CN116219295B - 一种激光增材制造用双相不锈钢粉末和原位激光增材制造双相不锈钢的方法 - Google Patents
一种激光增材制造用双相不锈钢粉末和原位激光增材制造双相不锈钢的方法 Download PDFInfo
- Publication number
- CN116219295B CN116219295B CN202310231115.0A CN202310231115A CN116219295B CN 116219295 B CN116219295 B CN 116219295B CN 202310231115 A CN202310231115 A CN 202310231115A CN 116219295 B CN116219295 B CN 116219295B
- Authority
- CN
- China
- Prior art keywords
- stainless steel
- duplex stainless
- laser
- powder
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000654 additive Substances 0.000 title claims abstract description 70
- 230000000996 additive effect Effects 0.000 title claims abstract description 70
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 42
- 239000000843 powder Substances 0.000 title claims abstract description 40
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 18
- 229910001220 stainless steel Inorganic materials 0.000 title claims description 15
- 239000010935 stainless steel Substances 0.000 title claims description 15
- 229910001039 duplex stainless steel Inorganic materials 0.000 claims abstract description 64
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 49
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 7
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 4
- 239000000956 alloy Substances 0.000 claims abstract description 4
- 239000012535 impurity Substances 0.000 claims abstract description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 22
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 18
- 239000007789 gas Substances 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 10
- 229910052786 argon Inorganic materials 0.000 claims description 9
- 238000005498 polishing Methods 0.000 claims description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- 239000011229 interlayer Substances 0.000 claims description 6
- 238000005488 sandblasting Methods 0.000 claims description 5
- 230000008021 deposition Effects 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims 1
- 229910001566 austenite Inorganic materials 0.000 abstract description 27
- 238000001816 cooling Methods 0.000 abstract description 10
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 229910052804 chromium Inorganic materials 0.000 abstract description 2
- 239000012071 phase Substances 0.000 description 17
- 238000000227 grinding Methods 0.000 description 16
- 230000008569 process Effects 0.000 description 11
- 238000007711 solidification Methods 0.000 description 10
- 230000008023 solidification Effects 0.000 description 9
- 230000007797 corrosion Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000007712 rapid solidification Methods 0.000 description 3
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004372 laser cladding Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0278—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
- C22C33/0285—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明公开了一种激光增材制造用双相不锈钢粉末和原位激光增材制造双相不锈钢的方法,属于双相不锈钢技术领域。本发明中激光粉末增材制造双相不锈钢所用粉末合金元素为Cr,Ni,Mo,Si,Mn,C,N,O,余量为Fe和不可避免的杂质。采用原位激光送粉增材设备,进行原位激光增材制造双相不锈钢。本发明实现了激光增材制造很快的冷却速率下依然可以保证铁素体向奥氏体转变,从而保证双相不锈钢中铁素体和奥氏体的相比例,最终得到铁素体含量在40~50%的双相不锈钢,实现双相不锈钢的原位增材制造,无需后续热处理。
Description
技术领域
本发明属于双相不锈钢技术领域,具体涉及一种激光增材制造用双相不锈钢粉末和原位激光增材制造双相不锈钢的方法。
背景技术
双相不锈钢(DSS)是指微观组织由铁素体与奥氏体两相构成的不锈钢,其中一相所占比例约为45%~55%,其中含量少的一相含量至少占30%。由于具有铁素体和奥氏体两相的微观组织,因此双相不锈钢结合了铁素体和奥氏体不锈钢的优点,是一种兼具高强度和高耐腐蚀性的一类不锈钢,被广泛应用于石油、化工、造纸、海洋、能源、建筑等行业。超级双相不锈钢是指抗点蚀当量(PREN=Cr%+3.3Mo%+16N%)值大于40的一类高镍、高铬、高钼的高合金超级双相不锈钢。
增材制造技术又被称为3D打印,其通过将复杂三维结构分割为薄层,通过逐层二维成形叠加制造的方式实现零件的制造。由于其特殊的成形机制,增材制造技术对于构件的几何适应性极强,理论上可以制造任何复杂形状的三维构件。金属材料增材制造的热源主要有电弧、激光和电子束等。目前双相不锈钢的增材制造的实现方法主要集中在电弧熔丝增材制造,很少有采用激光粉末增材制造的方法原位增材制造双相不锈钢。其中主要的原因是由于激光能量密度高,快速加热-熔化-凝固双相不锈钢,其凝固微观组织以铁素体为主,没有足够的时间完成铁素体向奥氏体的转变,因此很难实现奥氏体/铁素体比例接近1:1。相比较于激光粉末增材制造的方法,电弧熔丝增材制造冷却速率显著降低,冷却至室温的凝固组织可以得到约40%~60%奥氏体,从而实现双相不锈钢的原位增材制造。
综上可知,激光粉末增材制造双相不锈钢的难点的主要是激光能量密度高,熔池金属凝固速度太快导致的。这是由于激光热源性质决定的,难以改变。然而,相较于电弧增材制造,激光粉末增材制造成形质量好、精度高、后续加工少,且随着激光产业迅猛发展,激光增材制造的成本也越来越低,因此激光粉末增材制造双相不锈钢是未来发展的一个趋势。实现双相不锈钢的原位激光增材制造具有很高的实际应用价值。
发明内容
本发明的目的在于克服现有的不足,设计一种双相不锈钢的粉末成分,实现双相不锈钢的激光原位增材制造,其奥氏体/铁素体比例接近1:1,并提供了一种原位激光增材制造的双相不锈钢的方法,实现采用激光热源粉末增材制造的奥氏体/铁素体双相组织的原位合成,无需后续的热处理。
根据不锈钢焊接冶金凝固的理论,影响增材制造双相不锈钢凝固微观组织转变的因素不仅包含工艺因素(凝固速度),还有冶金因素(材料成分)。微调双相不锈钢的成分,使其与激光粉末增材制造方法快速凝固的特点相匹配,有望实现原位的双相不锈钢增材制造。对于典型的2507型双相不锈钢(Cr:25%,Ni:7%,Mo:3~5%,N:0.22~0.34%),其凝固顺序为,首先从液相中析出高温铁素体(δ相),随后发生奥氏体(γ相)转变(δ→γ),冷却至室温,最后得到奥氏体和铁素体双相组织,其中铁素体的含量在50%左右。但是由于激光增材制造快速凝固的工艺特点,其凝固速度远高于常规的铸造过程,导致铁素体向奥氏体转变不完全(δ→γ),因此凝固组织以铁素体居多。铁素体含量高会导致双相不锈钢的韧性降低、腐蚀性差等问题。目前现有的报道中,激光增材制造双相不锈钢为了保证其性能,往往需要后续热处理调节奥氏体和铁素体的相比例。因此本发明的基本原理为通过提高Nieq(其中Nieq=Ni%+35C%+20N%),扩大奥氏体相区,使之于激光增材快速凝固的特点相匹配,在激光增材制造很快的冷却速率下依然可以保证铁素体向奥氏体转变(δ→γ),从而保证双相不锈钢中铁素体和奥氏体的相比例,实现双相不锈钢的原位增材制造。
为了实现上述目的,本发明中激光粉末增材制造双相不锈钢所用粉末合金元素含量为Cr:24.5~26.0%,Ni:8~8.5%,Mo:3.5~5%,Si:0.3~0.5%,Mn:0.7~1%,C<0.025%,N:0.25~0.34%,O<0.03%,余量为Fe和不可避免的杂质。其中Creq/Nieq=1.95~2.1(Creq=Cr%+Mo%+0.7Nb%,Nieq=Ni%+35C%+20N%)。所述粉末为球形粉末,粒径为15~53或者45~105μm。上述粉末的微观形貌如图1所示。所用双相不锈钢的粉末相比于商用的2507型不锈钢成分中Ni含量提高1%~1.5%。
本发明中采用的激光粉末增材制造设备为常规的激光送粉增材设备,包括激光器、水冷机、光纤、保护气(氩气或氮气)、激光熔覆头、六轴机器人和送粉器组成。
一种原位激光增材制造双相不锈钢的方法,包括以下步骤:
第一步是材料准备。基板采用不锈钢材质,将基板表面打磨直至无氧化物,用丙酮将基板表面的油污清洗干净,采用喷砂机进行表面喷砂处理。将烘干后的粉末装入送粉器。
第二步是进行激光增材。首先进行参数设置。激光功率1200~2500W,送粉速率8~20g/min,光斑直径3~4mm,激光扫描速率5~10mm/s,两道搭接率为40~50%,层间抬升量1~2.5mm,保护气为氩气或者氮气亦或者二者混合,保护气流量25~35L/min,采用氮气做保护气可以减少粉末中氮含量的损失。然后激光连续沉积获得预定尺寸的双相不锈钢块体,冷却至室温。
第三步是检测样品中铁素体的含量。试样中铁素体相的含量采用GB/T1954-2008《铬镍奥氏体不锈钢焊缝铁素体含量的测量方法》中磁性法测量。在上述增材制造双相不锈钢块体中切取横截面试样,将横截面打磨至光亮。在增材试样的横截面上选择10个位置测得其铁素体含量,取其平均值为检测结果。采用上述方法激光增材制造获得的双相不锈钢样品中铁素体含量在40~50%之间。
第四步是对双相不锈钢中的奥氏体和铁素体进行微观表征。在上述增材制造双相不锈钢块体中切取5×10×20mm的试样若干,选择横截面粗磨、精磨、抛光、草酸电解腐蚀制作金相试样,用于观察样品中奥氏体和铁素体的比例和形貌,其光学显微镜的微观形貌如图2所示。在金相照片可以看到铁素体、晶粒内奥氏体、晶界奥氏体。同时部分样品的横截面粗磨、精磨、高氯酸电解抛光制作电子背散射衍射(EBSD)试样,用于分析分析局部的奥氏体和铁素体的双相比例。EBSD相比例图(图3)可以看出局部铁素体的比例为52.5%,也验证了磁性法测得铁素体含量的准确性。
附图说明
图1为双相不锈钢粉末形貌照片;
图2为激光增材制造双相不锈钢的微观组织,(a)是激光增材制造双相不锈钢的微观组织(200X),(b)是激光增材制造双相不锈钢的微观组织(500X);
图3为激光增材制造双相不锈钢的EBSD相比例图;
图4为工艺参数1下的激光增材制造双相不锈钢微观组织图,(a)是工艺参数1激光增材制造双相不锈钢微观组织光镜照片(500X),(b)是工艺参数1激光增材制造双相不锈钢EBSD相比例图;
图5为工艺参数2激光增材制造双相不锈钢微观组织图,(a)是工艺参数2激光增材制造双相不锈钢微观组织光镜照片(500X),(b)是工艺参数1激光增材制造双相不锈钢EBSD相比例图;
图6为工艺参数3激光增材制造双相不锈钢的微观组织图,(a)是工艺参数3激光增材制造双相不锈钢微观组织光镜照片(500X),(b)是工艺参数3激光增材制造双相不锈钢EBSD相比例图。
具体实施方式
特别说明,本发明实施例中所用的方法除参数外均相同,具体为:
一种原位激光增材制造双相不锈钢的方法,包括以下步骤:
第一步是材料准备。基板采用不锈钢材质,将基板表面打磨直至无氧化物,用丙酮将基板表面的油污清洗干净,采用喷砂机进行表面喷砂处理。将烘干后的粉末装入送粉器。
第二步是进行激光增材。首先进行参数设置。激光功率1200~2500W,送粉速率8~20g/min,光斑直径2~4mm,激光扫描速率5~10mm/s,两道搭接率为40~50%,层间抬升量1~2.5mm,保护气为氩气或者氮气亦或者二者混合,保护气流量25~35L/min,采用氮气做保护气可以减少粉末中氮含量的损失。然后激光连续沉积获得预定尺寸的双相不锈钢块体,冷却至室温。
第三步是检测样品中铁素体的含量。试样中铁素体相的含量采用GB/T1954-2008《铬镍奥氏体不锈钢焊缝铁素体含量的测量方法》中磁性法测量。在上述增材制造双相不锈钢块体中切取横截面试样,将横截面打磨至光亮。在增材试样的横截面上选择10个位置测得其铁素体含量,取其平均值为检测结果。采用上述方法激光增材制造获得的双相不锈钢样品中铁素体含量在40~50%之间。
第四步是对双相不锈钢中的奥氏体和铁素体进行微观表征。在上述增材制造双相不锈钢块体中切取5×10×20mm的试样若干,选择横截面粗磨、精磨、抛光、草酸电解腐蚀制作金相试样,用于观察样品中奥氏体和铁素体的比例和形貌,其光学显微镜的微观形貌如图2所示。在金相照片可以看到铁素体、晶粒内奥氏体、晶界奥氏体。同时部分样品的横截面粗磨、精磨、高氯酸电解抛光制作电子背散射衍射(EBSD)试样,用于分析分析局部的奥氏体和铁素体的双相比例。EBSD相比例图(图3)可以看出局部铁素体的比例为52.5%,也验证了磁性法测得铁素体含量的准确性。
实施例1
激光功率1500W,送粉速率12g/min,光斑直径3mm,激光扫描速率10mm/s,两道搭接率为50%,层间抬升量1.4mm,保护气为氩气,保护气流量25L/min,冷却至室温。选择样品的横截面,采用磁性法测得平均铁素体的含量为47%。磁性法测得结果见表2。切取样品,粗磨、精磨、抛光腐蚀后其微观组织光学显微镜照片如图4中(a)所示,切取样品,粗磨、精磨、电解抛光后EBSD相比例图表征如图4中(b)所示,样品中铁素体的含量为46.5%,与磁性法测得铁素体含量相近。
实施例2
激光功率1500W,送粉速率12g/min,光斑直径3mm,激光扫描速率10mm/s,两道搭接率为50%,层间抬升量1.4mm,保护气为氮气和氩气各50%,保护气流量25L/min,冷却至室温。选择样品的横截面,采用磁性法测得平均铁素体的含量为42%。磁性法测得结果见表2。切取样品,粗磨、精磨、抛光腐蚀后其微观组织光学显微镜照片如图5中(a)所示,切取样品,粗磨、精磨、电解抛光后EBSD相比例图表征如图5中(b)所示,样品中铁素体的含量为40.5%,与磁性法测得铁素体含量相近。
实施例3
激光功率1500W,送粉速率9g/min,光斑直径3mm,激光扫描速率5mm/s,两道搭接率为50%,层间抬升量1.7mm,保护气为氩气,保护气流量25L/min,冷却至室温。选择样品的横截面,采用磁性法测得平均铁素体的含量为49%。磁性法测得结果见表2。切取样品,粗磨、精磨、抛光腐蚀后其微观组织光学显微镜照片如图6中(a)所示,切取样品,粗磨、精磨、电解抛光后EBSD相比例图表征如图6中(b)所示,样品中铁素体的含量为49.4%,与磁性法测得铁素体含量相近。
尽管上述实施例对本发明做出了详尽的描述,但它仅仅是本发明一部分实施例,而不是全部实施例,人们还可以根据本实施例在不经创造性前提下获得其他实施例,这些实施例都属于本发明保护范围。
Claims (2)
1.一种原位激光增材制造双相不锈钢的方法,其特征在于,包括以下步骤:
(1)以不锈钢材质为基板,将基板表面打磨干净并清洗后,进行喷砂处理;
(2)将烘干后的粉末装入送粉器,进行激光增材,并设定参数:激光功率1200~2500W,送粉速率8~20g/min,光斑直径3~4mm,激光扫描速率5~10mm/s,两道搭接率为40~50%,层间抬升量1~2.5mm,然后激光连续沉积获得预定尺寸的双相不锈钢块体,冷却至室温,得到铁素体含量在40~50%的双相不锈钢;所述双相不锈钢所用的粉末合金元素含量为Cr:24.5~26.0%,Ni:8~8.5%,Mo:3.5~5%,Si:0.3~0.5%,Mn:0.7~1%,C<0.025%,N:0.25~0.34%,O<0.03%,余量为Fe和不可避免的杂质;
进行激光增材时,设定保护气为氩气和/或氮气,保护气流量25~35L/min;
令Creq=Cr%+Mo%+0.7Nb%,Nieq=Ni%+35C%+20N%,Creq/Nieq=1.95~2.1。
2.根据权利要求1所述方法,其特征在于,在步骤(1)中,将基板表面打磨直至无氧化物,用丙酮将基板表面的油污清洗干净。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310231115.0A CN116219295B (zh) | 2023-03-10 | 2023-03-10 | 一种激光增材制造用双相不锈钢粉末和原位激光增材制造双相不锈钢的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310231115.0A CN116219295B (zh) | 2023-03-10 | 2023-03-10 | 一种激光增材制造用双相不锈钢粉末和原位激光增材制造双相不锈钢的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116219295A CN116219295A (zh) | 2023-06-06 |
CN116219295B true CN116219295B (zh) | 2024-05-10 |
Family
ID=86572995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310231115.0A Active CN116219295B (zh) | 2023-03-10 | 2023-03-10 | 一种激光增材制造用双相不锈钢粉末和原位激光增材制造双相不锈钢的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116219295B (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1155908A (zh) * | 1995-06-05 | 1997-07-30 | 浦项综合制铁株式会社 | 双相不锈钢及其制造方法 |
JP2016166394A (ja) * | 2015-03-10 | 2016-09-15 | 新日鐵住金株式会社 | 二相ステンレス鋼材、その製造方法および表面処理方法 |
CN107916376A (zh) * | 2017-11-27 | 2018-04-17 | 沈阳工业大学 | 一种激光增材制造新型耐磨不锈钢所用粉料 |
CN110168122A (zh) * | 2016-12-07 | 2019-08-23 | 霍加纳斯股份有限公司 | 用于生产双相烧结不锈钢的不锈钢粉末 |
CN113059153A (zh) * | 2021-03-22 | 2021-07-02 | 湖南大学 | 一种奥氏体不锈钢及其激光增材制备方法 |
JP2022006584A (ja) * | 2020-06-24 | 2022-01-13 | Jfeスチール株式会社 | ステンレス鋼粉末、ステンレス鋼部材およびステンレス鋼部材の製造方法 |
CN114107827A (zh) * | 2021-12-08 | 2022-03-01 | 福州大学 | 一种3d打印用双相不锈钢粉末及其制备和打印方法 |
CN114101855A (zh) * | 2021-12-29 | 2022-03-01 | 福州大学 | 双相不锈钢的电弧增材制造及测试方法 |
-
2023
- 2023-03-10 CN CN202310231115.0A patent/CN116219295B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1155908A (zh) * | 1995-06-05 | 1997-07-30 | 浦项综合制铁株式会社 | 双相不锈钢及其制造方法 |
JP2016166394A (ja) * | 2015-03-10 | 2016-09-15 | 新日鐵住金株式会社 | 二相ステンレス鋼材、その製造方法および表面処理方法 |
CN110168122A (zh) * | 2016-12-07 | 2019-08-23 | 霍加纳斯股份有限公司 | 用于生产双相烧结不锈钢的不锈钢粉末 |
CN107916376A (zh) * | 2017-11-27 | 2018-04-17 | 沈阳工业大学 | 一种激光增材制造新型耐磨不锈钢所用粉料 |
JP2022006584A (ja) * | 2020-06-24 | 2022-01-13 | Jfeスチール株式会社 | ステンレス鋼粉末、ステンレス鋼部材およびステンレス鋼部材の製造方法 |
CN113059153A (zh) * | 2021-03-22 | 2021-07-02 | 湖南大学 | 一种奥氏体不锈钢及其激光增材制备方法 |
CN114107827A (zh) * | 2021-12-08 | 2022-03-01 | 福州大学 | 一种3d打印用双相不锈钢粉末及其制备和打印方法 |
CN114101855A (zh) * | 2021-12-29 | 2022-03-01 | 福州大学 | 双相不锈钢的电弧增材制造及测试方法 |
Non-Patent Citations (2)
Title |
---|
Effect of heat treatment on mechanical properties of duplex steel SAF 2507 manufactured by DED;Brazda, M et al.;IOP Conference Series: Materials Science and Engineering;第2页 * |
Magnetic Characterization of Selective Laser-Melted Saf 2507 Duplex Stainless Steel;Davidson, KP et al.;JOM;第69卷(第3期);第570页表1 * |
Also Published As
Publication number | Publication date |
---|---|
CN116219295A (zh) | 2023-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Huang et al. | Evaluation of TIG flux welding on the characteristics of stainless steel | |
Kenel et al. | Evolution of Y2O3 dispersoids during laser powder bed fusion of oxide dispersion strengthened Ni-Cr-Al-Ti γ/γ’superalloy | |
KR20170040772A (ko) | 선택적 레이저 용융을 위한 금속 분말의 처리 방법 | |
Skiba et al. | Microstructure and mechanical properties of stainless steel component manufactured by shaped metal deposition | |
Köse | Fiber laser beam welding of additive manufactured 316L austenitic stainless steel with wrought 2507 super duplex and wrought 904L super austenitic stainless steels: Crystallographic texture, microstructure, and mechanical properties | |
He et al. | Comparison on the microstructure and corrosion behavior of Inconel 625 cladding deposited by tungsten inert gas and cold metal transfer process | |
Liu et al. | Activated flux tungsten inert gas welding of 8 mm-thick AISI 304 austenitic stainless steel | |
Gong et al. | Influence of heat treatment on microstructure and mechanical properties of FeCrNi coating produced by laser cladding | |
Brázda et al. | Effect of heat treatment on mechanical properties of duplex steel SAF 2507 manufactured by DED | |
Park et al. | Mechanical properties and wear resistance of direct energy deposited Fe–12Mn–5Cr–1Ni-0.4 C steel deposited on spheroidal graphite cast iron | |
Maruthi et al. | Low temperature embrittlement studies on stainless steel 304 LN TIG welds | |
CN116219295B (zh) | 一种激光增材制造用双相不锈钢粉末和原位激光增材制造双相不锈钢的方法 | |
Ajabshiri et al. | The effect of bonding time on dissimilar joint properties between inconel 625 and AISI 316L using transient liquid phase bonding method with Cu interlayer | |
Gürol et al. | Fabrication and characterization of wire arc additively manufactured ferritic-austenitic bimetallic structure | |
CN115094416B (zh) | 一种制备不锈钢基高硬度耐磨耐蚀合金的方法及其产品 | |
CN110484916A (zh) | 一种高速及超高速激光熔覆用镍基合金粉末 | |
Munusamy et al. | Effect of build orientation on the microstructure and mechanical properties of wire arc additive manufactured grade 91 steel/monel 400 bimetallic components | |
Patil et al. | Al2O3 and TiO2 flux enabling activated tungsten inert gas welding of 304 austenitic stainless steel plates | |
CN113234962A (zh) | 一种可用于修复表面的等离子熔覆改性镍基高温合金涂层及其制备方法 | |
Kang et al. | Plasma diode electron beam heat treatment of cast iron: effect of direct preheating | |
Ke et al. | Effect of Vanadium on Microstructure and Mechanical Properties of M2 High‐Speed Steel Prepared by Laser Metal Direct Deposition Forming | |
Brytan et al. | Ta nski | |
Biswas et al. | A review on TIG cladding of engineering material for improving their surface property | |
Ghosh et al. | Microstructure and Mechanical Properties of Inconel 718/Yttria-Stabilized Zirconia (YSZ) Metal Matrix Composite Coating Produced by Laser Directed Energy Deposition Technique | |
JP2008087031A (ja) | 耐脆性破壊発生特性に優れた溶接継手 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |