CN116284470B - 一种海蛇尾多糖硫酸酯衍生物的制备方法及应用 - Google Patents

一种海蛇尾多糖硫酸酯衍生物的制备方法及应用 Download PDF

Info

Publication number
CN116284470B
CN116284470B CN202310117014.0A CN202310117014A CN116284470B CN 116284470 B CN116284470 B CN 116284470B CN 202310117014 A CN202310117014 A CN 202310117014A CN 116284470 B CN116284470 B CN 116284470B
Authority
CN
China
Prior art keywords
sea snake
polysaccharide
tpg
snake tail
tail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310117014.0A
Other languages
English (en)
Other versions
CN116284470A (zh
Inventor
袁清霞
赵龙岩
马海琼
唐浩
谭鸿杰
李婷婷
魏时英
黄金文
姚玥
胡亚平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University of Chinese Medicine
Original Assignee
Guangxi University of Chinese Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University of Chinese Medicine filed Critical Guangxi University of Chinese Medicine
Priority to CN202310117014.0A priority Critical patent/CN116284470B/zh
Publication of CN116284470A publication Critical patent/CN116284470A/zh
Application granted granted Critical
Publication of CN116284470B publication Critical patent/CN116284470B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0003General processes for their isolation or fractionation, e.g. purification or extraction from biomass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/737Sulfated polysaccharides, e.g. chondroitin sulfate, dermatan sulfate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/56Materials from animals other than mammals
    • A61K35/616Echinodermata, e.g. starfish, sea cucumbers or sea urchins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Dermatology (AREA)
  • Polymers & Plastics (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本发明公开了一种海蛇尾多糖硫酸酯衍生物的制备方法及应用,所述方法包括以下步骤:S1、将海蛇尾烘干粉碎,加水提取后酶解,再加入过氧化物脱色,醇沉后浓缩冻干得到海蛇尾总多糖;S2、将海蛇尾总多糖溶解于适量的超纯水,采用阴离子交换柱分离,收集纯水组分,再采用分子排阻色潽法进一步纯化,制得所述的海蛇尾多糖TPG;S3、在氮气氛围下,取适量TPG于二甲基亚砜中溶解,进行硫酸酯化改性,无水乙醇醇沉,4℃静置,反复盐析醇沉,复溶后离心,采用阴离子交换柱纯化,透析脱盐,浓缩,冻干,得到海蛇尾多糖硫酸酯衍生物TPGS。本发明的制备的海蛇尾多糖硫酸酯衍生物TPGS可作为潜在的抗凝药物治疗血栓性疾病,改善人类健康。

Description

一种海蛇尾多糖硫酸酯衍生物的制备方法及应用
技术领域
本发明涉及医药技术领域,尤其是涉及一种海蛇尾多糖硫酸酯衍生物的制备方法及应用。
背景技术
心血管疾病严重威胁人类的健康,其中包括血栓性疾病。机体内血管内皮细胞受损、血流减慢或血流方向改变,以及血液凝固性改变等导致血栓的形成。目前临床常见的预防和治疗血栓的药物是以肝素或类肝素为代表的抗凝剂。但肝素的长期使用会引起许多副作用如血小板的减少、骨质疏松及出血性并发症,且来源于哺乳动物如猪和牛的肠黏膜的肝素制剂具有病毒污染的风险。研发药效显著且毒副作用小的抗凝剂仍是新药开发的关注点。
中药多糖大都具有良好的免疫调节和抗肿瘤等活性受到了广泛关注。研究发现,多糖的生物活性高度依赖于其物理化学性质和结构特征。经过结构修饰如硫酸化、磷酸化、乙酰化等不仅可以改变其分子量大小、水溶性等理化性质,还可以增强其药理活性,甚至产生新的生物活性。来源于天然提取或硫酸化化学修饰的硫酸化多糖,生物活性高,其中包括抗凝血活性。海洋生物是硫酸化多糖的丰富来源,在新药开发上具有潜在的应用。海蛇尾广泛分布在南极、北极和热带的深水和浅水海洋栖息地。然而,与其他棘皮动物相比,对该物种多糖的研究非常有限。
发明内容
本发明的目的是提供一种海蛇尾多糖硫酸酯衍生物的制备方法及应用,制备的海蛇尾多糖硫酸酯衍生物TPGS可作为潜在的抗凝药物治疗血栓性疾病,改善人类健康。
为实现上述目的,本发明提供一种海蛇尾多糖的制备方法,按照以下步骤制备:
S1、将海蛇尾烘干粉碎,加水提取后酶解,再加入过氧化物脱色,醇沉后浓缩冻干得到海蛇尾总多糖;
S2、将海蛇尾总多糖溶解于适量的超纯水,采用阴离子交换柱分离,收集纯水组分,再采用分子排阻色潽法进一步纯化,制得海蛇尾多糖TPG。
优选的,步骤S1中,加水提取,干粉和纯水料液比为1:(2~5),提取温度为45~60℃,提取时间16~18h,提取液调pH值至2~3除蛋白,酶解后用氢氧化钠调pH至中性。
优选的,将步骤S2获得的TPG通过酸解后制备海蛇尾多糖低聚物,其结构特征与所述TPG一致。
优选的,所述TPG及其低聚物具有如下结构特征:
式(I)中,n为1-100的整数;A、A’、B、C、D为α–D–葡萄糖–1–基,E为葡萄糖二醇。
优选的,TPG及其低聚物由→4)-α-D-Glcp-(1→重复单元形成主链,其二糖侧链α-D-Glc-(1→4)-α-D-Glc-(1→连接于主链的C-6位。
一种海蛇尾多糖硫酸酯衍生物的制备方法,按照以下方法制备:
在氮气氛围下,取适量TPG于二甲基亚砜中溶解,进行硫酸酯化改性,无水乙醇醇沉,4℃静置,反复盐析醇沉,复溶后离心,采用阴离子交换柱纯化,透析脱盐,浓缩,冻干,得到硫酸酯衍生物TPGS。
优选的,步骤S3中硫酸酯化改性所采用的方法为氯磺酸-吡啶法、三氧化硫-吡啶法、三氧化硫吡啶-DMF法或甲酰胺-氯磺酸法。
优选的,所述TPGS具有如下结构特征:
式(II)中,n、A、B、C、D定义与式(I)相同;R为相互独立的H或-SO3H。
优选的,TPG单糖组成为葡萄糖,总糖含量为90~100%;TPGS总糖含量为40~70%,硫酸基含量为30~60%,取代度为0.5~2.0。
一种TPGS在制备抗凝剂上的应用,所述抗凝剂为在药学上可接受的盐,所述的药学上可接受的盐为钙盐、钠盐或钾盐。
因此,本发明采用上述一种海蛇尾多糖硫酸酯衍生物的制备方法及应用,具有如下有益效果:
1、本发明制备的海蛇尾多糖TPG由葡萄糖组成,是一种含有二糖侧链结构新颖的多糖,该多糖的结构组成明显不同于文献报道及已有专利中制备的葡聚糖。
2、本发明中的一种TPGS具有强效FXase抑制活性,其EC50值与LMWH的活性相当。具有低出血倾向的内源性凝血途径抑制剂已成为新型抗凝药物研究的热点。FXase作为抗凝血靶点,可以减少出血倾向等副作用。因此,本发明一种海蛇尾多糖的硫酸酯衍生物TPGS对于开发新型抗凝剂治疗血栓性疾病具有重要价值。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为海蛇尾多糖的Sepharose CL-6B凝胶柱层析洗脱曲线;
图2为海蛇尾TPG、TPGS、低聚物F1~F3的高效液相色谱图、单糖组成分析、红外光谱图;
图3为TPG及其低聚物F1~F3的1H NMR和13C NMR检测图谱;
图4为TPG的低聚物F2的DEPT-135检测图谱;
图5为TPG的低聚物F2的1H-1H COSY图谱;
图6为TPG的低聚物F2的1H-1H TOCSY图谱;
图7为TPG的低聚物F2的1H-13C HMBC图谱;
图8为TPG的低聚物F3的1H-1H ROESY图谱;
图9为TPG的低聚物F3的1H-13C HSQC图谱;
图10为TPG和TPGS的1H-13C HSQC叠加图谱;
图11为TPGS对APTT、PT、TT、内源性FXase、因子Xa和因子Ⅱa的影响。
具体实施方式
以下通过附图和实施例对本发明的技术方案作进一步说明。
除非另外定义,本发明使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。
实施例1:一种海蛇尾多糖(Trichasterpalmiferus glucan,TPG)的制备
1.1材料
海蛇尾(Trichasterpalmiferus)购自广西北海;Amberliter FPA98Cl大孔树脂;Sepharose CL-6B、Sephadex G-25(美国GE Healthcare公司);木瓜蛋白酶(源叶生物);其他常用试剂如氯化钠、氢氧化钠、乙醇、盐酸等均为市售分析纯试剂。
1.2方法
(1)海蛇尾总多糖的提取制备:将干海蛇尾于50~60℃烘箱进一步干燥,粉碎成均匀的粉末。取海蛇尾粉末置反应釜中加水提取,料液比为1:5,加入终浓度为0.1%的木瓜蛋白酶,于55℃酶解16h,再加入6MNaOH在60℃下提取2h,提取液于4816×g下离心15min。上清液用6M HCl调pH至2~3,4℃放置4h,在4816×g下离心15min,去除蛋白质;所得上清液用6MNaOH调pH至中性,盐析醇沉。在4816×g下离心15min,并用水溶解所得沉淀。用3%H2O2水溶液在pH 10,50℃条件下将多糖溶液脱色。脱色后,用乙醇进行沉淀。离心、冻干后得到海蛇尾总多糖。
(2)分离纯化:将海蛇尾总多糖溶解于适量的超纯水,采用强阴离子交换树脂Amberliter FPA98Cl进行分离,梯度洗脱,收集纯水组分,然后再用Sepharose CL-6B凝胶柱(1.5cm×150cm)进一步纯化,采用苯酚硫酸法追踪检测,绘制洗脱曲线,进行液相分析,收集得到单一峰组分,透析,减压浓缩,冷冻干燥得到纯化的TPG。
结果
海蛇尾总多糖得率以海蛇尾干粉计得率约为4.2%,再通过柱层析纯化得到TPG。TPG的洗脱曲线及HPGPC检测谱图见图1和图2(A),高效液相色谱峰为对称的单一峰,面积归一化法计算分离纯化得到的TPG的纯度>95%。
实施例2:一种海蛇尾TPG的部分酸水解
2.1材料
TPG为实施例1中制备得到;Bio-Gel P-6(美国BIORAD公司);Sephadex G-25(美国GE Healthcare公司);三氟乙酸(TFA)、硼氢化钠、盐酸等常用试剂均为市售分析纯试剂。
2.2方法
取103mg TPG,加入100mM的TFA溶液10.3mL溶解,100℃水解7h。调pH至中性,加入39mg硼氢化钠,50℃反应1h。反应液用1MHCl。
调pH至中性,浓缩后经Bio-Gel P-凝胶柱纯化,Sephadex G-25凝胶柱脱盐,冻干,得到不同分子量的TPG低聚物F1、F2、F3。
结果
得到的TPG低聚物F1、F2、F3的高效液相色谱图如图2D所示,F1、F2、F3均为单一色谱峰,计算所得分子量分别为17.1kDa、9.2kDa、1.7kDa。
实施例3:一种海蛇尾多糖(Trichasterpalmiferus,TPG)硫酸酯衍生物的制备
3.1材料
TPG为实施例1中制备得到;DEAE Sepharose Fast Flow(美国GE Healthcare公司);无水DMSO、三氧化硫-吡啶、氯化钠等所用试剂均为市售分析纯试剂。
3.2方法
在氮气氛围下,取TPG 100mg于10mL无水二甲基亚砜中溶解,加入三氧化硫吡啶复合物2.517g,50℃搅拌1h,无水乙醇醇沉,4℃静置4h,反复盐析醇沉,纯水复溶后离心,使用DEAE Sepharose Fast Flow阴离子交换层析柱(40cm×3cm)进行纯化,用截留分子量为3.5KDa的透析袋透析脱盐,浓缩,冻干,得到硫酸酯衍生物TPGS。将制备的TPGS过Dowex 50W×8H+型阳离子交换树脂(30cm×2cm)交换成氢型,然后缓慢滴加1M氢氧化钠、氢氧化钾或氢氧化钙中和至pH为7.4,得到TPGS对应的钠盐、钾盐或钙盐。
结果
硫酸酯衍生物TPGS的得率以原料TPG计为80%。制备的TPGS高效液相色谱图如图2A所示,相较于TPG,TPGS的保留时间右移,除主峰外还含有其他小峰,提示TPG在硫酸化过程中发生了降解,TPGS分子量变小。
实施例4:TPG及其硫酸酯衍生物的理化性质表征
4.1材料
TPG、其低聚物、硫酸酯衍生物为实施例1~3中制备得到;1-苯基-3-甲基-5-吡唑啉酮(PMP)、半乳糖、半乳糖醛酸、葡萄糖、葡萄糖醛酸、乙酰氨基葡萄糖等均来自美国Sigma公司;其他试剂如乙腈、硫酸钾、硫酸、三氟乙酸等均为市售分析纯试剂。
4.2方法
采用高效液相凝胶色谱法测定TPG、其低聚物、硫酸酯衍生物的分子量。色谱条件:岛津高效液相色谱仪(LC-2030C 3D HPLC),示差折光检测器(RID),Shodex OHpak SB-804HQ(7μm,8×300mm)色谱柱,流速0.5mL/min,柱温35℃,流动相为0.1M氯化钠溶液。
TPG及其硫酸酯衍生物TPGS的总糖含量采用苯酚硫酸法,以D-Glc为标准品;采用氯化钡明胶法测定硫酸基含量,以K2SO4为标准品;采用考马斯亮蓝法测定蛋白质含量,以BSA为标准品。
采用柱前衍生化HPLC检测单糖组成。检测条件:岛津高效液相色谱仪(LC-2030C3D HPLC),Agilent ZORBAX Eclipse Plus C18色谱柱(4.6×250mm,5μm),流动相为乙腈和pH为6.7的0.1M磷酸盐缓冲液(17:83,v/v),检测器为DAD,柱温为30℃,检测波长为245nm。
取干燥的样品约2mg,与干燥的KBr粉末混合,研细,压成薄片于Nicolet iS50 FT-IR红外光谱仪进行扫描,扫描范围为4000~400cm-1
结果
所得TPG、TPGS、F1、F2、F3分子量分别为165.5kDa、142.2kDa、17.1kDa、9.2kDa、1.7kDa,TPG单糖组成为葡萄糖,苯酚硫酸法测得总糖含量为92%,未检测到蛋白质。TPGS总糖含量为49.7%,硫酸基含量为46.7%,取代度为1.57。TPGS因硫酸基团的存在其总糖含量远低于TPG。
TPG和TPGS的红外光谱如图2C所示,在3368.50cm-1处有一个宽而强的吸收峰,这与O-H的伸缩振动有关。在2935.44cm-1处的吸收峰是由C-H的伸缩振动引起的。1647.22cm-1的吸收为水的吸收峰。在1154.42cm-1、1079.90cm-1和1023.36cm-1处的吸收峰吡喃环的伸缩振动峰。在931.80cm-1处吸收峰为D-吡喃糖环非对称伸缩振动。与TPG相比硫酸盐衍生物TPGS的红外光谱图中出现了两个新的特征吸收峰,是由硫酸酯引起的。在1250cm-1附近处的强吸收峰为S=O伸缩振动,820cm-1左右吸收峰为C-O-S的弯曲振动。
实施例5:TPG的结构解析
5.1材料
TPG、TPGS、F1~F3为实施例1-3中制备得到;氢氧化钠、无水DMSO、碘甲烷、氯仿、硼氢化钠、吡啶和醋酸酐等试剂均为市售分析纯试剂。
5.2方法
采用甲基化方法分析TPG糖苷键连接方式。取样品5mg加入2mL无水DMSO,待样品溶解后加入干燥的氢氧化钠粉末5mg,在氮气氛围下,搅拌溶解。冰浴后,缓慢加入1.5mL碘甲烷反应2h,加入2mL纯水终止反应。反应液中加入等量的氯仿,合并氯仿层,并用水萃取。氯仿层减压浓缩干燥,重复此操作数次得到TPG甲基化多糖样品。采用2mol/LTFA将多糖甲基化样品水解,硼氢化钠还原,用吡啶和醋酸酐反应生成乙酰化衍生物后进行GC-MS分析。色谱柱条件:RXI-5SIL MS 30m×0.25mm×0.25μm;程序升温:起始温度120℃,3℃/min升温至250℃,保持5min;进样口温度为250℃;检测器温度为250℃/min;载气:氦气;流速为1mL/min。
采用核磁共振波谱解析TPG的结构。采用超低温探头,于298.1K温度下用AdvanceⅢ600MHz核磁共振仪(德国Bruker公司)测定1D/2D NMR谱图。将干燥后的样品溶解在0.5mL的氧化氘(D2O,99.9%D)中,冻干,该步骤重复3次。然后将冻干的样品溶解在0.5mL的D2O中,浓度为10~20g/L,进行核磁共振波谱分析。
结果
TPG甲基化的结果如表1所示,TPG含有Glcp-(1→、→4)-Glcp-(1→、→3,4)-Glcp-(→、→4,6)-Glcp-(→四种糖苷键连接方式,其峰面积分别为17.2%、69.66%、0.61%、12.53%。
表1甲基化分析结果
核磁共振波谱如图3-9所示。根据1D和2D核磁共振谱图,TPG可得到解析,其化学结构式具有如本发明所述的式(I)所述的结构特征。
F2和F3的HSQC光谱(图9)的低场区域的异头氢和异头碳信号分别为5.40/102.22、5.39/102.22、5.37/102.54、5.13/102.87和4.97/101.20ppm,将其分别标记为A1、B1、C1、A’1和D1。在COSY光谱中,根据H-1质子信号,H-2质子的相关信号,可以得到确定(图5),其他质子化学位移如H-3、H-4、H-5和H-6,可以根据1H-1H COSY、TOCSY、ROESY和HMBC谱确定。同时它们碳化学位移可以通过一些相关核磁共振波谱来确定,如1H-13CHSQC、HMBC和TOCSY-HSQC。在HMBC谱中,每个糖残基的C-1的偶合常数(1JC-H)为>170Hz,为α-构型。表2总结了F2的信号归属。
根据C-4的化学位移(79.42/80.30ppm)、糖残基质子峰的峰面积和甲基化分析中的比例,确定残基A为→4)-α-D-Glc-(1→。~5.39ppm(残基B)的信号归因于末端残基α-D-Glcp-的异常质子,与在甲基化分析结果一致,同时在TOCSY光谱中清晰观察到其H-4(3.42ppm)的化学位移(图6),进一步确定了残基B,该末端残基可以通过其TOCSY光谱中的交叉峰信号(H1,H4)来识别。
由于C-4(79.96ppm)和C-6(69.95ppm)的化学位移变化,残基C确定为(1→4,6)-linked-Glcp。根据C-4(~79ppm)和C-6(~63ppm)的信号,确定残基A’和D均为→4)-α-D-Glc-(1→。H-1的化学位移(4.97ppm)表明,残基D与(1→4,6)-Glcp(残基C)的C-6位置相连。根据一些H/C信号,如(3.64/3.69)/65.22ppm、3.58/75.31ppm、4.01/73.2ppm、3.89/84.49ppm、3.76/75.32和(3.68/3.80)/64.62ppm,可以将其归属为还原端的葡萄糖二醇(糖残基E)。与E相关的A’的H-1的化学位移为5.13ppm。F3的一维和二维NMR信号比F2更明显,说明F3的水解程度高于F2。
根据ROESY和HMBC图谱来确定F2和F3的糖苷键连接方式。在ROESY图谱中清楚地观察的了残基A的H-1(5.40ppm)和残基A/C的H-4(3.66/3.67ppm)、残基D的H-1(4.97ppm)和残基C的H-6(3.86ppm)、残基B的H-1(3.9ppm)和残基A/D的H-4(3.63/3.66ppm)、残基A’的H-1(5.13ppm)和残基E的H-4(3.89ppm)的交叉信号峰。HMBC谱中的交叉信号峰(3.66,102.36)、(3.89,102.87)、(3.86/3.98,100.95)和(3.63/3.66,102.22)表明残基A的C-1与残基A/C的C-4相连,残基A’的C-1与残基E的C-4相连,残基D的C-1与残基C的C-6的相连,残基B的C-1与残基A/D的C-4的相连。基于甲基化和核磁共振分析的结果,TPG由→4)-α-D-Glcp-(1→重复单元形成主链,其二糖侧链α-D-Glc-(1→4)-α-D-Glc-(1→连接于主链的C-6位。自此,TPG的结构特征与其低聚物一致,可通过其低聚物F2、F3进行推断。
表2F2的1H/13C NMR检测数据(δ[ppm])
黑体字符中的值表示糖基化的位点。
实施例6:TPG硫酸酯衍生物抗凝活性测定
6.1材料
TPGS钠盐为实施例3中制备得到。凝血质控血浆、氯化钙、APTT、PT、TT等测定试剂盒(德国TECO GmbH);Tris-HCl(Amresco公司);依诺肝素钠(法国赛诺菲);FVIII:C试剂盒(法国HYPHEN BioMed);因子VIII(德国拜耳公司)
6.2方法
APTT测定:取5μL待测样品或Tris-HCl缓冲液,加入到37℃预热的比色杯中,加入45μL正常凝血质控血浆,37℃下孵育2min;然后加入37℃预热的APTT试剂50μL,37℃下孵育3min;最后,加入50μL37℃预热的0.02MCaCl2,同时开始计时,记录凝血时间。
PT测定:取5μL待测样品或Tris-HCl缓冲液,加入到37℃预热的检测管中,加入45μL正常凝血质控血浆,37℃下孵育2min。加入37℃预热的PT试剂100μL,并记录凝血时间。
TT测定:取10μL待测样品溶液或Tris-HCl缓冲液,加入到37℃预热的比色杯中,再加入90μL正常凝血质控血浆,37℃孵育2min。然后加入50μL37℃预热的TT试剂,记录凝血时间。
凝血因子抑制活性检测:
采用FVIII:C试剂盒检测样品抑制FXase的活性。在96孔板中加入30μL浓度梯度的受试样品溶液(Tris-HCl缓冲液作为空白对照孔),依次加入30μL的FVIII溶液(2IU/mL)、30μL的R2溶液(60nM的IXa溶液,含IIa、Ca2+和PC/PS),96孔板置于酶标仪中混匀,并在37℃下孵育2min;再加入30μL R1溶液(50nM含直接因子IIa抑制剂的FX溶液),于酶标仪振荡混匀,并于37℃孵育1min;最后加入30μL在37℃预热的R3溶液(含8.4mM FXa特异性的生色底物SXa-11),振荡混匀,间隔30s连续读取405nm处吸光度。
在AT存在的情况下,采用HeparinAnti-FIIa试剂盒和Anti-FXa试剂盒分别测定样品的Anti-FIIa和Anti-FXa活性。采用Tris-HCl(pH 7.4)缓冲液作为空白对照,于酶标仪中在37℃下,每30s读取405nm处的吸光度,持续5min,以吸光值的变化速率(ΔOD405/min)表示酶活性。
结果
由图11可知,TPGS具有较强的抑制内源性凝血途径的活性,其倍增APTT所需的浓度为4.26μg/mL。该活性与低分子肝素(3.54μg/mL)相近,但低于肝素(0.82μg/mL)。TPGS具有较强的PT延长活性,倍增PT所需的浓度(30.88μg/mL)比HP(3.35μg/mL)低10倍左右。倍增TT所需的浓度为14.12μg/mL,说明TPGS对常见的凝血途径有较强的作用。TPGS抑制FXase的EC50值为77.15ng/mL,与LMWH(69.82ng/mL)的EC50值相当。低分子肝素表现出较强的AT依赖的FXa和FIIa抑制活性,EC50值分别为61.49和46.07ng/mL。然而,TPGS没有AT依赖的抑制FIIa和FXa活性(EC50>2000)。因此TPGS主要通过抑制FXase发挥抗凝血活性,有望将其开发为选择性的FXase抑制剂。
因此,本发明采用上述一种海蛇尾多糖硫酸酯衍生物的制备方法,制备的海蛇尾多糖硫酸酯衍生物TPGS可作为潜在的抗凝药物治疗血栓性疾病,改善人类健康。
最后应说明的是:以上实施例仅用以说明本发明的技术方案而非对其进行限制,尽管参照较佳实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对本发明的技术方案进行修改或者等同替换,而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明技术方案的精神和范围。

Claims (7)

1.一种海蛇尾多糖的制备方法,其特征在于,按照以下步骤制备:
S1、海蛇尾总多糖的提取制备:将干海蛇尾于50~60℃烘箱进一步干燥,粉碎成均匀的粉末,取海蛇尾粉末置反应釜中加水提取,料液比为1:5,加入终浓度为0.1%的木瓜蛋白酶,于55℃酶解16h,再加入6M NaOH在60℃下提取2h,提取液于4816 xg下离心15min,上清液用6M HCI调pH至2~3、4℃放置4h,在4816 xg下离心15min,去除蛋白质;所得上清液用6M NaOH调pH至中性,盐析醇沉,在4816 xg下离心15min,并用水溶解所得沉淀,用3% H2O2水溶液在pH10、50℃条件下将多糖溶液脱色,脱色后,用乙醇进行沉淀,离心、冻干后得到海蛇尾总多糖;
S2、分离纯化:将海蛇尾总多糖溶解于适量的超纯水,采用强阴离子交换树脂Amberliter FPA98CI进行分离,梯度洗脱,收集纯水组分,然后再用1.5cm×150cmSepharose CL-6B 凝胶柱进一步纯化,冷冻干燥,制得海蛇尾多糖TPG。
2.根据权利要求1所述一种海蛇尾多糖的制备方法,其特征在于:将步骤S2获得的TPG通过酸解后制备海蛇尾多糖低聚物,其结构特征与所述TPG一致;
所述TPG及其低聚物具有如下结构特征:
(I)
式(I)中,n为1-100的整数。
3.根据权利要求1-2任一项所述一种海蛇尾多糖的制备方法,其特征在于:TPG及其低聚物由→4)-α-D-Glcp-(1→重复单元形成主链,其二糖侧链α-D-Glc-(1→4)-α-D-Glc-(1→连接于主链的C-6位。
4.一种海蛇尾多糖硫酸酯衍生物的制备方法,其特征在于,在氮气氛围下,取适量权利要求1中所述的TPG于二甲基亚砜中溶解,进行硫酸酯化改性,无水乙醇醇沉,4℃静置,反复盐析醇沉,复溶后离心,采用阴离子交换柱纯化,透析脱盐,浓缩,冻干,得到硫酸酯衍生物TPGS;
所述TPGS具有如下结构特征:
(II)
式(II)中,n定义与式(I)相同;R为相互独立的H或-SO3H。
5.根据权利要求4所述一种海蛇尾多糖硫酸酯衍生物的制备方法,其特征在于:硫酸酯化改性所采用的方法为氯磺酸-吡啶法、三氧化硫-吡啶法、三氧化硫吡啶-DMF法或甲酰胺-氯磺酸法。
6.根据权利要求4所述一种海蛇尾多糖硫酸酯衍生物的制备方法,其特征在于:TPG单糖组成为葡萄糖,总糖含量为90~100%;TPGS总糖含量为40~70%,硫酸基含量为30~60%,取代度为0.5~2.0。
7.一种如权利要求4所述方法制备的TPGS在制备抗凝剂上的应用,所述抗凝剂为在药学上可接受的盐,所述的药学上可接受的盐为钙盐、钠盐或钾盐。
CN202310117014.0A 2023-02-15 2023-02-15 一种海蛇尾多糖硫酸酯衍生物的制备方法及应用 Active CN116284470B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310117014.0A CN116284470B (zh) 2023-02-15 2023-02-15 一种海蛇尾多糖硫酸酯衍生物的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310117014.0A CN116284470B (zh) 2023-02-15 2023-02-15 一种海蛇尾多糖硫酸酯衍生物的制备方法及应用

Publications (2)

Publication Number Publication Date
CN116284470A CN116284470A (zh) 2023-06-23
CN116284470B true CN116284470B (zh) 2024-08-02

Family

ID=86798877

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310117014.0A Active CN116284470B (zh) 2023-02-15 2023-02-15 一种海蛇尾多糖硫酸酯衍生物的制备方法及应用

Country Status (1)

Country Link
CN (1) CN116284470B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10007203A1 (de) * 2000-02-17 2001-08-23 Asta Medica Ag Neue Kombination nichtsedierender Antihistaminika mit Substanzen, die die Leukotrienwirkung beeinflussen, zur Behandlung der Rhinitis/Konjunktivitis
EP2845601B1 (en) * 2010-11-01 2018-04-25 Industry-Academic Cooperation Foundation, Yonsei University Composition for use for dissolving thrombi
JP2015137361A (ja) * 2014-01-24 2015-07-30 国立大学法人愛媛大学 多糖類、多糖類を含む組成物、及び免疫賦活剤
CN104987357A (zh) * 2015-07-08 2015-10-21 三峡大学 一种具有抗肿瘤活性化合物的分离制备方法
US20200354431A1 (en) * 2019-05-07 2020-11-12 Marine Essence Biosciences Corporation of U.S.A. Mutable collagenous tissue from echinoderms
CN112730168B (zh) * 2021-01-28 2023-07-25 广西中医药大学 一种测定沉积食性小型底栖动物摄食量的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Structural Elucidation of a Glucan from Trichaster palmiferus by Its Degraded Products and Preparation of Its Sulfated Derivative as an Anticoagulant;Haiqiong Ma et;Mar. Drugs;20230224;第21卷(第3期);21030148 *

Also Published As

Publication number Publication date
CN116284470A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
Li et al. Structure and anticoagulant property of a sulfated polysaccharide isolated from the green seaweed Monostroma angicava
Shi et al. Characterization of a novel purified polysaccharide from the flesh of Cipangopaludina chinensis
Yang et al. Structure identification of a polysaccharide purified from litchi (Litchi chinensis Sonn.) pulp
Yang et al. Structural analysis and anticoagulant activities of two sulfated polysaccharides from the sea cucumber Holothuria coluber
He et al. Structural elucidation and antioxidant activity of an arabinogalactan from the leaves of Moringa oleifera
Wang et al. Structural characterization and in vitro antitumor activity of polysaccharides from Zizyphus jujuba cv. Muzao
Liu et al. Structural analysis of a homogeneous polysaccharide from Achatina fulica
Chen et al. Extraction, characterization and antioxidant activities of pumpkin polysaccharide
Peng et al. Structural characterization of the glycan part of glycoconjugate LbGp2 from Lycium barbarum L.
Song et al. Isolation of a polysaccharide with anticancer activity from Auricularia polytricha using high-speed countercurrent chromatography with an aqueous two-phase system
Yang et al. Structural characterisation and bioactivities of hybrid carrageenan-like sulphated galactan from red alga Furcellaria lumbricalis
Li et al. Isolation and structural characterization of a neutral polysaccharide from the stems of Dendrobium densiflorum
Li et al. A regular fucan sulfate from Stichopus herrmanni and its peroxide depolymerization: Structure and anticoagulant activity
Song et al. Structural characterization and anticoagulant activity of two polysaccharides from Patinopecten yessoensis viscera
Vityazev et al. Synthesis of sulfated pectins and their anticoagulant activity
Ma et al. Five distinct fucan sulfates from sea cucumber Pattalus mollis: Purification, structural characterization and anticoagulant activities
CN115386013B (zh) 一种具有强效抗凝活性的海带多糖及其制备方法和应用
Li et al. Structural characterization and anticoagulant analysis of the novel branched fucosylated glycosaminoglycan from sea cucumber Holothuria nobilis
CA2908959C (en) Low-molecular-weight glycosaminoglycan derivative containing terminal 2, 5-anhydrated talose or derivative thereof
Tu et al. A novel polysaccharide from Hericium erinaceus: Preparation, structural characteristics, thermal stabilities, and antioxidant activities in vitro
Tang et al. A regular Chlorella mannogalactan and its sulfated derivative as a promising anticoagulant: structural characterization and anticoagulant activity
Handley et al. New structural insights into the oligosaccharide phosphate fraction of Pichia (Hansenula) holstii NRRL Y2448 phosphomannan
Yuan et al. Isolation, structural characterization, and bioactivities of neutral polysaccharides from Zizania latifolia
CN116284470B (zh) 一种海蛇尾多糖硫酸酯衍生物的制备方法及应用
Tang et al. Ultrasonic-assisted extraction, analysis and properties of purple mangosteen scarfskin polysaccharide and its acetylated derivative

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant