机骨架(COFs)、共价三嗪骨架(CTFs)、多孔芳香骨架(PAFs)等类型。得益于这类材料优异的可修饰特性,我们可以利用有机构筑单元易修饰的特点在原子上精确的调控有机多孔聚合物的孔径大小、孔道环境以及比表面积得到具有特定结构和特定功能有机多孔框架结构。这些优点使多孔有机聚合物成为质子传导的候选材料。但是有机多孔材料具有加工成膜问题,大部分有机多孔聚合物的应用要转换为宏观材料如薄膜、凝胶的方式来实现,然而有机多孔聚合物本质上仍然属于高交联度的高分子化合物,其制备过程是快速交联过程,导致有机多孔聚合物在反应后以不溶、不熔的粉末形式呈现。由于不溶、不熔的特点使得有机多孔聚合物很难加工成膜,很大程度上限制了有机多孔聚合物在实际应用的发展。所以制备一种具有可加工能力的有机多孔聚合物凝胶,并将其作为质子传导材料是十分重要和有意义的。
发明内容
本发明的目的在于提出一种 Base连接的多孔有机聚合物凝胶,其综合性能如可加工性能和质子传导性能等较现有的多孔有机聚合物有很大的提高。
本发明的技术方案:
本发明要解决的第一个技术问题是提供一种多孔有机聚合物凝胶的制备方法,所述制备方法为:含胺基的有机单体、反应溶剂和质子化试剂,通过 Base反应制得了所述的多孔有机聚合物凝胶,其中,所述含胺基的有机单体至少含有两个胺基。
进一步,所述反应溶剂为二甲基亚砜(DMSO)。
进一步,所述含胺基的有机单体包括下述物质中的至少一种:1,3,6,8-四-(对胺基苯基)-芘(Py-4PhNH2)、(5,10,15,20-四(4-氨基苯)-21H,23H-卟啉(Por-4PhNH2)、四-(4-氨基苯)乙烯(TPE-4PhNH2)、1,3,5-三(4-氨基苯基)苯(Bz-3PhNH2)、三(4-氨基苯基)胺(N-3PhNH2)。
进一步,所述质子化试剂选自:三氟甲磺酸、三氟乙酸或磷酸。
进一步,所述含胺基的有机单体与反应溶剂的摩尔体积比为:0.02~0.3mmol:1mL。
进一步,所述质子化试剂与反应溶剂的体积为:0.05~0.15:0.5~1。
进一步,所述多孔有机聚合物凝胶的制备方法具体为:含胺基的有机单体和反应溶剂超声处理使有机单体充分溶解,然后加入质子化试剂并将反应装置放置于液氮中冷冻,经过三次的循环冷冻-抽真空-解冻的过程,排尽反应装置中的空气,然后用600~1200℃火焰枪将其封管,然后于110~140℃(优选120℃)干燥2~7天(优选2天)后,冷却至室温得到所述多孔有机聚合物凝胶湿凝胶。
进一步,可将所得多孔有机聚合物凝胶湿凝胶加工成干凝胶,如采用溶剂浸泡和超临界CO2干燥得到干凝胶。如将湿凝胶放入含有N,N-二甲基甲酰胺和三乙胺的混合溶剂(N,N-二甲基甲酰胺和三乙胺的体积比为:1~2:0.2~1)中浸泡3天后取出,再放入含有乙醇的溶剂中放置3天后取出,进行超临界CO2干燥得到干凝胶。
本发明要解决的第二个技术问题是提供一种多孔有机聚合物凝胶,其采用上述方法制得。
本发明要解决的第三个技术问题是指出上述所得多孔有机聚合物凝胶在质子传导材料、气体分离、离子传导、离子分离或分子分离中的用途。
本发明要解决的第四个技术问题是提供一种质子传导材料,所述质子传导材料是将上述制得的多孔有机聚合物凝胶负载磷酸后制得。
进一步,磷酸的负载量为61wt%~80wt%。
进一步,所述质子传导材料在75度90% RH条件下质子传导率为2.72×10-1S cm-1
进一步,所述质子传导材料在-40度的条件下质子传导率为7.8×10-3S cm-1
本发明要解决的第五个技术问题是提供上述质子传导材料的制备方法,所述制备方法为:将上述所得多孔有机聚合物湿凝胶浸泡在磷酸和水的混合溶液中12~48h,然后将其干燥即可。
进一步,所述磷酸和水的混合溶液中磷酸和水的体积比为:1~2:2~6。
本发明的有益效果:
本发明提供了一种普适的方法合成 Base连接的多孔有机聚合物凝胶,合成的凝胶不仅具有优异的可加工能力,而且通过 Base连接的多孔有机聚合物凝胶结构中的N容易质子化,进而通过氢键的作用可以负载大量的磷酸,负载磷酸后的凝胶表现出优异的质子传导性能;所得质子传导材料在75度90% RH条件下质子传导率达到2.72×10-1S cm-1,在25度90% RH条件下质子传导率达到1.37×10-1S cm-1以及在-40度0% RH的条件下质子传导率可以达到7.7×10-3S cm-1,这也是目前多孔材料在该温度下达到的最大值。
附图说明
图1为本发明实施例所得多孔有机聚合物凝胶的反应示意图。
图2为本发明实施例1、5~7所得不同单体对应的湿凝胶的实物图。
图3为本发明实施例1~4所得同一单体不同浓度对应的湿凝胶的实物图。
图4为本发明实施例1~4所得不同单体浓度Py-TB-AG样品的红外图。
图5为本发明实施例1~4所得不同单体浓度Py-TB-AG样品的气体吸附谱图。
图6为本发明实施例8所得Py-TB-PAG样品在90%RH不同温度下的阻抗图。
图7为本发明实施例8所得Py-TB-PAG样品在低温下的阻抗图。
图8为本发明实施例7所得Bz-TB-PAG样品在低温下的阻抗图。
具体实施方式
本发明提供了 Base连接的多孔有机聚合物凝胶的质子传导及其制备方法,具体步骤可用为:步骤一:采用封管的方法将含胺基的有机单体在三氟甲磺酸的催化下与二甲基亚砜发生反应得到多孔有机聚合物凝胶;步骤二:再将合成得到的湿凝胶浸泡在磷酸的水溶液中去负载大量的磷酸,取出干燥得到的凝胶作为质子传导材料。
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1 Base连接的多孔有机聚合物凝胶的制备
1)在10mL的安瓿瓶中,加入1,3,6,8-四-(对胺基苯基)-芘(Py-4PhNH2)(0.04mmol)和DMSO(1mL)超声10min让单体充分在DMSO溶液中溶解(有机单体的浓度记为40mM),加入0.15mL三氟甲磺酸并立即将安瓿瓶连接双排管置入液氮中冷冻。经过三次的循环冷冻-抽真空-解冻的过程,排尽安瓿瓶中的空气,然后用高温火焰枪将其封管,放入120℃的烘箱中2天后,冷却至室温然后取出得到湿凝胶(Py-TB-G),
2)在步骤1)所得有机多孔聚合物凝胶从安瓿瓶中取出得到湿凝胶,将湿凝胶放入含有N,N-二甲基甲酰胺和三乙胺的混合溶剂(DMF:三乙胺=4:1)中浸泡3天,每天都将溶液换新一次,三天后取出,再放入含有乙醇的溶剂中,每天也换新一次放置3天后取出,然后进行超临界CO2干燥得到干凝胶(Py-TB-AG)。
实施例2~4
制备过程同实施例1,区别仅在于,步骤1)中改变有机单体的浓度(即改变实施例1中1,3,6,8-四-(对胺基苯基)-芘(Py-4PhNH2)与DMSO的摩尔体积比)分别为:20mM(实施例2)、60mM(实施例3)和80mM(实施例4);结果表明均可以得到凝胶(如图3所示)。
实施例5~7
制备过程同实施例1,区别仅在于,将步骤1)中的单体由1,3,6,8-四-(对胺基苯基)-芘分别修改为:(5,10,15,20-四(4-氨基苯)-21H,23H-卟啉(Por-4PhNH2)-实施例5;四-(4-氨基苯)乙烯(TPE-4PhNH2)-实施例6;1,3,5-三(4-氨基苯基)苯(Bz-3PhNH2)-实施例7;结果发现均可以得到对应的凝胶结构(如图2所示)。
实施例8多孔有机聚合物凝胶负载磷酸制备质子传导材料
将单体浓度为80mM的Py-TB-G(实施例4)湿凝胶浸泡在磷酸(质量分数为85%wt)和水的混合溶液(V磷酸:V=1:2体积比)中,浸泡24h后取出将其干燥得到负载磷酸(磷酸的负载量为61.6wt%)的气凝胶(Py-TB-PAG),即为质子传导材料。
试验例1结构表征
1)不同单体浓度Py-TB-AG样品的红外谱图
先把不用单体浓度的Py-TB-AG样品和溴化钾放入真空烘箱在80℃条件下过夜干燥,用红外压片模具制备得到直径1.2cm左右的样品,对样品进行红外测试。如图4所示:与Py-4PhNH2相比,Py-TB-AG在1252、1486、2850和2919cm-1处显示了新生成的峰,前者的一个峰和后三个峰分别归因于Py-TB-AG样品的C-N和C-H振动。同时Py-4PhNH2中3343cm-1处对应于氨基N-H振动的峰在Py-TB-AG样品中消失,因此通过红外光谱可以得知反应的发生。
2)不同单体浓度Py-TB-AG样品的N2吸附谱图
称取一定量的样品于样品管中,进行抽气干燥处理之后设定程序测试样品的N2吸附,如图5所示,样品表现出典型的吸附ΙΙ型曲线,在P/P0<0.001的低压范围内吸附量较大,在0.001<P/P0<0.8的中压范围内吸附量略有增加,与Py-TB-AG的微孔和介孔率相对应。值得注意的是,在0.8<P/P0<1的高压范围内,由于氮气在气凝胶表面的毛细凝结,Py-TB-AG的吸附量急剧增加,从而揭示了Py-TB-AG的大孔隙性。
试验例2Py-TB-PAG的电化学阻抗实验
将实施例8所得Py-TB-PAG样品放入高为0.4cm,半径为0.52cm空心圆柱体中,两端用银电极与样品接触,然后用电极夹夹住这个圆柱体,然后将样品放入恒温恒湿箱中,用电化学工作站测试在不同温度以及不同湿度下的电化学阻抗谱图。然后质子电导率根据方程S=L/(Z*A)计算,其中S为电导率(S cm-1),L为电极距离(cm),A为电极与样品的接触面积(cm2),Z为阻抗(Ω)。如图5所示,Py-TB-PAG样品在90% RH不同温度条件下表现出优异的质子传导性能,在25度90% RH条件下质子传导率达到1.27×10-1S cm-1。同时我们也测试了该样品在低温条件下的电导率(如图6所示),样品在低温依然表现优异的质子传导性能,在低温-40度下,质子电导率为7.7×10-3S cm-1(如图7所示)。
根据上述相同的测试条件,测得实施例7所得材料Bz-TB-PAG样品在低温下的阻抗图如图8所示,由图8可知:样品在低温也表现出优异的质子传导性能,在低温-20度下,质子电导率为4.1×10-2S cm-1

Claims (4)

1.一种质子传导材料,其特征在于,所述质子传导材料是将多孔有机聚合物凝胶负载磷酸后制得的气凝胶,所述多孔有机聚合物凝胶的制备方法为:含胺基的有机单体、反应溶剂和质子化试剂,通过Tröger’s Base反应制得多孔有机聚合物凝胶,其中,所述反应溶剂为二甲基亚砜;所述含胺基的有机单体为1,3,6,8-四-(对胺基苯基)-芘;所述质子化试剂选自:三氟甲磺酸、三氟乙酸或磷酸;所述含胺基的有机单体与反应溶剂的摩尔体积比为:0.02~0.3mmol:1mL;所述质子化试剂与反应溶剂的体积为:0.05~0.15:0.5~1;磷酸的负载量为61 wt %~80 wt %;所述质子传导材料在75度 90% RH 条件下质子传导率为2.72´10-1 S cm-1
2.根据权利要求1所述的质子传导材料,其特征在于,
所述质子传导材料在25度 90% RH 条件下质子传导率为1.37´10-1 S cm-1;和/或:
所述质子传导材料在-40度的条件下质子传导率为7.8´10-3 S cm-1
3.权利要求1或2所述质子传导材料的制备方法,其特征在于,所述制备方法为:将所述多孔有机聚合物湿凝胶浸泡在磷酸和水的混合溶液中12~48 h,然后将其干燥即可。
4.根据权利要求3所述质子传导材料的制备方法,其特征在于,所述磷酸和水的混合溶液中磷酸和水的体积比为:1~2:2~6。
CN202310283290.4A 2023-03-22 2023-03-22 Tröger’s Base连接的多孔有机聚合物凝胶及其制备和应用 Active CN116284967B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310283290.4A CN116284967B (zh) 2023-03-22 2023-03-22 Tröger’s Base连接的多孔有机聚合物凝胶及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310283290.4A CN116284967B (zh) 2023-03-22 2023-03-22 Tröger’s Base连接的多孔有机聚合物凝胶及其制备和应用

Publications (2)

Publication Number Publication Date
CN116284967A CN116284967A (zh) 2023-06-23
CN116284967B true CN116284967B (zh) 2024-07-23

Family

ID=86816503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310283290.4A Active CN116284967B (zh) 2023-03-22 2023-03-22 Tröger’s Base连接的多孔有机聚合物凝胶及其制备和应用

Country Status (1)

Country Link
CN (1) CN116284967B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150062057A (ko) * 2013-11-28 2015-06-05 한국과학기술원 트뢰거 염기 기반의 공유결합 유기 중합체 및 이를 함유하는 이산화탄소 흡착제
CN108291026A (zh) * 2015-11-24 2018-07-17 陶氏环球技术有限责任公司 具有固有微孔性的troger碱聚合物
CN110194824A (zh) * 2019-07-03 2019-09-03 江南大学 一种卟啉基自具微孔聚合物及其合成方法
CN112275146A (zh) * 2020-09-01 2021-01-29 中国科学院山西煤炭化学研究所 一种经磷酸处理的Tr*ger`s Base聚合物气体分离膜及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3606650A1 (en) * 2017-04-06 2020-02-12 Dow Global Technologies LLC Thin film composite membrane including crosslinked troger's base polymer
CN112159517B (zh) * 2020-08-28 2022-09-27 南京理工大学 朝格尔碱基共轭微孔聚合物光催化剂及其制备方法和应用
CN113594520B (zh) * 2021-06-15 2022-12-09 中国科学院过程工程研究所 一种含朝格尔碱基聚苯并咪唑及其磷酸掺杂高温质子交换膜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150062057A (ko) * 2013-11-28 2015-06-05 한국과학기술원 트뢰거 염기 기반의 공유결합 유기 중합체 및 이를 함유하는 이산화탄소 흡착제
CN108291026A (zh) * 2015-11-24 2018-07-17 陶氏环球技术有限责任公司 具有固有微孔性的troger碱聚合物
CN110194824A (zh) * 2019-07-03 2019-09-03 江南大学 一种卟啉基自具微孔聚合物及其合成方法
CN112275146A (zh) * 2020-09-01 2021-01-29 中国科学院山西煤炭化学研究所 一种经磷酸处理的Tr*ger`s Base聚合物气体分离膜及其制备方法和应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Ionic liquid/H2O-mediated synthesis of mesoporous organic polymers and their application in methylation of amines;XiaoXiao Yu等;《Chemical Communications》;20170504;第53卷(第44期);5962-5965 *
Synthesis and characterization of novel Tröger’s base containing polymers from commercial available diamines;ZhiXiu Wu;《Macromolecular Research》;20170718;第25卷;546-551 *
Ting Wang等.Tröger's base polymer blended with poly(ether ketone cardo) for high temperature proton exchange membrane fuel cell applications.《Journal of Membrane Science》.2022,第654卷120539. *
Tröger’s Base Network Polymers of Intrinsic Microporosity (TB-PIMs) with Tunable Pore Size for Heterogeneous Catalysis;Ariana R. Antonangelo等;《Journal of the American Chemical Society》;20220816;第144卷(第34期);15581–15594 *
Tröger碱聚合物的合成及其成膜性能;黄荣璐 等;《南通大学学报(自然科学版)》;20200930;第19卷(第3期);49-54 *
Zhong Li等.An unusual synthesis of Troger's bases using DMSO/HCl as formaldehyde equivalent.《SYNTHESIS-STUTTGART》.2005,第8卷1228-1230. *

Also Published As

Publication number Publication date
CN116284967A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
Wang et al. Ethyl phosphoric acid grafted amino-modified polybenzimidazole with improved long-term stability for high-temperature proton exchange membrane applications
Yin et al. An effective strategy for the preparation of a wide-temperature-range proton exchange membrane based on polybenzimidazoles and polyacrylamide hydrogels
Wang et al. Controllable cross‐linking anion exchange membranes with excellent mechanical and thermal properties
Zhong et al. Inorganic acid‐impregnated covalent organic gels as high‐performance proton‐conductive materials at subzero temperatures
Yang et al. Fabrication of crosslinked polybenzimidazole membranes by trifunctional crosslinkers for high temperature proton exchange membrane fuel cells
Wang et al. Anion exchange membranes based on semi-interpenetrating polymer network of quaternized chitosan and polystyrene
Boroglu et al. The synthesis and characterization of anhydrous proton conducting membranes based on sulfonated poly (vinyl alcohol) and imidazole
Yang et al. Benzimidazole grafted polybenzimidazoles for proton exchange membrane fuel cells
Wang et al. Effects of branching structures on the properties of phosphoric acid-doped polybenzimidazole as a membrane material for high-temperature proton exchange membrane fuel cells
Song et al. Novel alkaline anion-exchange membranes based on chitosan/ethenylmethylimidazoliumchloride polymer with ethenylpyrrolidone composites for low temperature polymer electrolyte fuel cells
Ji et al. Cellulose and poly (vinyl alcohol) composite gels as separators for quasi-solid-state electric double layer capacitors
Kang et al. A conductive porous organic polymer with superprotonic conductivity of a Nafion-type electrolyte
Fuzlin et al. Studies on favorable ionic conduction and structural properties of biopolymer electrolytes system-based alginate
Tang et al. High-temperature proton exchange membranes from ionic liquid absorbed/doped superabsorbents
Wang et al. Preparation and properties of organic–inorganic alkaline hybrid membranes for direct methanol fuel cell application
Zhiwei et al. Preparation and characterization of PVA proton exchange membranes containing phosphonic acid groups for direct methanol fuel cell applications
CN103050719A (zh) 质子型离子液体基质子交换膜及其制备
Tian et al. Enhanced performance and durability of high-temperature polymer electrolyte membrane fuel cell by incorporating covalent organic framework into catalyst layer
CN113178338A (zh) 一种咔唑基多孔碳/聚苯胺复合电极材料及其制备方法
CN110982085A (zh) 一类富偶氮键共价有机框架材料的制备及其在质子导电和燃料电池应用
Shao et al. Sulfonated covalent organic framework packed Nafion membrane with high proton conductivity for H 2/O 2 fuel cell applications
Wang et al. Synthesis of gemini basic ionic liquids and their application in anion exchange membranes
CN116284967B (zh) Tröger’s Base连接的多孔有机聚合物凝胶及其制备和应用
Liang et al. Improved performance of carbon‐based supercapacitors with sulfonated poly (ether ether ketone)/poly (vinyl alcohol) composite membranes as separators
Cheng et al. NH group-rich dendrimer doped polybenzimidazole composite membrane with consecutive proton transportation channels for HT-PEMFCs

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant