CN116259185A - 停车场场景下融合预测算法的车辆行为决策方法及装置 - Google Patents

停车场场景下融合预测算法的车辆行为决策方法及装置 Download PDF

Info

Publication number
CN116259185A
CN116259185A CN202310045955.8A CN202310045955A CN116259185A CN 116259185 A CN116259185 A CN 116259185A CN 202310045955 A CN202310045955 A CN 202310045955A CN 116259185 A CN116259185 A CN 116259185A
Authority
CN
China
Prior art keywords
vehicle
behavior
target vehicle
lane
predicted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310045955.8A
Other languages
English (en)
Other versions
CN116259185B (zh
Inventor
秦兆博
韩沐林
秦洪懋
秦晓辉
徐彪
谢国涛
王晓伟
丁荣军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Institute Of Intelligent Control Hunan University
Original Assignee
Wuxi Institute Of Intelligent Control Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Institute Of Intelligent Control Hunan University filed Critical Wuxi Institute Of Intelligent Control Hunan University
Priority to CN202310045955.8A priority Critical patent/CN116259185B/zh
Publication of CN116259185A publication Critical patent/CN116259185A/zh
Application granted granted Critical
Publication of CN116259185B publication Critical patent/CN116259185B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096833Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route
    • G08G1/096844Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route where the complete route is dynamically recomputed based on new data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/06Automatic manoeuvring for parking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0027Planning or execution of driving tasks using trajectory prediction for other traffic participants
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/047Optimisation of routes or paths, e.g. travelling salesman problem
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • G06V20/586Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of parking space
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0129Traffic data processing for creating historical data or processing based on historical data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096877Systems involving transmission of navigation instructions to the vehicle where the input to the navigation device is provided by a suitable I/O arrangement
    • G08G1/096888Systems involving transmission of navigation instructions to the vehicle where the input to the navigation device is provided by a suitable I/O arrangement where input information is obtained using learning systems, e.g. history databases
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/168Driving aids for parking, e.g. acoustic or visual feedback on parking space
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

本发明公开了一种停车场场景下融合预测算法的车辆行为决策方法及装置,该方法包括:利用预测算法对目标车辆的行为进行预测;根据不同的预测结果对目标车辆的轨迹分别进行预测;包括:当预测行为为沿本车道直线行驶行为时,使用匀速运动模型对目标车辆的轨迹进行预测;当预测行为为驶离本车道驶入空闲停车位行为时,使用五次多项式模型对目标车辆的轨迹进行预测;将目标车辆的预测轨迹、目标车辆的当前状态和智能车辆的当前状态作为输入信息输入行为树决策算法中,输出智能车辆行为。

Description

停车场场景下融合预测算法的车辆行为决策方法及装置
技术领域
本发明涉及自动驾驶技术领域,特别是关于一种停车场场景下融合预测算法的车辆行为决策方法及装置。
背景技术
随着经济水平的快速增长和城镇化水平的不断提高,人们对汽车的需求量日益提高,汽车的保有量也持续增加。随之而来的是交通环境的拥挤,城市停车位资源紧张,停车位空间小等问题。自主泊车技术的出现和发展为解决泊车问题提供了新的思路,将有效解决泊车困难等痛点。
在智能化发展的前期,基于资源、成本等因素,自主泊车系统出现了三种技术路线:单车智能方案、场端方案和车场协同方案。基于单车智能方案可以避免对停车场进行大规模改造,适用于各类停车场,技术上更接近低速L4自动驾驶场景,具备场景迁移能力。所以单车智能方案被众多主机厂所采纳。
基于单车智能的自主泊车系统完全通过车端的软硬件技术进行感知、定位、决策、规划和控制。目前很多厂商对自主泊车的决策部分研究较少,使得该自主泊车系统决策部分智能化程度较弱,迫使很多场景需要驾驶员协同参与处理,导致泊车系统智能化程度低、停车效率较低。
目前自主泊车系统中的决策方法主要有有限状态机、行为树等基于规则的方法,行为树是停车场场景下车辆行为决策较为流行的方法。该方法是一种基于规则的树状结构的决策方法,将智能车辆在停车场场景下所遇到的不同场景进行划分,建立不同的决策规则,从而保证车辆在停车场场景下的行驶安全性。
但是,由于停车场场景存在空间狭小、车辆较多、视野不开阔等问题,受到有交互的车辆的影响,可能会存在智能车辆执行紧急停车等危险驾驶行为,不仅存在一定的安全性,还会影响乘坐的舒适性。
因此,亟待提供一种停车场场景下考虑会车时对向车辆行驶轨迹的车辆行为决策方案。
发明内容
本发明的目的在于提供一种停车场场景下融合预测算法的车辆行为决策方法及装置来克服或至少减轻现有技术的上述缺陷中的至少一个。
为实现上述目的,本发明提供一种停车场场景下融合预测算法的车辆行为决策方法,应用于智能车辆,包括:
利用预测算法对目标车辆的行为进行预测;预测算法的输入为目标车辆的历史轨迹信息和目标车辆的当前状态信息,输出为目标车辆的预测行为,包括目标车辆执行沿本车道直线行驶行为和驶离本车道驶入空闲停车位行为;
根据不同的预测结果对目标车辆的轨迹分别进行预测;包括:当预测行为为沿本车道直线行驶行为时,使用匀速运动模型对目标车辆的轨迹进行预测;当预测行为为驶离本车道驶入空闲停车位行为时,使用五次多项式模型对目标车辆的轨迹进行预测;
将目标车辆的预测轨迹、目标车辆的当前状态和智能车辆的当前状态作为输入信息输入行为树决策算法中,输出智能车辆行为。
优选的,预测算法为:当检测到目标车辆连续多个坐标点的航向角大于前一个坐标点的航向角且离车道线的距离小于阈值,则预测目标车辆在执行驶离本车道驶入空闲停车位行为。
优选的,利用预测算法对目标车辆的行为进行预测之前,还包括:
建立停车场场景下车辆行驶的数据集;数据集中包括车道中心线的坐标、停车位中心点的坐标、车辆的坐标、车辆的速度和车辆正在执行的行为;其中,车辆正在执行的行为包括继续沿本车道直线行驶、驶离本车道驶入侧方停车位;
构建基于长短时记忆网络LSTM的行为预测模型,模型的输入为预设时间长度内目标车辆历史轨迹数据信息,模型的输出为车辆行为的预测概率;车辆行为包括继续沿本车道直线行驶和驶离本车道驶入侧方停车位;
从数据集中获取用来训练车辆行为预测模型的信息,包括:目标车辆具有时间序列的状态向量和预测结果的行为动作集;其中,状态向量包括目标车辆的历史轨迹、横向速度、纵向速度和与车道中心线的距离,预测结果的行为动作集包括沿着本车道直线行驶、驶离本车道驶入侧方停车位;
使用从数据集中获取的信息对车辆行为预测模型进行训练,得到基于LSTM的预测算法;预测算法的输入为目标车辆的历史轨迹信息和目标车辆的当前状态信息,输出为目标车辆的预测行为,包括车辆继续沿本车道直线行驶、或者驶离本车道驶入侧方停车位。
优选的,使用五次多项式模型对目标车辆的轨迹进行预测包括:
使用下列多项式对目标车辆的轨迹进行预测:
y(x)=c0+c1x+c2x2+c3x3+c4x4+c5x5 (1)
y'(x)=c1+2c2x+3c3x2+4c4x3+5c5x4 (2)
y”(x)=2c2+6c3x+12c4x2+20c5x3 (3)
其中,y(x)表示车辆的纵坐标与横坐标的函数关系式,y'(x)表示y对x的一阶导数,y”(x)表示y对x的二阶导数,(x,y)为车辆的坐标,c0~c5为五次多项式的系数,通过起始点的车辆坐标(xs,ys)、起始点处y关于x的一阶、二阶导数、终点的车辆坐标(xg,yg)、终点处y关于x的一阶、二阶导数,求出五次多项式的系数c0~c5;其中,起始点的车辆坐标(xs,ys)为车辆当前点的坐标,终点的车辆坐标(xg,yg)为目标停车位的中心点坐标;
根据五次多项式的系数c0~c5得到公式(1),计算得到从起始点(xs,ys)到终点(xg,yg)的预测轨迹。
优选的,当目标车辆的行为预测结果为沿本车道直线行驶行为时,通过下式(4)和(5)使用匀速运动模型对目标车辆的轨迹进行预测:
Figure BDA0004055437680000032
/>
Figure BDA0004055437680000031
其中,X为车辆状态矩阵,(x,y)为车辆的位置坐标,
Figure BDA0004055437680000033
为车辆沿x方向的速度,/>
Figure BDA0004055437680000034
为车辆沿y方向的速度,Xk为第k次车辆状态矩阵,Xk为k+1次车辆状态矩阵,t为预测时间,Wk为取固定值的高斯噪声。
优选的,输出智能车辆行为包括:
判断目标车辆与智能车辆的当前距离是否小于安全距离Ds
如果是,执行以最大减速度紧急刹车的行为;
如果否,判断当目标车辆与智能车辆分别以当前状态行驶t秒后的距离是否小于安全距离Ds,如果是:执行减速行驶的行为。
优选的,通过下式计算安全距离Ds
Figure BDA0004055437680000041
其中,v表示智能车辆的速度,th表示车辆执行延时,amax表示智能车辆最大的减速度。
本发明实施例还提供一种停车场场景下融合预测算法的车辆行为决策装置,用于执行上述方法,该装置包括:
收发模块,用于接收目标车辆的当前状态和智能车辆的当前状态;
处理模块,用于:
利用预测算法对目标车辆的行为进行预测;预测算法的输入为目标车辆的历史轨迹信息和目标车辆的当前状态信息,输出为目标车辆的预测行为,包括目标车辆执行沿本车道直线行驶行为和驶离本车道驶入空闲停车位行为;
根据不同的预测结果对目标车辆的轨迹分别进行预测;包括:当预测行为为沿本车道直线行驶行为时,使用匀速运动模型对目标车辆的轨迹进行预测;当预测行为为驶离本车道驶入空闲停车位行为时,使用五次多项式模型对目标车辆的轨迹进行预测;
将目标车辆的预测轨迹、目标车辆的当前状态和智能车辆的当前状态作为输入信息输入行为树决策算法中,输出智能车辆行为。
本发明由于采取以上技术方案,其具有以下优点:
本发明实施例中,在对目标车辆的轨迹进行预测时,首先对目标车辆的行为进行预测,然后对不同的预测行为使用不同的轨迹预测方法对目标车辆的未来轨迹进行预测。将目标车辆的预测轨迹输入决策方法中,智能车辆可以根据目标车辆的预测轨迹和当前状态信息进行更合理的决策,从而提高智能车辆在停车场场景下行驶的安全性和舒适性。
附图说明
图1为本发明提供的停车场场景下融合预测算法的车辆行为决策方法的流程示意图。
图2为本发明提供的停车场场景下融合预测算法的车辆行为决策方法中判断目标车辆执行驶离本车道驶入空闲停车位行为的示意图。
图3为本发明提供的停车场场景下融合预测算法的车辆行为决策方法所应用的停车场特定场景示意图。
图4为本发明实施例提供的一种停车场场景下融合预测算法的车辆行为决策装置的结构示意图。
图5为本发明实施例提供的一种停车场场景下融合预测算法的车辆行为决策装置的另一结构示意图。
具体实施方式
在附图中,使用相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面结合附图对本发明的实施例进行详细说明。
在本发明的描述中,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制。
在不冲突的情况下,本发明各实施例及各实施方式中的技术特征可以相互组合,并不局限于该技术特征所在的实施例或实施方式中。
下面结合附图以及具体实施例对本发明做进一步的说明,需要指出的是,下面仅以一种最优化的技术方案对本发明的技术方案以及设计原理进行详细阐述,但本发明的保护范围并不仅限于此。
本文涉及下列术语,为便于理解,对其含义说明如下。本领域技术人员应当理解,下列术语也可能有其它名称,但在不脱离其含义的情形下,其它任何名称都应当被认为与本文所列术语一致。
本发明提供一种停车场场景下融合预测算法的车辆行为决策方法,应用于智能车辆,如图1所示,该方法包括:
步骤11,利用预测算法对目标车辆的行为进行预测;预测算法的输入为目标车辆的历史轨迹信息和目标车辆的当前状态信息,输出为目标车辆的预测行为,包括目标车辆执行沿本车道直线行驶行为和驶离本车道驶入空闲停车位行为。
其中,预测算法可以为:当检测到目标车辆连续多个坐标点的航向角大于前一个坐标点的航向角且离车道线的距离小于阈值,则预测目标车辆在执行驶离本车道驶入空闲停车位行为。
例如,如图2所示,当检测到目标车辆连续三个坐标点的航向角(θ2~θ4)大于前一个点的航向角θ1且离车道线的距离小于一定的阈值(由于大部分车辆的宽度在1.4-1.6米之间,所以可将该阈值定为1米),则将目标车辆的行为认定为在执行驶离本车道驶入空闲停车位行为,将其余行为认定为继续沿本车道直线行驶行为。
步骤12,根据不同的预测结果对目标车辆的轨迹分别进行预测;包括:当预测行为为沿本车道直线行驶行为时,使用匀速运动模型对目标车辆的轨迹进行预测;当预测行为为驶离本车道驶入空闲停车位行为时,使用五次多项式模型对目标车辆的轨迹进行预测。
其中,使用五次多项式模型对目标车辆的轨迹进行预测包括:
使用下列多项式对目标车辆的轨迹进行预测:
y(x)=c0+c1x+c2x2+c3x3+c4x4+c5x5 (1)
y'(x)=c1+2c2x+3c3x2+4c4x3+5c5x4 (2)
y”(x)=2c2+6c3x+12c4x2+20c5x3 (3)
其中,y(x)表示车辆的纵坐标与横坐标的函数关系式,y'(x)表示y对x的一阶导数,y”(x)表示y对x的二阶导数,(x,y)为车辆的坐标,c0~c5为五次多项式的系数,通过起始点的车辆坐标(xs,ys)、起始点处y关于x的一阶、二阶导数、终点的车辆坐标(xg,yg)、终点处y关于x的一阶、二阶导数,求出五次多项式的系数c0~c5;其中,起始点的车辆坐标(xs,ys)为车辆当前点的坐标,终点的车辆坐标(xg,yg)为目标停车位的中心点坐标;
根据五次多项式的系数c0~c5得到公式(1),计算得到从起始点(xs,ys)到终点(xg,yg)的预测轨迹。
在一种实施方式中,目标停车位根据驶入左右侧不同停车位进行判断,当预测结果为驶入左侧停车位时,将距离车辆最近的左侧空闲停车位作为目标停车位,当预测结果为驶入右侧停车位时,将距离车辆最近的右侧空闲停车位作为目标停车位。起始点处y关于x的一阶、二阶导数可以通过起始点、起始点前第一个点和起始点前第两个点共三个点求出。终点处y关于x的一阶、二阶导数可以通过经验获得,即可以为预设经验值。
而且,可以把停车行为简化为匀减速运动,到达终点的速度为0,从而可以求出目标车辆在执行驶离本车道驶入空闲停车位所需的总时间。
其中,当目标车辆的行为预测结果为沿本车道直线行驶行为时,通过下式(4)和(5)使用匀速运动模型对目标车辆的轨迹进行预测:
Figure BDA0004055437680000061
Figure BDA0004055437680000071
其中,X为车辆状态矩阵,(x,y)为车辆的位置坐标,
Figure BDA0004055437680000073
为车辆沿x方向的速度,/>
Figure BDA0004055437680000074
为车辆沿y方向的速度,Xk为第k次车辆状态矩阵,Xk为k+1次车辆状态矩阵,t为预测时间,Wk为取固定值的高斯噪声。在一种实施方式中,可以设置Wk为零,进一步简化计算过程。在一种实施方式中,可以p秒为单位对公式(5)进行迭代计算,X是车辆状态矩阵,也就是每p秒对车辆的状态进行迭代更新。在一个示例中,可以设置t为2秒,p为0.1秒。
步骤13,将目标车辆的预测轨迹、目标车辆的当前状态和智能车辆的当前状态作为输入信息输入行为树决策算法中,输出智能车辆行为。
其中,输出智能车辆行为可以包括:
判断目标车辆与智能车辆的当前距离是否小于安全距离Ds
如果是,执行以最大减速度紧急刹车的行为;
如果否,判断当目标车辆与智能车辆分别以当前状态行驶t秒后的距离是否小于安全距离Ds,如果是:执行减速行驶的行为。
可以通过下式计算安全距离Ds
Figure BDA0004055437680000072
其中,v表示智能车辆的速度,th表示车辆执行延时,amax表示智能车辆最大的减速度。
本发明中,考虑到预测算法的精度存在一定的误差,并不只依赖于目标车辆的预测轨迹对智能车辆的行为进行决策,还对智能车辆的决策判断条件增加一定的约束。
例如,上文考虑了目标车辆与智能车辆之间的安全距离,当目标车辆与智能车辆的当前距离大于安全距离,而且目标车辆与智能车辆分别以当前状态行驶t秒后的距离仍然大于安全距离时,才会根据目标车辆的预测轨迹对智能车辆的行为进行决策,输出车辆跟随、自由行驶、减速行驶等。
其中,输出的智能车辆行为还可以包括下述行为的一种:路径跟随、换道避障、车辆停车,可以根据实际情形灵活设置。
本发明可以应用于停车场特定场景下,如图3所示,该特定场景下的目标车辆包括在对向车道内行驶且与智能车辆有交互的其他车辆,此时目标车辆的行为有两种,一种为沿本车道继续直线行驶,这种行为不会对智能车辆的决策造成影响;另一种为驶离本车道驶入空闲停车位,这种行为对智能车辆的决策可能会产生一定的影响。所以在此场景下,对目标车辆的轨迹进行预测,会提高智能车辆决策的合理性。
在一种实施方式中,利用预测算法对目标车辆的行为进行预测之前,还可以包括:
建立停车场场景下车辆行驶的数据集;数据集中包括车道中心线的坐标、停车位中心点的坐标、车辆的坐标、车辆的速度和车辆正在执行的行为;其中,车辆正在执行的行为包括继续沿本车道直线行驶、驶离本车道驶入侧方停车位;
构建基于LSTM(Long short-termmemory,长短时记忆网络)的行为预测模型,模型的输入为预设时间长度内目标车辆历史轨迹数据信息,模型的输出为车辆行为的预测概率;车辆行为包括继续沿本车道直线行驶和驶离本车道驶入侧方停车位;
从数据集中获取用来训练车辆行为预测模型的信息,包括:目标车辆具有时间序列的状态向量和预测结果的行为动作集;其中,状态向量包括目标车辆的历史轨迹、横向速度、纵向速度和与车道中心线的距离,预测结果的行为动作集包括沿着本车道直线行驶、驶离本车道驶入侧方停车位;
使用从数据集中获取的信息对车辆行为预测模型进行训练,得到基于LSTM的预测算法;预测算法的输入为目标车辆的历史轨迹信息和目标车辆的当前状态信息,输出为目标车辆的预测行为,包括车辆继续沿本车道直线行驶、或者驶离本车道驶入侧方停车位。
本发明实施例中,基于停车场场景的特殊性,可以将数据集分为沿本车道行驶数据集和驶离本车道数据集,其中驶离本车道数据集中可以包含驶入左侧停车位数据集和驶入右侧停车位数据集。使用上述数据集对基于LSTM的行为预测模型进行训练,提升该基于LSTM的行为预测模型对目标车辆驾驶行为预测的准确性。
在一个示例中,数据集中包括车道中心线的坐标[xc,yc]、停车位中心点的坐标[xp,yp]、车辆的坐标[x,y]、车辆的速度[vx,vy]、车辆正在执行的行为(该行为包括:继续沿本车道直线行驶、驶离本车道驶入左侧停车位、驶离本车道驶入右侧停车位)。
对基于LSTM的行为预测模型进行训练时,首先从数据集中获取用来训练基于LSTM的行为预测模型的信息,包括以下内容:目标车辆具有时间序列的状态向量St=[x,y,vx,vy,d],其中包含目标车辆的历史轨迹[x,y]、横向速度vx、纵向速度vy、与车道中心线的距离d;预测结果的行为动作集A=(LK,DLP,DRP),其中包含沿着本车道直线行驶LK,驶离本车道驶入左侧空闲停车位DLP,驶离本车道驶入右侧空闲停车位DRP。
进一步地,基于LSTM的行为预测模型为由三层多个LSTM神经网络组成的网络结构;设置该模型的输入为时间长度为L的目标车辆历史轨迹数据信息,表示为ST1=[St1,St2,...,St49,St50],其中包括该时间长度内50个采样的状态向量;并设置模型的输出为行为动作集A中的各动作的预测概率矩阵Φ=[θ123]。其中,θ1、θ2和θ3分别表示继续沿本车道直线行驶、驶离本车道驶入左侧停车位、驶离本车道驶入右侧停车位。容易理解,预测概率矩阵也可以只包含两个元素,即继续沿本车道直线行驶、以及驶离本车道驶入侧方停车位。
LSTM(神经)网络为现有技术中封装好的算法。本示例中的LSTM算法包含三层网络,每一层网络包含多个LSTM单元,将车辆的历史轨迹数据信息和当前车辆状态输入到LSTM算法中,会以向量的方式依次通过多个LSTM单元和三层网络,不断改变网络的一些参数,将LSTM网络输出结果再输入到softmax函数中,得到车辆的不同行驶行为的概率。
在三层的LSTM网络中,将目标车辆的历史轨迹数据和当前车辆状态输入到第一层LSTM网络中,第一层LSTM网络包含LSTM单元,该单元包括遗忘门、输入门和输出门。将上述这些信息输入该层LSTM单元之后得到输出向量,并作为同一层下一个LSTM单元和下一层LSTM的输入向量,再采用Softmax函数对数值特征进行归一化处理,从而输出三个行为动作的概率,进而完成对车辆行为的预测。
本发明实施例中,在对目标车辆的轨迹进行预测时,首先使用基于学习的方法例如长短时记忆网络(Long short-term memory,LSTM)对目标车辆的行为进行预测,然后对不同的预测行为使用不同的轨迹预测方法对目标车辆的未来轨迹进行预测。当预测的行为为沿本车道直线行驶时,可使用基于物理模型的方法——匀速运动(Constant velocity,CV)模型对目标车辆的轨迹进行预测;当预测的行为为驶离本车道驶入空闲停车位时,可使用五次多项式对目标车辆的轨迹进行预测。将目标车辆的预测轨迹输入决策方法中,智能车辆可以根据目标车辆的预测轨迹和当前状态信息进行更合理的决策,从而提高智能车辆在停车场场景下行驶的安全性和舒适性。
本发明实施例提供一种停车场场景下融合预测算法的车辆行为决策装置,用于执行上述任一实施例、实施方式或示例中提供的方法,如图4所示,该装置包括:
收发模块41,用于接收目标车辆的当前状态和智能车辆的当前状态;
处理模块42,用于:
利用预测算法对目标车辆的行为进行预测;预测算法的输入为目标车辆的历史轨迹信息和目标车辆的当前状态信息,输出为目标车辆的预测行为,包括目标车辆执行沿本车道直线行驶行为和驶离本车道驶入空闲停车位行为;
根据不同的预测结果对目标车辆的轨迹分别进行预测;包括:当预测行为为沿本车道直线行驶行为时,使用匀速运动模型对目标车辆的轨迹进行预测;当预测行为为驶离本车道驶入空闲停车位行为时,使用五次多项式模型对目标车辆的轨迹进行预测;
将目标车辆的预测轨迹、目标车辆的当前状态和智能车辆的当前状态作为输入信息输入行为树决策算法中,输出智能车辆行为。
在一种实施方式中,预测算法可以为:当检测到目标车辆连续多个坐标点的航向角大于前一个坐标点的航向角且离车道线的距离小于阈值,则预测目标车辆在执行驶离本车道驶入空闲停车位行为。
在一种实施方式中,处理模块42利用预测算法对目标车辆的行为进行预测之前,还可以用于:
建立停车场场景下车辆行驶的数据集;数据集中包括车道中心线的坐标、停车位中心点的坐标、车辆的坐标、车辆的速度和车辆正在执行的行为;其中,车辆正在执行的行为包括继续沿本车道直线行驶、驶离本车道驶入侧方停车位;
构建基于长短时记忆网络LSTM的行为预测模型,模型的输入为预设时间长度内目标车辆历史轨迹数据信息,模型的输出为车辆行为的预测概率;车辆行为包括继续沿本车道直线行驶和驶离本车道驶入侧方停车位;
从数据集中获取用来训练车辆行为预测模型的信息,包括:目标车辆具有时间序列的状态向量和预测结果的行为动作集;其中,状态向量包括目标车辆的历史轨迹、横向速度、纵向速度和与车道中心线的距离,预测结果的行为动作集包括沿着本车道直线行驶、驶离本车道驶入侧方停车位;
使用从数据集中获取的信息对车辆行为预测模型进行训练,得到基于LSTM的预测算法;预测算法的输入为目标车辆的历史轨迹信息和目标车辆的当前状态信息,输出为目标车辆的预测行为,包括车辆继续沿本车道直线行驶、或者驶离本车道驶入侧方停车位。
在一种实施方式中,处理模块42使用五次多项式模型对目标车辆的轨迹进行预测包括:
使用下列多项式对目标车辆的轨迹进行预测:
y(x)=c0+c1x+c2x2+c3x3+c4x4+c5x5(1)
y'(x)=c1+2c2x+3c3x2+4c4x3+5c5x4(2)
y”(x)=2c2+6c3x+12c4x2+20c5x3(3)
其中,y(x)表示车辆的纵坐标与横坐标的函数关系式,y'(x)表示y对x的一阶导数,y”(x)表示y对x的二阶导数,(x,y)为车辆的坐标,c0~c5为五次多项式的系数,通过起始点的车辆坐标(xs,ys)、起始点处y关于x的一阶、二阶导数、终点的车辆坐标(xg,yg)、终点处y关于x的一阶、二阶导数,求出五次多项式的系数c0~c5;其中,起始点的车辆坐标(xs,ys)为车辆当前点的坐标,终点的车辆坐标(xg,yg)为目标停车位的中心点坐标;
根据五次多项式的系数c0~c5得到公式(1),计算得到从起始点(xs,ys)到终点(xg,yg)的预测轨迹。
在一种实施方式中,处理模块42用于:当目标车辆的行为预测结果为沿本车道直线行驶行为时,通过下式(4)和(5)使用匀速运动模型对目标车辆的轨迹进行预测:
Figure BDA0004055437680000111
/>
Figure BDA0004055437680000112
其中,X为车辆状态矩阵,(x,y)为车辆的位置坐标,
Figure BDA0004055437680000113
为车辆沿x方向的速度,/>
Figure BDA0004055437680000114
为车辆沿y方向的速度,Xk为第k次车辆状态矩阵,Xk为k+1次车辆状态矩阵,t为预测时间,Wk为取固定值的高斯噪声。
其中,处理模块42输出智能车辆行为包括:
判断目标车辆与智能车辆的当前距离是否小于安全距离Ds
如果是,执行以最大减速度紧急刹车的行为;
如果否,判断当目标车辆与智能车辆分别以当前状态行驶t秒后的距离是否小于安全距离Ds,如果是:执行减速行驶的行为。
其中,通过下式计算安全距离Ds
Figure BDA0004055437680000121
其中,v表示智能车辆的速度,th表示车辆执行延时,amax表示智能车辆最大的减速度。
需要说明,该装置的收发模块41和处理模块42可以执行上述方法实现中的任意对应操作,此处不再一一赘述。
本发明实施例还提供一种停车场场景下融合预测算法的车辆行为决策装置,如图5所示,包括感知模块51、决策模块52、规划模块53和控制模块54,其中决策模块52包括行为预测子模块521、轨迹预测子模块522和行为决策子模块523三部分。其中感知模块51将感知到的目标车辆信息和智能车辆状态信息传输给决策模块52,决策模块52首先将目标车辆的信息输入到行为预测子模块521中,对目标车辆未来一段时间的行为进行预测,然后将预测结果和目标车辆的信息输入到轨迹预测子模块522中,该子模块根据以上信息对目标车辆的未来一段时间的轨迹进行预测,再将预测的目标车辆轨迹信息、目标车辆的信息和智能车辆状态信息输入到行为决策子模块523中,对车辆的行为进行合理且安全的决策。将决策结果输入到规划模块53中,生成智能车辆的行驶轨迹,再将行驶轨迹输入到控制模块54中,使智能车辆在停车场场景中安全且合理的行驶。
本发明实施例中,在对目标车辆的轨迹进行预测时,首先对目标车辆的行为进行预测,然后对不同的预测行为使用不同的轨迹预测方法对目标车辆的未来轨迹进行预测。当预测的行为为沿本车道直线行驶时,可使用基于物理模型的方法——匀速运动(Constant velocity,CV)模型对目标车辆的轨迹进行预测;当预测的行为为驶离本车道驶入空闲停车位时,可使用五次多项式对目标车辆的轨迹进行预测。将目标车辆的预测轨迹输入决策方法中,智能车辆可以根据目标车辆的预测轨迹和当前状态信息进行更合理的决策,从而提高智能车辆在停车场场景下行驶的安全性和舒适性。
最后需要指出的是:以上实施例仅用以说明本发明的技术方案,而非对其限制。本领域的普通技术人员应当理解:可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (8)

1.一种停车场场景下融合预测算法的车辆行为决策方法,应用于智能车辆,其特征在于,包括:
利用预测算法对目标车辆的行为进行预测;预测算法的输入为目标车辆的历史轨迹信息和目标车辆的当前状态信息,输出为目标车辆的预测行为,包括目标车辆执行沿本车道直线行驶行为和驶离本车道驶入空闲停车位行为;
根据不同的预测结果对目标车辆的轨迹分别进行预测;包括:当预测行为为沿本车道直线行驶行为时,使用匀速运动模型对目标车辆的轨迹进行预测;当预测行为为驶离本车道驶入空闲停车位行为时,使用五次多项式模型对目标车辆的轨迹进行预测;
将目标车辆的预测轨迹、目标车辆的当前状态和智能车辆的当前状态作为输入信息输入行为树决策算法中,输出智能车辆行为。
2.根据权利要求1所述的方法,其特征在于,预测算法为:当检测到目标车辆连续多个坐标点的航向角大于前一个坐标点的航向角且离车道线的距离小于阈值,则预测目标车辆在执行驶离本车道驶入空闲停车位行为。
3.根据权利要求1所述的方法,其特征在于,利用预测算法对目标车辆的行为进行预测之前,还包括:
建立停车场场景下车辆行驶的数据集;数据集中包括车道中心线的坐标、停车位中心点的坐标、车辆的坐标、车辆的速度和车辆正在执行的行为;其中,车辆正在执行的行为包括继续沿本车道直线行驶、驶离本车道驶入侧方停车位;
构建基于长短时记忆网络LSTM的行为预测模型,模型的输入为预设时间长度内目标车辆历史轨迹数据信息,模型的输出为车辆行为的预测概率;车辆行为包括继续沿本车道直线行驶和驶离本车道驶入侧方停车位;
从数据集中获取用来训练车辆行为预测模型的信息,包括:目标车辆具有时间序列的状态向量和预测结果的行为动作集;其中,状态向量包括目标车辆的历史轨迹、横向速度、纵向速度和与车道中心线的距离,预测结果的行为动作集包括沿着本车道直线行驶、驶离本车道驶入侧方停车位;
使用从数据集中获取的信息对车辆行为预测模型进行训练,得到基于LSTM的预测算法;预测算法的输入为目标车辆的历史轨迹信息和目标车辆的当前状态信息,输出为目标车辆的预测行为,包括车辆继续沿本车道直线行驶、或者驶离本车道驶入侧方停车位。
4.根据权利要求1所述的方法,其特征在于,使用五次多项式模型对目标车辆的轨迹进行预测包括:
使用下列多项式对目标车辆的轨迹进行预测:
y(x)=c0+c1x+c2x2+c3x3+c4x4+c5x5 (1)
y'(x)=c1+2c2x+3c3x2+4c4x3+5c5x4 (2)
y”(x)=2c2+6c3x+12c4x2+20c5x3 (3)
其中,y(x)表示车辆的纵坐标与横坐标的函数关系式,y'(x)表示y对x的一阶导数,y”(x)表示y对x的二阶导数,(x,y)为车辆的坐标,c0~c5为五次多项式的系数,通过起始点的车辆坐标(xs,ys)、起始点处y关于x的一阶、二阶导数、终点的车辆坐标(xg,yg)、终点处y关于x的一阶、二阶导数,求出五次多项式的系数c0~c5;其中,起始点的车辆坐标(xs,ys)为车辆当前点的坐标,终点的车辆坐标(xg,yg)为目标停车位的中心点坐标;
根据五次多项式的系数c0~c5得到公式(1),计算得到从起始点(xs,ys)到终点(xg,yg)的预测轨迹。
5.根据权利要求1所述的方法,其特征在于,当目标车辆的行为预测结果为沿本车道直线行驶行为时,通过下式(4)和(5)使用匀速运动模型对目标车辆的轨迹进行预测:
Figure FDA0004055437670000021
Figure FDA0004055437670000022
其中,X为车辆状态矩阵,(x,y)为车辆的位置坐标,
Figure FDA0004055437670000023
为车辆沿x方向的速度,/>
Figure FDA0004055437670000024
为车辆沿y方向的速度,Xk为第k次车辆状态矩阵,Xk为k+1次车辆状态矩阵,t为预测时间,Wk为取固定值的高斯噪声。
6.根据权利要求1所述的方法,其特征在于,输出智能车辆行为包括:
判断目标车辆与智能车辆的当前距离是否小于安全距离Ds
如果是,执行以最大减速度紧急刹车的行为;
如果否,判断当目标车辆与智能车辆分别以当前状态行驶t秒后的距离是否小于安全距离Ds,如果是:执行减速行驶的行为。
7.根据权利要求6所述的方法,其特征在于,通过下式计算安全距离Ds
Figure FDA0004055437670000031
其中,v表示智能车辆的速度,th表示车辆执行延时,amax表示智能车辆最大的减速度。
8.一种停车场场景下融合预测算法的车辆行为决策装置,其特征在于,用于执行根据权利要求1-7中任一项所述的方法,该装置包括:
收发模块,用于接收目标车辆的当前状态和智能车辆的当前状态;
处理模块,用于:
利用预测算法对目标车辆的行为进行预测;预测算法的输入为目标车辆的历史轨迹信息和目标车辆的当前状态信息,输出为目标车辆的预测行为,包括目标车辆执行沿本车道直线行驶行为和驶离本车道驶入空闲停车位行为;
根据不同的预测结果对目标车辆的轨迹分别进行预测;包括:当预测行为为沿本车道直线行驶行为时,使用匀速运动模型对目标车辆的轨迹进行预测;当预测行为为驶离本车道驶入空闲停车位行为时,使用五次多项式模型对目标车辆的轨迹进行预测;
将目标车辆的预测轨迹、目标车辆的当前状态和智能车辆的当前状态作为输入信息输入行为树决策算法中,输出智能车辆行为。
CN202310045955.8A 2023-01-30 2023-01-30 停车场场景下融合预测算法的车辆行为决策方法及装置 Active CN116259185B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310045955.8A CN116259185B (zh) 2023-01-30 2023-01-30 停车场场景下融合预测算法的车辆行为决策方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310045955.8A CN116259185B (zh) 2023-01-30 2023-01-30 停车场场景下融合预测算法的车辆行为决策方法及装置

Publications (2)

Publication Number Publication Date
CN116259185A true CN116259185A (zh) 2023-06-13
CN116259185B CN116259185B (zh) 2023-10-13

Family

ID=86685644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310045955.8A Active CN116259185B (zh) 2023-01-30 2023-01-30 停车场场景下融合预测算法的车辆行为决策方法及装置

Country Status (1)

Country Link
CN (1) CN116259185B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116620271A (zh) * 2023-07-19 2023-08-22 之江实验室 基于短时记忆与行为树的智能驾驶行人避让方法和系统
CN117058919A (zh) * 2023-10-10 2023-11-14 北京集度科技有限公司 车位推荐方法、装置、计算机设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170364083A1 (en) * 2016-06-21 2017-12-21 Baidu Online Network Technology (Beijing) Co., Ltd. Local trajectory planning method and apparatus for smart vehicles
US20200172093A1 (en) * 2018-11-29 2020-06-04 291, Daehak-ro Lane-based probabilistic motion prediction of surrounding vehicles and predictive longitudinal control method and apparatus
CN114379595A (zh) * 2022-02-22 2022-04-22 无锡物联网创新中心有限公司 基于车辆行为特征与环境交互信息的车辆轨迹预测方法
CN115140094A (zh) * 2022-07-18 2022-10-04 东南大学 一种基于纵向安全间距模型的实时换道决策方法
CN115179959A (zh) * 2022-07-18 2022-10-14 福州大学 基于行驶道路自适应更新阈值的智能驾驶车辆行为预测方法
CN115465296A (zh) * 2022-09-19 2022-12-13 中国邮政速递物流股份有限公司 一种基于长短时运动轨迹融合的周边车辆轨迹预测方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170364083A1 (en) * 2016-06-21 2017-12-21 Baidu Online Network Technology (Beijing) Co., Ltd. Local trajectory planning method and apparatus for smart vehicles
US20200172093A1 (en) * 2018-11-29 2020-06-04 291, Daehak-ro Lane-based probabilistic motion prediction of surrounding vehicles and predictive longitudinal control method and apparatus
CN114379595A (zh) * 2022-02-22 2022-04-22 无锡物联网创新中心有限公司 基于车辆行为特征与环境交互信息的车辆轨迹预测方法
CN115140094A (zh) * 2022-07-18 2022-10-04 东南大学 一种基于纵向安全间距模型的实时换道决策方法
CN115179959A (zh) * 2022-07-18 2022-10-14 福州大学 基于行驶道路自适应更新阈值的智能驾驶车辆行为预测方法
CN115465296A (zh) * 2022-09-19 2022-12-13 中国邮政速递物流股份有限公司 一种基于长短时运动轨迹融合的周边车辆轨迹预测方法及系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116620271A (zh) * 2023-07-19 2023-08-22 之江实验室 基于短时记忆与行为树的智能驾驶行人避让方法和系统
CN116620271B (zh) * 2023-07-19 2023-11-03 之江实验室 基于短时记忆与行为树的智能驾驶行人避让方法和系统
CN117058919A (zh) * 2023-10-10 2023-11-14 北京集度科技有限公司 车位推荐方法、装置、计算机设备及存储介质
CN117058919B (zh) * 2023-10-10 2024-01-12 北京集度科技有限公司 车位推荐方法、装置、计算机设备及存储介质

Also Published As

Publication number Publication date
CN116259185B (zh) 2023-10-13

Similar Documents

Publication Publication Date Title
CN110834644B (zh) 一种车辆控制方法、装置、待控制车辆及存储介质
CN116259185B (zh) 停车场场景下融合预测算法的车辆行为决策方法及装置
CN110597245B (zh) 基于二次型规划和神经网络的自动驾驶换道轨迹规划方法
CN109669461B (zh) 一种复杂工况下自动驾驶车辆决策系统及其轨迹规划方法
JP7113048B2 (ja) 混雑した道路における協働認識車線変更制御を提供するためのシステム及び方法
CN110297494B (zh) 一种基于滚动博弈的自动驾驶车辆换道决策方法及系统
Huang et al. Personalized trajectory planning and control of lane-change maneuvers for autonomous driving
CN114489044A (zh) 一种轨迹规划方法及装置
CN111688663A (zh) 使用操纵临界用于交通工具路线规划和模式适应的自动驾驶系统和控制逻辑
CN108919795A (zh) 一种自动驾驶汽车换道决策方法及装置
CN116249947A (zh) 预测运动规划系统及方法
CN112965476B (zh) 一种基于多窗口模型的高速无人车轨迹规划系统及方法
CN110304066A (zh) 自动驾驶模式下的路线选择方法、系统、设备及存储介质
CN113085873B (zh) 驾驶策略的获取方法、装置、计算机设备和存储介质
CN112406904B (zh) 自动驾驶策略的训练方法、自动驾驶方法、设备和车辆
US20210402991A1 (en) Object Trajectory Association and Tracking
CN113722835B (zh) 拟人化随机换道驾驶行为建模方法
CN113682312A (zh) 一种融合深度强化学习的自主换道方法及系统
CN115140094A (zh) 一种基于纵向安全间距模型的实时换道决策方法
CN115257789A (zh) 城市低速环境下的营运车辆侧向防撞驾驶决策方法
Weisswange et al. Intelligent traffic flow assist: Optimized highway driving using conditional behavior prediction
CN114519931B (zh) 一种路口环境下目标车辆行为预测方法及装置
WO2024066572A1 (zh) 一种智能驾驶决策方法、决策装置以及车辆
JP6796679B2 (ja) 車両制御システム及び方法、並びに走行支援サーバ
CN115140048A (zh) 一种自动驾驶行为决策与轨迹规划模型与方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant