CN116202091A - Silane high-altitude emergency diffusing system and method - Google Patents

Silane high-altitude emergency diffusing system and method Download PDF

Info

Publication number
CN116202091A
CN116202091A CN202310196806.1A CN202310196806A CN116202091A CN 116202091 A CN116202091 A CN 116202091A CN 202310196806 A CN202310196806 A CN 202310196806A CN 116202091 A CN116202091 A CN 116202091A
Authority
CN
China
Prior art keywords
diffusing
pipeline
silane
molecular
seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310196806.1A
Other languages
Chinese (zh)
Inventor
冯贺
李朝辉
黄东方
毛军亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XUZHOU COMBUSTION CONTROL RESEARCH INSTITUTE CO LTD
Original Assignee
XUZHOU COMBUSTION CONTROL RESEARCH INSTITUTE CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XUZHOU COMBUSTION CONTROL RESEARCH INSTITUTE CO LTD filed Critical XUZHOU COMBUSTION CONTROL RESEARCH INSTITUTE CO LTD
Priority to CN202310196806.1A priority Critical patent/CN116202091A/en
Publication of CN116202091A publication Critical patent/CN116202091A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/14Gaseous waste or fumes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Incineration Of Waste (AREA)

Abstract

The system comprises a steel structure tower and a diffusing vertical pipe arranged in the steel structure tower, wherein a molecular seal is arranged on the diffusing vertical pipe, a molecular seal condensation discharging pipeline is arranged on the molecular seal, the molecular seal is connected with a diffusing burner, a horizontal silane diffusing gas pipeline is arranged in the middle of the steel structure tower, and a pressure transmitter and a diffusing quick-closing valve are sequentially arranged on the horizontal silane diffusing gas pipeline; the lower part of the steel structure tower is provided with a fresh water pipeline, the upper part of the steel structure tower is provided with a nitrogen purging pipeline, the nitrogen purging pipeline is provided with a branch pipe, the branch pipe is provided with a check valve, the diffused gas entering the horizontal silane diffused gas pipeline enters a diffused vertical pipe through a pressure transmitter and a diffused quick closing valve, no pollution is discharged when the gas enters a diffused combustor through a molecular seal, and condensate in the molecular seal flows into a sewage collecting part through the molecular seal condensing pipeline. The flame-stabilizing device is compact in structure, convenient to operate, capable of achieving multistage diffusion, safe, reliable, stable in flame, high in rigidity and long in service life.

Description

Silane high-altitude emergency diffusing system and method
Technical Field
The invention relates to a silane high-altitude emergency diffusing system and a method, which are particularly suitable for treating silane waste gas generated in the fields of electronics, information, energy, materials, chemical industry, machinery, optics and the like.
Background
Silane is widely used and increasingly important in high technology to produce a series of silicon-containing materials from silane, such as monocrystalline silicon, polycrystalline silicon, amorphous silicon, metal silicide, silicon nitride, silicon carbide, silicon oxide, etc., by thermal decomposition or chemical reaction with other gases. Silane with concentration of more than 8% reacts violently when meeting oxygen, violent combustion occurs, and a large amount of heat is generated by the reaction to quickly decompose the silane into (S) i H 2 ) X and further burning to generate S i O 2 The silane also stimulates the eyes, skin and respiratory system. In view of the pyrophoricity and hazard of silane, the overpressure of the upstream device of the diffusing system or the silane waste gas generated in the production process need special treatment, and an emergency diffusing system of silane needs to be provided.
In the prior art, the bleed air pipeline is generally provided with only one bleed quick-closing valve for controlling the discharge of the bleed air, and the bleed quick-closing valve is easy to cause the pressure of an upstream device of a bleed system to be blocked when the bleed quick-closing valve breaks down. Meanwhile, under the working condition of small flow, the pressure signal value detected by the diffusing system is smaller, and an accurate signal matched with the opening pressure of the diffusing quick-closing valve is difficult to set. In the prior art, the drainage condensation of the molecular encapsulation internal condensate through the hand valve at the molecular encapsulation drainage condensation pipeline easily causes unsmooth drainage of the molecular encapsulation condensate, and the contact of silane gas in the drainage condensation pipeline and air is easily caused to generate spontaneous combustion. In the prior art, the valve arranged in the diffusing system is in a conventional form, and when the valve leaks internally or externally, self-ignition can also occur when silane gas contacts with air.
Disclosure of Invention
Technical problems: the invention aims to overcome the defects in the prior art and provide a silane high-altitude emergency diffusing system and a method, so that silane waste gas generated in the overpressure of an upstream device of the diffusing system or the production process can be safely and effectively treated, and the silane high-altitude emergency diffusing system is not suppressed in pressure, is not tempered, is complete in combustion, is strong in flow applicability, and is economical and environment-friendly.
The technical scheme is as follows: in order to achieve the purpose, the silane high-altitude emergency diffusing system comprises a steel structure tower and a diffusing vertical pipe arranged in the steel structure tower, wherein a molecular seal is arranged at the top of the diffusing vertical pipe, a molecular seal condensation discharging pipeline is arranged at the bottom of the molecular seal, the upper end of the molecular seal extends out of the top of the steel structure tower through a connecting pipe and is connected with a diffusing burner flange, a horizontal silane diffusing gas pipeline communicated with the diffusing vertical pipe is arranged in the middle of the steel structure tower, and a pressure transmitter and a diffusing quick-closing valve are sequentially arranged on the horizontal silane diffusing gas pipeline; the lower part of the steel structure tower is provided with a fresh water pipeline communicated with the lower part of the molecular seal discharging and condensing pipeline, the upper part of the steel structure tower is provided with a nitrogen purging pipeline communicated with the discharging vertical pipe and continuously injecting nitrogen into the horizontal silane discharging and condensing pipeline and the molecular seal, the nitrogen purging pipeline is provided with a branch pipe communicated with the horizontal silane discharging and condensing pipeline, the branch pipe is provided with a check valve, discharged gas entering the horizontal silane discharging and condensing pipeline enters the discharging vertical pipe through a pressure transmitter and a discharging quick closing valve, no pollution is discharged when the discharged gas enters a discharging burner through the molecular seal, and condensate in the molecular seal flows into a sewage collecting place through the molecular seal discharging and condensing pipeline.
The inlet pipeline of the diffusing pneumatic quick-closing valve is provided with a bypass pipe communicated with the outlet pipeline, and the bypass pipe is connected with a rupture disk or a blasting needle valve and a DN50 small-caliber valve in parallel.
The lower part of the diffusing vertical pipe is provided with an inclined baffle plate capable of discharging the condensate liquid periodically, and a valve-controlled condensate discharging pipeline is arranged at the inclined baffle plate.
The bottom plate of the molecular seal is obliquely arranged to prevent air from penetrating into the diffusing vertical pipe and the upstream system from the outlet of the burner, and a condensation outlet for discharging effusion at any time is arranged at the inclined angle of the bottom plate.
The bottom of the molecular seal drainage coagulation pipeline is of a U-shaped water seal structure, and a drain pipe is arranged at the U-shaped bottom of the U-shaped water seal structure.
The diffusing burner is sequentially provided with a porous wind shield and a fire stabilizing ring.
The nitrogen purging pipeline is respectively provided with a control valve for controlling the inlet of the diffusing vertical pipe and a branch pipe communicated with the horizontal silane diffusing gas pipeline.
The silane high-altitude emergency diffusing method of the silane high-altitude emergency diffusing system comprises the following steps of:
s1, arranging a pressure transmitter and a diffusing quick-closing valve on a horizontal silane diffusing gas pipeline, arranging a bypass pipe communicated with an outlet pipeline on an inlet pipeline of the diffusing quick-closing valve, and connecting a rupture disk or a blasting needle valve and a DN50 small-caliber valve in parallel on the bypass pipe;
s2, arranging an inclined baffle at the bottom of the diffusing vertical pipe, and arranging a condensation draining pipeline at the lowest part of the inclined baffle; a molecular seal with a bottom plate obliquely arranged is arranged at the upper part of the diffusing vertical pipe, and a condensation outlet is arranged at the oblique angle of the molecular seal bottom plate; a molecular drainage and condensation pipeline is arranged at the drainage and condensation port, the bottom of the molecular drainage and condensation pipeline is of a U-shaped water seal structure, a fresh water pipeline is configured for continuous water supplementing, and a drain pipe is arranged at the low point of the U-shaped water seal structure;
s3, arranging a windshield and a fire stabilizing ring which are used for improving the rigidity of the flame of the diffused gas and guaranteeing the continuity and stability of the flame on the diffused burner above the molecular seal; fixing a diffusing vertical pipe, a molecular seal and a diffusing burner on a steel structure tower;
s4, opening a nitrogen purging pipeline, wherein nitrogen enters in two paths, one path purges the root of the molecular seal, and the other path purges the front of the diffusion quick closing valve; the molecular seal, the diffusing quick closing valve and the bypass thereof continuously purge nitrogen to ensure the safety of the whole diffusing system;
s5, simultaneously, silane diffused gas enters through a horizontal silane diffused gas pipeline, silane diffused gas or upstream purging nitrogen is sent to a diffused vertical pipe through a small-caliber valve, when a pressure transmitter detects that the pressure of the silane diffused gas reaches a system set value, a diffused quick closing valve is quickly opened, the silane diffused gas is directly sent into the diffused vertical pipe, the silane diffused gas enters from a combustor inlet through a molecular seal at the upper part of the diffused vertical pipe, and is sprayed out from a combustor outlet for spontaneous combustion, and pollution-free emission is achieved after combustion; the accumulated liquid in the molecular seal is discharged in real time through a condensation outlet arranged at the lowest part of the inclined bottom plate of the molecular seal, so that the system is prevented from being pressurized;
s6, configuring fresh water continuously for supplementing water in the U-shaped water seal structure, so that the U-shaped pipe forms a water seal which effectively isolates the inner space of the molecular seal discharge condensation pipe and the air height in a downstream pipeline, and the molecular seal accumulated liquid is continuously discharged while silane diffused gas is not overflowed from the discharge condensation pipe when the system operates;
and S7, improving the flame rigidity of the diffused gas through a porous windshield at the upper part of the diffused burner, and ensuring the continuity and stability of the flame through a flame stabilizing ring at the outlet.
When the quick closing valve fails and cannot be opened, the diffused gas is sent to the diffused vertical pipe through the bypass rupture disk or the explosion needle valve, and the system is ensured not to hold pressure while multistage diffusion is realized.
The beneficial effects are that: the silane high-altitude emergency diffusing system adopts a pressure transmitter and a diffusing quick-closing valve, wherein a quick-closing valve bypass is provided with a rupture disk or a blasting needle valve and a small-caliber valve, and the diffusing quick-closing valve and the small-caliber valve are in the form of an inner leakage and outer leakage preventing corrugated pipe valve or a diaphragm valve; the small-caliber valve can be opened rapidly through silane diffusing gas with smaller flow and upstream sweeping gas, and the diffusing quick-closing valve can be opened rapidly after the pressure transmitter detects certain pressure during large-flow diffusing. If the quick-release closing valve fails, the release gas can break through a rupture disk or a blasting needle valve and be sent to a release vertical pipe, so that the silane release gas is ensured to be timely, safe and reliable to be subjected to multistage release. The U-shaped pipe at the lower part of the molecular sealing, draining and condensing pipe can form a water seal with a certain height through continuous low-flow water supplementing, so that the air in the inner space of the molecular sealing, draining and condensing pipe and the air in the downstream pipe are effectively isolated, and silane gas is not overflowed from the draining and condensing pipe during diffusing, and meanwhile, the molecular sealing effusion is continuously drained. The bottom of the U-shaped pipe is provided with a drain pipe, so that the pipeline is not blocked. The wind shield and the fire stabilizing ring are arranged, the porous wind shield at the upper part of the diffusing burner can interfere with the leeward flow field of the burner, change the track of air flow, destroy the vortex-like structure of air flow, effectively improve the negative pressure area formed by the lateral wind leeward diffusing burner and improve the flame rigidity of the diffusing gas. The flame stabilizing ring at the outlet of the diffusing burner ensures the continuity and stability of flame. The nitrogen purging points are respectively before the molecular root sealing and the quick release closing valve, the nitrogen purging points keep nitrogen with enough safe flow rate, and the molecular internal sealing, the quick release closing valve and the bypass thereof continue to purge nitrogen so as to ensure the safety of the whole release system. Compared with the prior art, the invention has the main advantages that:
1) The silane high-altitude emergency diffusing system can realize multistage diffusing, and can well meet the conditions of small-flow normal working conditions and large-flow accident working conditions. The small flow diffusing or upstream purge gas is sent to the diffusing vertical pipe through a small-caliber valve, and when the large flow diffusing is carried out, the diffusing quick-closing valve is opened quickly after the pressure transmitter detects a certain pressure.
2) The silane high-altitude emergency diffusing system is not suppressed in pressure, is not tempered, is safe and reliable, and is simple in process.
3) The silane high-altitude emergency diffusing system has stable flame, strong rigidity and long service life.
4) The silane waste gas pipeline in the silane high-altitude emergency diffusing system adopts a form of a corrugated pipe valve or a diaphragm valve, and has the advantages of no internal leakage and external leakage, and high safety.
Drawings
FIG. 1 is a schematic diagram of a silane high-altitude emergency diffusing system according to the present invention.
In the figure: the device comprises a horizontal silane diffusing gas pipeline 1, a diffusing vertical pipe 2, a molecular seal 3, a molecular seal condensing pipeline 4, a diffusing burner 5, a steel structure tower 6, a nitrogen purging pipeline 7, a pressure transmitter 1-1, a diffusing quick-closing valve 1-2, a bursting disc or bursting needle valve 1-3, a small-caliber valve 1-4, an inclined baffle plate 2-1, a condensing pipeline 2-2, a bottom plate 3-1, a U-shaped water seal structure 4-1, a fresh water pipeline 4-2, a blow-down pipe 4-3, a windshield 5-1 and a fire stabilizing ring 5-2.
Detailed Description
An embodiment of the invention is further described below with reference to the embodiments in the drawings:
as shown in fig. 1, the silane high-altitude emergency diffusing system mainly comprises a horizontal silane diffusing gas pipeline 1, a diffusing vertical pipe 2, a molecular seal 3, a molecular seal discharging condensation pipeline 4, a diffusing burner 5, a steel structure tower 6 and a nitrogen purging pipeline 7. The novel condensing tower is characterized in that a diffusing vertical pipe 2 is arranged in the steel structure tower 6, a molecular seal 3 is arranged at the top of the diffusing vertical pipe 2, an inclined baffle plate 2-1 capable of regularly discharging the condensate liquid is arranged at the lower part of the diffusing vertical pipe 2, and a valve-controlled condensate discharging pipeline 2-2 is arranged at the inclined baffle plate 2-1. The bottom of the molecular seal 3 is provided with a molecular seal discharging and condensing pipeline 4, the bottom of the molecular seal discharging and condensing pipeline 4 is provided with a U-shaped water seal structure 4-1, and the U-shaped bottom of the U-shaped water seal structure 4-1 is provided with a drain pipe 4-3. The bottom plate 3-1 of the molecular seal 3 is obliquely arranged to prevent air from penetrating into the diffusing vertical pipe and the upstream system from the outlet of the burner, and a condensation outlet for discharging effusion at any time is arranged at the oblique angle of the bottom plate 3-1. The upper end of the molecular seal 3 extends to the top of the steel structure tower 6 through a connecting pipe and is connected with a flange of the diffusing burner 5, and the diffusing burner 5 is sequentially provided with a porous wind shield 5-1 and a fire stabilizing ring 5-2. The middle part of the steel structure tower 6 is provided with a horizontal silane diffusing gas pipeline 1 communicated with a diffusing vertical pipe 2, and the horizontal silane diffusing gas pipeline 1 is sequentially provided with a pressure transmitter 1-1 and a diffusing quick-closing valve 1-2; the inlet pipeline of the diffusing pneumatic quick closing valve 1-2 is provided with a bypass pipe communicated with the outlet pipeline, and the bypass pipe is connected with a rupture disk or a bursting needle valve 1-3 and a DN50 small-caliber valve 1-4 in parallel. The lower part of the steel structure tower 6 is provided with a fresh water pipeline 4-2 communicated with the lower part of the molecular seal discharging and condensing pipeline 4, the upper part of the steel structure tower 6 is provided with a nitrogen purging pipeline 7 communicated with the discharging vertical pipe 2 and used for continuously injecting nitrogen into the horizontal silane discharging gas pipeline 1 and the molecular seal 3, and the purging point of the nitrogen purging pipeline 7 is the root part of the molecular seal 3 and the front part of the discharging quick closing valve 1-2. The nitrogen purging pipeline 7 is provided with a branch pipe communicated with the horizontal silane diffusing gas pipeline 1, the branch pipe is provided with a check valve 7-1, and the nitrogen purging pipeline 7 is respectively provided with a control valve for controlling the inlet diffusing vertical pipe 2 and a branch pipe 8 communicated with the horizontal silane diffusing gas pipeline 1. The diffused gas entering the horizontal silane diffused gas pipeline 1 enters the diffused vertical pipe 2 through the pressure transmitter 1-1 and the diffused quick closing valve 1-2, enters the diffused burner 5 through the molecular seal 3 for combustion without pollution emission, and condensate in the molecular seal 3 flows into a sewage collecting position through the molecular seal condensation discharging pipeline 4.
The invention relates to a silane high-altitude emergency diffusing method, which comprises the following specific steps:
s1, arranging a pressure transmitter 1-1 and a bleeding quick-closing valve 1-2 on a horizontal silane bleeding gas pipeline 1, arranging a bypass pipe which is communicated with an outlet pipeline on an inlet pipeline of the bleeding quick-closing valve 1-2, and connecting a rupture disk or a bursting needle valve 1-3 and a DN50 small-caliber valve 1-4 in parallel on the bypass pipe;
s2, arranging an inclined baffle plate 2-1 at the bottom of the diffusing vertical pipe 2, and arranging a condensation discharge pipeline 2-2 at the lowest part of the inclined baffle plate 2-1; a molecular seal 3 with a bottom plate obliquely arranged is arranged at the upper part of the diffusing vertical pipe 2, and a condensation outlet is arranged at the inclined angle of the bottom plate of the molecular seal 3; a molecular drainage and condensation pipeline 4 is arranged at the drainage and condensation port, the bottom of the molecular drainage and condensation pipeline 4 is of a U-shaped water seal structure, a fresh water pipeline 4-2 is configured for continuously supplementing water, and a drain pipe 4-3 is arranged at the low point of the U-shaped water seal structure;
s3, a wind shield 5-1 and a fire stabilizing ring 5-2 which are used for improving the flame rigidity of the blow-off gas and guaranteeing the continuity and stability of the flame are arranged on the blow-off burner 5 above the molecular seal 3 so as to improve the flame rigidity of the blow-off gas and guarantee the continuity and stability of the flame; fixing a diffusing vertical pipe 2, a molecular seal 3 and a diffusing burner 5 on a steel structure tower 6;
s4, a nitrogen purging pipeline 7 is opened, wherein the purging point is before the root of the molecular seal 3 and the diffusion quick closing valve 1-2, namely, nitrogen enters in two paths, one path purges the root of the molecular seal 3, and the other path purges the diffusion quick closing valve 1-2; the safety of the whole diffusing system is ensured by the continuous nitrogen purging of the diffusing quick-closing valve 1-2 and the bypass thereof in the molecular seal 3; when the quick closing valve 1-2 fails and cannot be opened, the diffused gas is sent to the diffused riser 2 through the bypass rupture disk or the blasting needle valve 1-3, so that multistage diffusion is realized, and meanwhile, the system is ensured not to be out of pressure;
s5, simultaneously, silane diffusing gas generated in the overpressure of an upstream device or the production process enters through a horizontal silane diffusing gas pipeline 1, small-flow silane diffusing gas or upstream sweeping nitrogen is sent to a diffusing vertical pipe 2 through a small-caliber valve 1-4, when the pressure of the silane diffusing gas detected by a pressure transmitter 1-1 during large-flow diffusing reaches a system set value (matched with the back pressure of a diffusing system), a diffusing quick closing valve 1-2 is quickly opened, the silane diffusing gas is directly sent into the diffusing vertical pipe 2, the silane diffusing gas enters through a molecular seal 3 at the upper part of the diffusing vertical pipe 2 from the inlet of a burner 5, and is sprayed out from the outlet of the burner 5 for spontaneous combustion, so that pollution-free emission is realized after combustion; the molecular seal 3 can prevent air from penetrating into the diffusing vertical pipe 2 and an upstream system from the outlet of the burner 5, the lowest part of the molecular seal inclined bottom plate 3-1 is provided with a condensation discharging port, and the accumulated liquid in the molecular seal 3 is discharged in real time through the condensation discharging port at the lowest part of the molecular seal inclined bottom plate 3-1, so that the accumulated liquid in the molecular seal 3 can be discharged all the time through the condensation discharging port, and the system is effectively prevented from being suppressed;
s6, configuring fresh water for continuous water supplementing at a U-shaped water seal structure 4-1 at the bottom of the molecular encapsulation drainage condensation pipeline (4), so that the U-shaped pipe forms a water seal for effectively isolating the inner space of the molecular encapsulation drainage condensation pipe from air in a downstream pipeline, effectively isolating the inner space of the molecular encapsulation drainage condensation pipe from air in the downstream pipeline, and ensuring that silane diffused gas is continuously discharged while silane diffused gas is not overflowed from the drainage condensation pipe during system operation;
and S7, improving the flame rigidity of the diffused gas through the porous wind shield 5-1 at the upper part of the diffused burner, and ensuring the continuity and stability of the flame by the fire stabilizing ring 5-2 at the outlet.
Working principle: and when the pressure transmitter detects a certain pressure during large-flow diffusing, the diffusing quick-closing valve is quickly opened to be sent to the diffusing vertical pipe, and when the quick-closing valve fails, the diffusing quick-closing valve is sent to the diffusing vertical pipe through a bypass rupture disk or a bursting needle valve to realize multistage diffusing. The diffused gas is diffused to the burner through the molecular seal at the upper part of the diffused vertical pipe, and the silane waste gas is spontaneous-burned after exiting the burner, so that no pollution is discharged after combustion. The molecular seal can prevent air from penetrating into the diffusing vertical pipe and the upstream system from the outlet of the burner, and the drain condensation port is arranged at the lowest part of the inclined bottom plate of the molecular seal, so that the accumulated liquid in the molecular seal can be discharged at any time through the drain condensation port, and the system is effectively prevented from being suppressed. The bottom of the molecular sealing discharging and condensing pipeline is of a U-shaped water seal structure and is provided with fresh water for continuously supplementing water, the U-shaped pipe forms a water seal with a certain height, the air in the inner space of the molecular sealing discharging and condensing pipe and the air in the downstream pipeline are effectively isolated, and the silane waste gas is ensured not to overflow from the discharging and condensing pipe during diffusing and meanwhile the molecular sealing effusion is continuously discharged. The porous windshield at the upper part of the diffusing burner improves the flame rigidity of the diffused gas, and the flame stabilizing ring at the outlet ensures the continuity and stability of the flame. The molecular seal, the diffusing quick-closing valve and the bypass thereof continuously purge nitrogen to ensure the safety of the whole diffusing system.

Claims (9)

1. A silane high altitude emergency diffusing system is characterized in that: it comprises a steel structure tower (6) and a diffusing vertical pipe (2) arranged in the steel structure tower (6), wherein the top of the diffusing vertical pipe (2) is provided with a molecular seal (3), the bottom of the molecular seal (3) is provided with a molecular seal discharging and condensing pipeline (4), the upper end of the molecular seal (3) extends to the top of the steel structure tower (6) through a connecting pipe, the horizontal silane diffusing gas pipeline (1) is connected with the diffusing burner (5) in a flange manner, the middle part of the steel structure tower (6) is provided with the horizontal silane diffusing gas pipeline (1) communicated with the diffusing vertical pipe (2), and the horizontal silane diffusing gas pipeline (1) is sequentially provided with a pressure transmitter (1-1) and a diffusing quick closing valve (1-2); the lower part of the steel structure tower (6) is provided with a fresh water pipeline (4-2) communicated with the lower part of the molecular seal discharging condensation pipeline (4), the upper part of the steel structure tower (6) is provided with a nitrogen purging pipeline (7) communicated with the discharging riser (2) and used for continuously injecting nitrogen into the horizontal silane discharging gas pipeline (1) and the molecular seal (3), the nitrogen purging pipeline (7) is provided with a branch pipe communicated with the horizontal silane discharging gas pipeline (1), the branch pipe is provided with a check valve (7-1), discharged gas entering the horizontal silane discharging gas pipeline (1) enters the discharging riser (2) through a pressure transmitter (1-1) and a discharging quick-closing valve (1-2), the discharged gas enters the discharging riser (5) through the molecular seal (3) in a combustion pollution-free manner, and condensate in the molecular seal (3) flows into a sewage collecting place through the molecular seal discharging condensation pipeline (4).
2. A silane high altitude emergency release system according to claim 1, wherein: a bypass pipe communicated with an outlet pipeline is arranged on an inlet pipeline of the diffusing pneumatic quick-closing valve (1-2), and a rupture disk or a bursting needle valve (1-3) and a DN50 small-caliber valve (1-4) are connected in parallel on the bypass pipe.
3. A silane high altitude emergency release system according to claim 1, wherein: the lower part of the diffusing vertical pipe (2) is provided with an inclined baffle (2-1) capable of discharging the condensate liquid periodically, and a valve-controlled condensate discharging pipeline (2-2) is arranged at the inclined baffle (2-1).
4. A silane high altitude emergency release system according to claim 1, wherein: the bottom plate (3-1) of the molecular seal (3) is obliquely arranged to prevent air from penetrating into the diffusing vertical pipe and the upstream system from the outlet of the burner, and a condensation outlet for discharging accumulated liquid at any time is arranged at the oblique angle of the bottom plate (3-1).
5. A silane high altitude emergency release system according to claim 1, wherein: the bottom of the molecular seal drainage coagulation pipeline (4) is provided with a U-shaped water seal structure (4-1), and the U-shaped bottom of the U-shaped water seal structure (4-1) is provided with a drain pipe (4-3).
6. A silane high altitude emergency release system according to claim 1, wherein: the diffusing burner (5) is sequentially provided with a porous wind shield (5-1) and a fire stabilizing ring (5-2).
7. A silane high altitude emergency release system according to claim 1, wherein: the nitrogen purging pipeline (7) is respectively provided with a control valve for controlling the inlet of the bleeding riser (2) and a branch pipe (8) communicated with the horizontal silane bleeding pipeline (1).
8. A silane high altitude emergency release method of a silane high altitude emergency release system according to any one of claims 1 to 7, characterized by comprising the steps of:
s1, arranging a pressure transmitter (1-1) and a bleeding quick-closing valve (1-2) on a horizontal silane bleeding gas pipeline (1), arranging a bypass pipe communicated with an outlet pipeline on an inlet pipeline of the bleeding quick-closing valve (1-2), and connecting a rupture disk or a bursting needle valve (1-3) and a DN50 small-caliber valve (1-4) in parallel on the bypass pipe;
s2, arranging an inclined baffle plate (2-1) at the bottom of the diffusing vertical pipe (2), and arranging a condensation draining pipeline (2-2) at the lowest part of the inclined baffle plate (2-1); a molecular seal (3) with a bottom plate obliquely arranged is arranged at the upper part of the diffusing vertical pipe (2), and a condensation outlet is arranged at the inclined angle of the bottom plate of the molecular seal (3); a molecular sealing and draining pipeline (4) is arranged at the draining and condensing port, the bottom of the molecular sealing and draining pipeline (4) is of a U-shaped water seal structure, a fresh water pipeline (4-2) is configured for continuously supplementing water, and a drain pipe (4-3) is arranged at the low point of the U-shaped water seal structure;
s3, arranging a wind shield (5-1) and a fire stabilizing ring (5-2) which are used for improving the rigidity of flame of the diffused gas and guaranteeing the continuity and stability of the flame on the diffused burner (5) above the molecular seal (3); fixing a diffusing vertical pipe (2), a molecular seal (3) and a diffusing burner (5) on a steel structure tower (6);
s4, opening a nitrogen purging pipeline (7), wherein nitrogen enters in two paths, one path purges the root of the molecular seal (3), and the other path purges before the quick-closing valve (1-2); the safety of the whole diffusing system is ensured by the continuous nitrogen purging of the diffusing quick-closing valve (1-2) and the bypass thereof in the molecular seal (3);
s5, simultaneously, silane diffusing gas enters through a horizontal silane diffusing gas pipeline (1), silane diffusing gas or upstream purging nitrogen is sent to a diffusing vertical pipe (2) through a small-caliber valve (1-4), when a pressure transmitter (1-1) detects that the pressure of the silane diffusing gas reaches a system set value, a diffusing quick closing valve (1-2) is quickly opened, the silane diffusing gas is directly sent into the diffusing vertical pipe (2), the silane diffusing gas enters from an inlet of a burner (5) through a molecular seal (3) at the upper part of the diffusing vertical pipe (2), is sprayed out from an outlet of the burner (5) to be spontaneous combustion, and pollution-free emission is avoided after combustion; the accumulated liquid in the molecular seal (3) is discharged in real time through a condensation outlet arranged at the lowest part of the molecular seal inclined bottom plate (3-1), so that the system is prevented from being suppressed;
s6, configuring fresh water continuously for supplementing water in the U-shaped water seal structure (4-1), so that the U-shaped pipe forms a water seal which effectively isolates the inner space of the molecular seal discharge condensation pipe and the air height in a downstream pipeline, and the continuous discharge of the molecular seal accumulated liquid while the silane release gas is not overflowed from the discharge condensation pipe during the operation of the system is ensured;
and S7, improving the flame rigidity of the diffused gas through a porous wind shield (5-1) at the upper part of the diffused burner, and ensuring the continuity and stability of the flame through a fire stabilizing ring (5-2) at the outlet.
9. The silane high altitude emergency release method according to claim 8, wherein: when the quick closing valve (1-2) fails and cannot be opened, the exhaust gas is sent to the exhaust vertical pipe (2) through the bypass rupture disk or the explosion needle valve (1-3), and the system is ensured not to be pressurized while multistage exhaust is realized.
CN202310196806.1A 2023-03-03 2023-03-03 Silane high-altitude emergency diffusing system and method Pending CN116202091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310196806.1A CN116202091A (en) 2023-03-03 2023-03-03 Silane high-altitude emergency diffusing system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310196806.1A CN116202091A (en) 2023-03-03 2023-03-03 Silane high-altitude emergency diffusing system and method

Publications (1)

Publication Number Publication Date
CN116202091A true CN116202091A (en) 2023-06-02

Family

ID=86510912

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310196806.1A Pending CN116202091A (en) 2023-03-03 2023-03-03 Silane high-altitude emergency diffusing system and method

Country Status (1)

Country Link
CN (1) CN116202091A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116498900A (en) * 2023-06-27 2023-07-28 中国空气动力研究与发展中心超高速空气动力研究所 Hypersonic high-temperature wind tunnel high-pressure inflammable and explosive medium buffer discharge system and hypersonic high-temperature wind tunnel high-pressure inflammable and explosive medium buffer discharge method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116498900A (en) * 2023-06-27 2023-07-28 中国空气动力研究与发展中心超高速空气动力研究所 Hypersonic high-temperature wind tunnel high-pressure inflammable and explosive medium buffer discharge system and hypersonic high-temperature wind tunnel high-pressure inflammable and explosive medium buffer discharge method

Similar Documents

Publication Publication Date Title
CN116202091A (en) Silane high-altitude emergency diffusing system and method
CN111457400A (en) Organosilane-containing waste gas and liquid incineration system and process
CN101598626A (en) A kind of RH of being used for vacuum leakage position is determined method
CN101255993B (en) Silicone hydride combustion tower
CN209744389U (en) A exhaust treatment device for regional VOCs of tar ammonia-water separation
CN219571945U (en) Silane high-altitude emergency diffusing system
CN212227061U (en) Organosilane-containing waste gas and liquid incineration system
CN111457404A (en) Safe type organic waste gas heat accumulation catalytic oxidation device
CN205383616U (en) Processing system suitable for rich acetylene torch gas
CN111298550A (en) VOCs tail gas treatment method
CN201159476Y (en) Waste-gas burning system
CN110203573B (en) Method for collecting volatile organic compounds of oil product storage tank
CN110864311A (en) Tank field high-concentration styrene waste gas treatment system and method
CN106402878B (en) A kind of incinerator of acid tail gas containing liquid
CN105299661A (en) Treatment system and method suitable for acetylene-enriched flare gas
CN214571753U (en) Methanol underground tank protection system
CN111692383B (en) Torch water-sealed tank overflow sewage closed collection system
CN109945213B (en) Waste gas treatment device for VOCs in tar and ammonia water separation area and use method of waste gas treatment device
CN210951341U (en) Multifunctional inert gas system for treating VOC
CN201096350Y (en) Silicone hydride combustion tower
CN217209393U (en) Device for preventing ammonia torch from spraying ammonia
CN216653449U (en) Heavy oil gas treatment device with high condensation point
CN102154035B (en) Fuel gas and tail gas exhaust device
CN215372089U (en) High-concentration organic waste gas buffer tank and organic waste gas collecting and conveying system
CN221258865U (en) Torch staged combustion system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination