CN116282463A - 一种兼具缓解NAPLs效应和活化过硫酸盐功能的铁基环糊精材料的制备及应用 - Google Patents

一种兼具缓解NAPLs效应和活化过硫酸盐功能的铁基环糊精材料的制备及应用 Download PDF

Info

Publication number
CN116282463A
CN116282463A CN202211093496.2A CN202211093496A CN116282463A CN 116282463 A CN116282463 A CN 116282463A CN 202211093496 A CN202211093496 A CN 202211093496A CN 116282463 A CN116282463 A CN 116282463A
Authority
CN
China
Prior art keywords
cyclodextrin
persulfate
solution
effect
napls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211093496.2A
Other languages
English (en)
Other versions
CN116282463B (zh
Inventor
蔡喜运
王亚玲
席普宇
钟天翔
谷庆宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202211093496.2A priority Critical patent/CN116282463B/zh
Publication of CN116282463A publication Critical patent/CN116282463A/zh
Application granted granted Critical
Publication of CN116282463B publication Critical patent/CN116282463B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Soil Sciences (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明属于环境修复材料技术领域,公开了一种一种兼具缓解NAPLs效应和活化过硫酸盐功能的铁基环糊精材料的制备及应用。合成Fe3O4@Fe0后90℃条件下加入环糊精,得到环糊精涂层的Fe3O4@Fe0材料,该方法属于亦不乏,步骤简单,具有实际应用意义。该复合材料够实现在活化过硫酸盐的同时,促进NAPL中疏水性有机污染物的传质,促进吸附于土壤颗粒上的污染物的解吸,增加有效性,进而提高降解效果。CD涂层增加材料的选择性,减小复杂水环境因子的影响,同时,对于磁性颗粒表面具有保护作用,防止被氧化,增加复合材料的稳定性。

Description

一种兼具缓解NAPLs效应和活化过硫酸盐功能的铁基环糊精 材料的制备及应用
技术领域
本发明属于环境修复材料技术领域,具体涉及一种一种兼具缓解NAPLs效应和活化过硫酸盐功能的铁基环糊精材料的制备及应用。
背景技术
疏水性有机污染物(HOCs)具有较高的辛醇水分配系数(Kow),通常以非水相液体(NAPL)形式存在或者吸附于土壤颗粒上。以NAPL形式存在或是吸附于土壤颗粒上的疏水性有机污染物难解吸,生物利用度低,导致其具有很低的反应活性。为了去除HOCs,人们开发了多种原位处理技术,例如原位表面活性剂冲洗或表面活性剂增强修复,原位化学氧化和原位热处理等。其中,由于原位化学氧化技术修复周期短,可以完全去除污染物而被广泛的应用。
化学氧化技术常用的氧化剂包括过硫酸盐、高锰酸盐和过氧化氢。这些氧化剂具有不同的适用领域,与氧化还原电位、寿命和氧化剂的传输性能有关。其中,过硫酸盐易被活化产生氧化电位为2.01-3.10eV的高活性自由基,在原位化学氧化修复土壤和水方面的巨大潜力。常见的过硫酸盐活化剂包括铁、铁螯合物和碱活化。
零价铁(Fe0)具有高比表面积、高活性和高吸附能力的优点而被选择用于活化过硫酸盐。其次,利用Fe0缓慢释放Fe2+可以有效的避免由于过量Fe2+的加入导致的自由基消耗和Fe3+沉积。但是,Fe0转化为Fe2+是一个缓慢的过程,将Fe0与铁氧化物复合能够实现高效活化过硫酸盐快速的去除有机污染物。专利CN103435144A公布利用FeOxHy@Fe0(FeOxHy@Fe0,y=2x-3或3y=6x-8)纳米复合材料在不同的pH条件下活化过硫酸盐具有较高的脱色率和CODCr的去除率。专利CN103896388B公布利用氧化铜复合零价铁实现染料废水的脱色和CODcr的去除。但是以上专利针对的污染物为非疏水性有机污染物,虽然能够显著提高过硫酸盐的活化能力,对于以NAPL形式存在的污染物或者吸附于土壤沉积物上的污染物的有效性并不能得到有效缓解。
目前,通常选择化学/生物表面活性剂和助溶剂(例如醇类或CDs)以提高HOCs在土壤地下水中的可利用性和传质,来提高污染物的去除率。文献(Wang et al.“Compatibility of Surfactants and Thermally Activated Persulfate for EnhancedSubsurface Remediation”Environmental Science&Technology,51(2017):7055-7064)报道了化学表面活性剂十二烷基二苯醚二磺酸钠与热活化过硫酸盐相结合氧化降解多环芳烃的研究,结果表明表面活性剂不仅可以氧化煤焦油中所含的多环芳烃,还可以提高氧化剂的利用效率。专利CN110814006A公布利用化学表面活性剂(十二烷基二苯醚二磺酸钠,十二烷基硫酸钠和十二烷基苯磺酸钠)与过硫酸盐联合修复柴油污染土壤,表面活性剂能够增柴油的溶解度,但是一方面,此种联合过硫酸盐不会产生高活性物种,降解效果受影响。另一方面,正如上文所述,此类化学表面活性剂属于化学物质,施用于土壤或水环境中会微生物造成伤害甚至影响人类健康。专利CN 110551505A公布一种表面活性剂组合(鼠李糖酯、维生素C、磷酸盐、钾盐、聚丙烯酰胺)与铁盐(氯化亚铁、硫酸亚铁)活化过硫酸盐组合氧化修复PCP污染土壤,能够实现水溶性较好的PCP的95%去除。此种结合方式能够实现吸附于土壤颗粒中PCP的解吸,但是铁盐加入的量难以控制,过多添加量导致消耗自由基或铁泥的形成,过少的添加量过硫酸盐无法被活化。表面活性剂近年来虽然得到了关注,但是表面活性剂对人体和微生物产生危害。此外,化学表面活性剂可能还会导致NAPLs不受控制的迁移和地下水体系的二次污染。
环糊精是一种超分子主体化合物,糊精具有“内疏水,外亲水”的特殊空腔结构,包合有机化合物形成主客体包合物。由于环糊精的这种包合能力,可以增加HOCs溶解度并增强它们在多孔介质中的传质和解吸。例如,文献(Zeng et al,“Solubilization anddesorption of methyl-parathion from porous media:A comparison ofhydroxypropyl b-cyclodextrin and two nonionic surfactants”Water Research,40(2006):1351-1358)报道了HPCD可以增强流通系统中甲基对硫磷的传质。并且传质效应的大小取决于溶液中HPCD的质量。除草剂在溶液中与β-CD形成包合物的趋势高于继续吸附于土壤表面。环糊精与有机化合物形成包合物速率常数达到1.0×1010M-1S-1,可以有效的促进疏水性有机污染物的解吸与传质。目前有研究将高锰酸钾与环糊精材料联合应用,结果显示,环糊精材料能够保留环糊精单体的分子识别功能,并且高锰酸钾可以将环糊精空腔内包合的污染物氧化。目前环糊精促进过硫酸盐相关研究主要集中于单独投加环糊精提高石油烃等疏水性有机污染物的有效性。此种方式虽然能够提高疏水性有机污染物的去除效果,但是并不能实现过硫酸盐的活化达到最优的处理效果。
目前对于铁基环糊精材料的研究主要针对复合材料的强吸附能力。例如,文献(Wang et al,“Core–shell superparamagnetic Fe3O4@β-CD composites for host–guestadsorption of polychlorinated biphenyls(PCBs)”Journal of Colloid andInterface Science,447(2015):1–7)报道了利用环糊精修饰四氧化三铁吸附水中多氯联苯。首先通过水热法(200℃)合成四氧化三铁,然后环糊精与四氧化三铁混合机械搅拌得到环糊精修饰的四氧化三铁磁性材料。吸附结果显示,磁性材料对PCB52和PCB28的最大吸附分别为30.32和40.01mmol/kg。文献(Krawczyk et al,“Surface modification of zero-valent iron nanoparticles with b-cyclodextrin for 4-nitrophenol conversion”Journal of Colloid and Interface Science,586(2020):655-662)报道了利用环糊精包覆零价铁吸附去除水中的硝基酚。首先利用硼氢化钾还原法合成零价铁,然后将合成的零价铁与环糊精溶液置于震荡器在180rpm条件下反应24h,得到磁性复合材料。吸附结果显示0.2g/L环糊精包覆零价铁降解水中0.12mmol/L 4-硝基苯酚,10min内将95%的4-硝基苯酚转化为4-氨基苯酚。专利CN104475749A公布了β-环糊精稳定化包埋纳米零价铁的制备方法。首先利用液相还原法制备零价铁,然后以β-环糊精为主要原料,以环氧氯丙烷为交联剂,在碱性条件下对纳米零价铁进行交联包埋。复合材料作为吸附剂用于去除水中的Cd2+,投加量为3.0g时,对100mg/LCd2+去除率可达98.9%。以上研究利用铁基环糊精材料吸附去除水中的污染物(有机污染物和重金属)主要针对水溶性好或低浓度污染,并未考虑缓解NAPLs效应。
此外,铁基环糊精复合材料被应用于催化氧化领域。专利CN10817641 A公布了一种协同催化水中四溴双酚A的四氧化三铁@环糊精/碳纳米管复合物的制备方法及应用。将氯化铁、碳纳米管和环糊精溶液混合,利用水热合成法制备四氧化三铁@环糊精/碳纳米管复合物。复合材料能够有效催化过氧化氢去除水中四溴双酚A。专利CN 110327985 A公布了一种超支化环糊精-纳米四氧化三铁非均相催化的制备与应用。先将高温分解法制得的纳米四氧化三铁粒子和丙烯酸甲酯加入到甲醇中,超声分散后加入多元胺,室温下反应20~24小时。最后加入β-环糊精,在80~150℃的温度范围内反应4~8小时后得目标产物。将复合材料应用于催化氧化苄基伯醇。综上所述,目前制备的铁基环糊精材料并未与过硫酸盐的催化氧化相结合。
因此,为了实现活化过硫酸盐和缓解NAPLs效应双重目标,提出了制备环糊精涂层Fe3O4@Fe0材料。利用化学共沉淀法制备四氧化三铁核心结构,随后利用硼氢化钾还原法制备零价铁壳层、表面包敷环糊精涂层,制备了环糊精包覆的核壳Fe3O4@Fe0非均相过硫酸盐活化剂。环糊精涂层在纳米颗粒表面能够保护磁性零价铁颗粒,防止被氧化,保持持续活性。另一方面,CD涂层能够加快以NAPL形式存在或吸附于土壤颗粒上的疏水性有机污染物的传质和解吸,提高污染物与活化剂的有效接触。CD包合的污染物能被产生的活性物种快速氧化,实现HOCs的高效快速降解。
发明内容
本发明提供了环糊精涂层Fe3O4@Fe0复合材料的制备及应用方式。首先,利用化学共沉淀法和硼氢化钾还原合成Fe3O4@Fe0核壳结构的纳米颗粒。再在溶液中加热至90℃,加入环糊精,得到一种环糊精涂层的Fe3O4@Fe0核壳材料。该方法步骤属于一步法,步骤简单,具有实际应用意义。制备得到的环糊精涂层Fe3O4@Fe0材料用可于修复有机污染土壤及地下水,这对地下水和土壤中疏水性有机物的去除具有一定的指导意义。
本发明的技术方案:
一种一种兼具缓解NAPLs效应和活化过硫酸盐功能的铁基环糊精材料的制备方法,环糊精涂层Fe3O4@Fe0材料的制备步骤如下:
(1)向二价铁盐和三价铁盐中加入去离子水,搅拌至溶解,然后加入NaOH溶液,在30℃下持续搅拌反应0.5~3h,得到黑色沉淀,用去离子水清洗产物至中性;其中,Fe2+和Fe3 +的摩尔比为1:2;去离子水的质量为二价铁盐和三价铁盐的总质量的4~10倍;NaOH溶液的浓度为2~5mol/L,加入量为NaOH和Fe2+的摩尔比为1:6~9;
(2)在搅拌速度为300-450rpm条件下,向步骤(1)得到的黑色沉淀中加入三价铁盐溶液,升温至60℃,然后滴加硼氢化钾溶液;滴加完成后反应20~60min,然后用去离子水清洗固体产物3次;其中,加入的三价铁盐溶液浓度为1mol/L,加入的三价铁盐和步骤(1)中Fe2+的摩尔比为2:1~5:1;滴加的硼氢化钾溶液浓度为3mol/L,硼氢化钾的加入量和步骤(2)中三价铁盐摩尔比为1:3~5,硼氢化钾溶液的滴加速度为:1~3mL/min;
(3)在步骤(2)的固体产物中加入环糊精溶液,并升温至80~95℃,机械搅拌的转速为350~450rpm,搅拌反应1-6h;其中,加入的环糊精溶液的质量浓度为3~20%,加入的环糊精质量与步骤(2)中加入的三价铁盐全部转化为Fe的质量的比值为1.2:1~3.6:1;
(4)将步骤(3)的反应溶液降至室温后,放冷冻干燥机干燥24h,得到一种兼具缓解NAPLs效应和活化过硫酸盐功能的铁基环糊精材料。
进一步,所述的二价铁盐为FeCl2、Fe(NO3)2、FeSO4中的一种或两种以上组合;三价铁盐为FeCl3、Fe(NO3)3、Fe2(SO4)3中的一种或两种以上组合。
进一步,材料制备反应的全过程,反应容器内需维持惰性气氛,使用的惰性气体为氮气或氩气。
进一步,所述的环糊精是α-CD、β-CD、γ-CD、HPCD中的一种或两种以上混合。上述制备方法得到的一种兼具缓解NAPLs效应和活化过硫酸盐功能的铁基环糊精材料的应用,其特征在于,将该一种兼具缓解NAPLs效应和活化过硫酸盐功能的铁基环糊精材料应用于活化过硫酸盐氧化降解疏水性有机污染物。
进一步,所述的应用方式为一种兼具缓解NAPLs效应和活化过硫酸盐功能的铁基环糊精材料与过硫酸盐同时投加和间隔投加;在去除水中疏水性有机污染物时,一种兼具缓解NAPLs效应和活化过硫酸盐功能的铁基环糊精材料与过硫酸盐同时投加;在去除土壤中疏水性有机污染物时,首先投加复合材料反应一段时间后添加过硫酸盐,投加时间间隔为0.5~1h。
本发明具有以下有益效果:(1)本发明提供的环糊精涂层Fe3O4@Fe0材料制备方法工艺简洁,再一个反应容器内完成材料的均匀合成,便于实现规模化生产。(2)本发明的制备方法简洁高效的实现环糊精对Fe3O4@Fe0纳米颗粒的均匀包覆,能够有效提高材料的稳定性与长效性。(3)本发明制备的材料创新性的将环糊精对污染物的吸附包合作用与铁基纳米材料对高级氧化剂的活化作用集合在材料表面,将污染物传质与自由基产生的位点集合统一在材料表面,极大的加快了自由基对有机污染的降解过程。
附图说明
图1是环糊精涂层Fe3O4@Fe0材料的TEM图。
图2是环糊精涂层Fe3O4@Fe0材料的FTIR图。
图3是环糊精涂层Fe3O4@Fe0材料的XRD图。
图4是环糊精涂层Fe3O4@Fe0材料活化过硫酸盐对土壤中PAHs的降解效果图。
图5是环糊精涂层Fe3O4@Fe0材料活化过硫酸盐对IV类地下水中萘降解效果图。
图6是环糊精涂层Fe3O4@Fe0材料活化过硫酸盐的长效性测试效果图。
具体实施方式
以下结合技术方案和附图说明详细叙述本发明的具体实施例。
实施例1环糊精涂层Fe3O4@Fe0材料的制备过程
首先,采用共沉淀法合成Fe3O4。将1.98g FeCl2·4H2O和5.40g FeCl3(1/2,mol/mol)溶解在100mL超纯水中。将所得溶液加入四颈圆底烧瓶中,在氮气条件下,机械搅拌30min(350rpm)。将NaOH溶液(20mL,4mol/L)加入圆底烧瓶中,所有溶液在30℃下反应2h。将得到的黑色粉末用超纯水洗涤3次以去除杂质。其次,采用硼氢化钾还原法合成Fe0。将6.75gFeCl3溶解于50mL超纯水中,将制备的FeCl3溶液加入装有Fe3O4的圆底烧瓶中。在氮气气氛下搅拌30分钟(350rpm)。然后,使用蠕动泵以2mL/min的流速滴加50mL KBH4溶液(浓度2.6mol/L)继续搅拌2小时。在Fe(III)还原后,形成的Fe3O4@Fe0纳米颗粒用超纯水洗涤3次。最后,将环糊精溶液(5g,20mL)加入圆底烧瓶中,在90℃、N2条件下持续剧烈搅拌(400-450rpm)反应6h。放入冷冻干燥器中干燥24小时。
图1为所述环糊精涂层的Fe3O4@Fe0材料的TEM图,复合材料具有明显的环糊精涂层,厚度大概为2.36nm。
图2为所述环糊精涂层的Fe3O4@Fe0材料的FTIR图,1158cm-1、2923cm-1和1027cm-1分别是环糊精的C-O-C,-CH2-和-OH伸缩振动峰,说明复合材料中含有环糊精单体。
图3为所述环糊精涂层的Fe3O4@Fe0材料的XRD图,复合材料在2θ=30.5°、35.7°和62.5°处的衍射峰与Fe3O4(JCPDS file No.19-0629)匹配。在2θ=44.9°具有明显的衍射峰,与Fe0(JCPDS file No.06-0696)匹配。说明复合材料存在Fe3O4和Fe0晶体。另外,Fe3O4@Fe0材料在2θ=43.4°、56.1°和63.9°存在Fe2O3衍射峰,为Fe0在空气中的氧化产物。环糊精涂层Fe3O4@Fe0材料不存在Fe2O3衍射峰,说明环糊精涂层对表面的磁性粒子具有保护作用,能够防止其被氧化。
实施例2是环糊精涂层Fe3O4@Fe0材料活化过硫酸盐对土壤PAHs的降解效果
采集黑龙江某化工企业场地土壤,开展了环糊精涂层Fe3O4@Fe0/PS体系去除土壤中多环芳烃的研究。土壤悬浮液中PAHs的降解实验在人工气候培养箱中进行,设置振荡速度为180rpm,温度为25℃。首先,将3.0g PAHs污染土壤和1%制备的复合材料(m/m)放入40mL玻璃瓶振荡平衡,按照水土比为3:1加入超纯水。在预定的时间间隔(即0、0.5、1.0、2.0和3.0小时),将土壤质量1%的PS添加到反应瓶中。反应4天后,将土壤样品在-50℃下冷冻干燥机干燥24h。最后用液-液超声提取从土壤中提取分离未降解PAHs。
图4是环糊精涂层Fe3O4@Fe0材料活化过硫酸盐对土壤中PAHs的降解效果。
在环糊精涂层Fe3O4@Fe0/PS体系中,Nap、Ace、Phe和Pyr的去除率分别为90.65%、46.91%、47.80%和66.67%,分别为Fe3O4@Fe0/PS体系1.26、1.19、1.51和1.48倍。
在环糊精涂层Fe3O4@Fe0复合材料与土壤预处理几个小时后添加PS,PAHs的去除率发生变化。当添加间隔设置为0.5-3h时,Nap、Ace和Pyr的去除率分别为100%75.88-88.70%和85.50-89.04%。与同时添加相比去除率分别提高0.10、0.22-0.34、0.28-0.33倍。其中,Nap、Ace和Pyr的去除率可以在0.5h预添加间隔迅速提高,然后达到一个平台期。当间隔设置为1h时Phe达到最大去除率。以上结果表明,复合材料中的CD涂层能够促进土壤中PAHs的传质,提高PAHs有效性,预添加环糊精涂层Fe3O4@Fe0对提高PAHs的去除率是有效的。
实施例3环糊精涂层Fe3O4@Fe0材料活化过硫酸盐对地下水中萘的降解
降解反应在40mL玻璃瓶中进行,保证反应溶液总体积为30mL。取0.003g复合材料加入含有10mg/L萘的溶液中,最后加入5mL过硫酸钠储备液(0.15mol/L)启动活化和降解反应。反应体系为参考IV类地下水标准模拟地下水,主要化学组成包括Cl-、Na+、HCO3 -、SO4 2-、Ca2+及HA,其浓度分别为234mg/L、230mg/L、183mg/L、96mg/L、32mg/L及2mg/L。复合材料和过硫酸盐的初始浓度分别为0.1g/L和0.005mol/L。将玻璃瓶置于振荡器在180rpm,25℃条件下反应,在预处理间隔(3、6、9、15、30、60和120分钟),用1mL注射器抽取样品并用PTFE膜过滤器(0.22μm)过滤,然后转移到自动进样器小瓶(2mL)中进行HPLC分析。为防止萘的进一步降解,将过量的乙醇(250μL)添加到小瓶中淬灭产生的活性物种。
图5为在环糊精涂层Fe3O4@Fe0材料活化过硫酸盐对地下水中萘降解效果
对于环糊精涂层Fe3O4@Fe0/PS氧化体系,模拟地下水和去离子水中萘在15分钟内几乎完全去除。Fe3O4@Fe0/PS在15分钟内对模拟地下水中萘的去除55%,180分钟内去除73%,低于超纯水体系(68%和91%去除率)。结果说明环糊精涂层Fe3O4@Fe0/PS氧化过程在实际水基质中的选择性和适应性。
实施例4环糊精涂层Fe3O4@Fe0材料活化过硫酸盐的长效性测试
降解反应在40mL玻璃瓶中进行,保证反应溶液总体积为30mL。取0.003g复合材料加入含有10mg/L萘的溶液中,最后加入5mL过硫酸钠储备液(0.15mol/L)启动活化和降解反应。24h反应后,取样测试萘的浓度,如果已经完全降解再次投加萘储备液使反应体系萘的浓度为10mg/L。如果萘的降解率小于90%,此时加入PS储备液继续反应。此循环进行18次以评估复合材料的长效性。
图6为在环糊精涂层Fe3O4@Fe0材料活化过硫酸盐的长效性测试
在Fe3O4@Fe0-CD/PS系统中,连续3次或4次补充萘后仍完全去除。由于PS不足,进一步补充萘后,去除率下降至约40%–97%(平均62%),每次补充PS都能几乎完全去除萘。在18次补充实验中13次显示几乎完全去除。在Fe3O4@Fe0/PS体系中,仅在首次添加萘时才能完全去除萘,而在其他添加Nap和/或PS时,萘的去除率下降至32%–84%。

Claims (7)

1.一种兼具缓解NAPLs效应和活化过硫酸盐功能的铁基环糊精材料的制备方法,其特征在于,环糊精涂层Fe3O4@Fe0材料的制备步骤如下:
(1)向二价铁盐和三价铁盐中加入去离子水,搅拌至溶解,然后加入NaOH溶液,在30℃下持续搅拌反应0.5~3h,得到黑色沉淀,用去离子水清洗产物至中性;其中,Fe2+和Fe3+的摩尔比为1:2;去离子水的质量为二价铁盐和三价铁盐的总质量的4~10倍;NaOH溶液的浓度为2~5mol/L,加入量为NaOH和Fe2+的摩尔比为1:6~9;
(2)在搅拌速度为300-450rpm条件下,向步骤(1)得到的黑色沉淀中加入三价铁盐溶液,升温至60℃,然后滴加硼氢化钾溶液;滴加完成后反应20~60min,然后用去离子水清洗固体产物3次;其中,加入的三价铁盐溶液浓度为1mol/L,加入的三价铁盐和步骤(1)中Fe2+的摩尔比为2:1~5:1;滴加的硼氢化钾溶液浓度为3mol/L,硼氢化钾的加入量和步骤(2)中三价铁盐摩尔比为1:3~5,硼氢化钾溶液的滴加速度为:1~3mL/min;
(3)在步骤(2)的固体产物中加入环糊精溶液,并升温至80~95℃,机械搅拌的转速为350~450rpm,搅拌反应1-6h;其中,加入的环糊精溶液的质量浓度为3~20%,加入的环糊精质量与步骤(2)中加入的三价铁盐全部转化为Fe的质量的比值为1.2:1~3.6:1;
(4)将步骤(3)的反应溶液降至室温后,放冷冻干燥机干燥24h,得到兼具缓解NAPLs效应和活化过硫酸盐功能的环糊精涂材料。
2.根据权利要求1所述的制备方法,其特征在于,所述的二价铁盐为FeCl2、Fe(NO3)2、FeSO4中的一种或两种以上组合;三价铁盐为FeCl3、Fe(NO3)3、Fe2(SO4)3中的一种或两种以上组合。
3.根据权利要求1或2所述的制备方法,其特征在于,材料制备反应的全过程,反应容器内需维持惰性气氛,使用的惰性气体为氮气或氩气。
4.根据权利要求1或2所述的制备方法,其特征在于,所述的环糊精是α-CD、β-CD、γ-CD、HPCD中的一种或两种以上混合。
5.根据权利要求3所述的制备方法,其特征在于,所述的环糊精是α-CD、β-CD、γ-CD、HPCD中的一种或两种以上混合。
6.根据权利要求1所述制备方法得到的兼具缓解NAPLs效应和活化过硫酸盐功能的铁基环糊精涂材料的应用,其特征在于,将该兼具缓解NAPLs效应和活化过硫酸盐功能的铁基环糊精涂材料应用于活化过硫酸盐氧化降解疏水性有机污染物。
7.根据权利要求6所述的应用,其特征在于,所述的应用方式为兼具缓解NAPLs效应和活化过硫酸盐功能的环糊精涂材料与过硫酸盐同时投加和间隔投加;在去除水中疏水性有机污染物时,兼具缓解NAPLs效应和活化过硫酸盐功能的铁基环糊精涂材料与过硫酸盐同时投加;在去除土壤中疏水性有机污染物时,首先投加复合材料反应一段时间后添加过硫酸盐,投加时间间隔为0.5~1h。
CN202211093496.2A 2022-09-08 2022-09-08 一种兼具缓解NAPLs效应和活化过硫酸盐功能的铁基环糊精材料的制备及应用 Active CN116282463B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211093496.2A CN116282463B (zh) 2022-09-08 2022-09-08 一种兼具缓解NAPLs效应和活化过硫酸盐功能的铁基环糊精材料的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211093496.2A CN116282463B (zh) 2022-09-08 2022-09-08 一种兼具缓解NAPLs效应和活化过硫酸盐功能的铁基环糊精材料的制备及应用

Publications (2)

Publication Number Publication Date
CN116282463A true CN116282463A (zh) 2023-06-23
CN116282463B CN116282463B (zh) 2024-04-12

Family

ID=86819048

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211093496.2A Active CN116282463B (zh) 2022-09-08 2022-09-08 一种兼具缓解NAPLs效应和活化过硫酸盐功能的铁基环糊精材料的制备及应用

Country Status (1)

Country Link
CN (1) CN116282463B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130058724A1 (en) * 2009-10-14 2013-03-07 The Administrators Of The Tulane Educational Fund Novel multifunctional materials for in-situ environmental remediation of chlorinated hydrocarbons
CN103977772A (zh) * 2014-05-16 2014-08-13 大连理工大学 环糊精修饰磁性纳米吸附剂的制备方法及其在血液透析吸附系统中的应用
CN104475749A (zh) * 2014-09-04 2015-04-01 河南城建学院 β-环糊精稳定化包埋纳米零价铁的制备方法
CN113019344A (zh) * 2021-03-16 2021-06-25 大连理工大学 一种具有选择性吸附的球形零价铁-环糊精复合材料的制备方法及应用
CN114618493A (zh) * 2022-03-31 2022-06-14 中国科学院城市环境研究所 一种纳米Fe0@Fe3O4核壳结构材料及其制备方法和用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130058724A1 (en) * 2009-10-14 2013-03-07 The Administrators Of The Tulane Educational Fund Novel multifunctional materials for in-situ environmental remediation of chlorinated hydrocarbons
CN103977772A (zh) * 2014-05-16 2014-08-13 大连理工大学 环糊精修饰磁性纳米吸附剂的制备方法及其在血液透析吸附系统中的应用
CN104475749A (zh) * 2014-09-04 2015-04-01 河南城建学院 β-环糊精稳定化包埋纳米零价铁的制备方法
CN113019344A (zh) * 2021-03-16 2021-06-25 大连理工大学 一种具有选择性吸附的球形零价铁-环糊精复合材料的制备方法及应用
CN114618493A (zh) * 2022-03-31 2022-06-14 中国科学院城市环境研究所 一种纳米Fe0@Fe3O4核壳结构材料及其制备方法和用途

Also Published As

Publication number Publication date
CN116282463B (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
Shi et al. The application of transition metal-modified biochar in sulfate radical based advanced oxidation processes
Xu et al. Degradation of organic pollutants by Fe/N co-doped biochar via peroxymonosulfate activation: Synthesis, performance, mechanism and its potential for practical application
Zhou et al. Activate hydrogen peroxide for efficient tetracycline degradation via a facile assembled carbon-based composite: Synergism of powdered activated carbon and ferroferric oxide nanocatalyst
Dong et al. Activation of persulfate and hydrogen peroxide by using sulfide-modified nanoscale zero-valent iron for oxidative degradation of sulfamethazine: a comparative study
Wang et al. Bifunctional MnFe2O4/chitosan modified biochar composite for enhanced methyl orange removal based on adsorption and photo-Fenton process
Choe et al. Fe3S4/Fe7S8-promoted degradation of phenol via heterogeneous, catalytic H2O2 scission mediated by S-modified surface Fe2+ species
Navalon et al. Heterogeneous Fenton catalysts based on activated carbon and related materials
Ji et al. Performance of CuO/Oxone system: Heterogeneous catalytic oxidation of phenol at ambient conditions
Hao et al. Insight into the degradation of Orange G by persulfate activated with biochar modified by iron and manganese oxides: Synergism between Fe and Mn
Qian et al. Efficient emerging contaminants (EM) decomposition via peroxymonosulfate (PMS) activation by Co3O4/carbonized polyaniline (CPANI) composite: Characterization of tetracycline (TC) degradation property and application for the remediation of EM-polluted water body
Bashir et al. Catalytic propensity of biochar decorated with core-shell nZVI@ Fe3O4: A sustainable photo-Fenton catalysis of methylene blue dye and reduction of 4-nitrophenol
Zhu et al. Constructing surface micro-electric fields on hollow single-atom cobalt catalyst for ultrafast and anti-interference advanced oxidation
Li et al. Activation of sulfite by different Fe0-based nanomaterials for oxidative removal of sulfamethazine in aqueous solution
Fan et al. Preparation of metal organic framework derived materials CoFe2O4@ NC and its application for degradation of norfloxacin from aqueous solutions by activated peroxymonosulfate
Dong et al. Recent advances in applications of nonradical oxidation in water treatment: Mechanisms, catalysts and environmental effects
Xu et al. Enhancing the degradation of bisphenol A by dioxygen activation using bimetallic Cu/Fe@ zeolite: Critical role of Cu (I) and superoxide radical
Lei et al. A novel one-step method for preparation of sulfonate functionalized nanodiamonds and their utilization for ultrafast removal of organic dyes with high efficiency: Kinetic and isotherm studies
Li et al. Recent advances in nanoscale zero-valent iron/oxidant system as a treatment for contaminated water and soil
Huang et al. Magnetic poly (aniline-co-5-sulfo-2-anisidine) as multifunctional adsorbent for highly effective co-removal of aqueous Cr (VI) and 2, 4-Dichlophenol
Wang et al. Perdisulfate-assisted advanced oxidation of 2, 4-dichlorophenol by bio-inspired iron encapsulated biochar catalyst
Wang et al. Degradation mechanism and pathway of 2, 4-dichlorophenol via heterogeneous activation of persulfate by using Fe-Cu-MOF@ C nanocatalyst
Shan et al. Decontamination of arsenite by a nano-sized lanthanum peroxide composite through a simultaneous treatment process combined with spontaneously catalytic oxidation and adsorption reactions
Liu et al. Novel peroxymonosulfate activation system based on catalyst prepared from solid waste
Ma et al. Iron pyrophosphate doped carbon nanocomposite for tetracycline degradation by activation of peroxymonosulfate
Chen et al. Efficient removal of Cr (VI) from aqueous solution by natural pyrite/rhodochrosite derived materials: Performance, kinetic and mechanism

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant