CN116178014B - Preparation method of perovskite scintillator ceramic - Google Patents

Preparation method of perovskite scintillator ceramic Download PDF

Info

Publication number
CN116178014B
CN116178014B CN202310127476.0A CN202310127476A CN116178014B CN 116178014 B CN116178014 B CN 116178014B CN 202310127476 A CN202310127476 A CN 202310127476A CN 116178014 B CN116178014 B CN 116178014B
Authority
CN
China
Prior art keywords
scintillator
ceramic
temperature
perovskite
quartz ampoule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310127476.0A
Other languages
Chinese (zh)
Other versions
CN116178014A (en
Inventor
唐江
牛广达
巫皓迪
张澳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Ezhou Institute of Industrial Technology Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Ezhou Institute of Industrial Technology Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology, Ezhou Institute of Industrial Technology Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202310127476.0A priority Critical patent/CN116178014B/en
Publication of CN116178014A publication Critical patent/CN116178014A/en
Application granted granted Critical
Publication of CN116178014B publication Critical patent/CN116178014B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/5152Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on halogenides other than fluorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Luminescent Compositions (AREA)
  • Measurement Of Radiation (AREA)

Abstract

The invention discloses a preparation method of perovskite scintillator ceramic. The invention obtains scintillator powder through vacuum sintering, and the scintillator powder is subjected to dry pressing molding and then is sequentially subjected to temperature isostatic pressing and high-temperature high-pressure reaction kettle treatment to obtain transparent perovskite scintillator ceramic. By adjusting parameters such as temperature, pressure, dwell time and the like, the high-temperature high-pressure reaction kettle can obtain CsCuX (X=Cl, br and I) halide scintillator ceramic with the transmittance of more than 15% at the emission wavelength, the porosity of the ceramic is reduced, namely the compactness of the ceramic is increased, the problems of light scattering and light crosstalk of the ceramic can be effectively reduced, and the spatial resolution of X-ray detection imaging is improved. The invention utilizes the high-temperature and high-pressure reaction kettle to provide a high-temperature and high-pressure environment with the temperature higher than 300 ℃ to promote the accelerated flow, rearrangement and densification of crystal grains of the perovskite scintillator biscuit, and effectively solves the technical problems of long-time high temperature and long preparation period in the prior art.

Description

Preparation method of perovskite scintillator ceramic
Technical Field
The invention relates to the technical field of X-ray detection, in particular to a preparation method of perovskite scintillator ceramic.
Background
The X-ray detector is widely applied to the fields of clinical diagnosis, material analysis, national defense, anti-terrorism, industrial product monitoring and the like. The perovskite material is used as a novel X-ray detection material, has the advantages of large X-ray absorption coefficient, excellent photoelectric property, low cost, large-area preparation and the like, and has excellent performance and wide application prospect in the X-ray detection field, such as high luminous efficiency, low afterglow and the like. The main common type of scintillator ceramics in the market is yttrium aluminum garnet (LuYAG:Pr), and the introduction of doping ions causes the generation of defect energy level capture carriers, so that the light yield is low and the X-ray detection imaging performance is affected. Whereas all-inorganic halogen perovskite CsCuX (x=cl, br, I) has high light yield and low afterglow characteristics, and has great value in the aspect of X-ray detection. The preparation of the scintillator transparent ceramic at present mainly comprises three process stages of raw material preparation, molding and sintering, wherein the sintering of a ceramic biscuit is one of the key links of the ceramic preparation process, including hot isostatic pressing sintering, vacuum sintering, atmosphere sintering and the like, but has the defects of long time, high temperature and long preparation period.
Disclosure of Invention
The invention provides a preparation method of perovskite scintillator ceramic, which solves the technical problems of long-time high temperature and long preparation period in the prior art.
The invention provides a preparation method of perovskite scintillator ceramic, which comprises the following steps:
mixing CsX and CuX according to the required proportion, grinding and pouring into a quartz ampoule;
vacuumizing the quartz ampoule and sealing the tube;
Placing the sealed quartz ampoule into a muffle furnace for high-temperature sintering;
Tabletting and molding the sintered polycrystalline compact to obtain a scintillator tablet;
carrying out temperature isostatic pressing on the scintillator tabletting to obtain a scintillator ceramic biscuit;
and (3) placing the scintillator ceramic biscuit into a high-temperature high-pressure reaction kettle for treatment to obtain the perovskite scintillator ceramic.
Specifically, the vacuum-pumping and tube sealing of the quartz ampoule comprise:
after the quartz ampoule was evacuated to 5X 10 -3 Pa by a vacuum pump, the tube was sealed by oxyhydrogen flame.
Specifically, in the process of placing the sealed quartz ampoule into a muffle furnace for high-temperature sintering, setting parameters to be 4 hours, heating from room temperature of 20 ℃ to 500 ℃, preserving heat for 12 hours at 500 ℃, and then cooling from 500 ℃ to room temperature of 20 ℃ at a cooling speed of 12 hours.
Specifically, before the sintered polycrystalline compact is subjected to tabletting molding, the sintered polycrystalline compact is taken out, and the impurity layer on the surface of the polycrystalline compact is removed by polishing and then ground into powder.
Specifically, the tabletting and shaping are carried out on the sintered polycrystalline compact to obtain a scintillator tablet, which comprises the following steps:
And dry-pressing the sintered polycrystalline compact by using a tabletting mold and using a hand-operated single-punch tablet press to obtain the scintillator tabletting.
Specifically, in the process of carrying out temperature isostatic pressing on the scintillator tabletting, setting parameters to be 80 ℃, 80MPa, and maintaining the pressure for 24 hours to obtain the scintillator ceramic biscuit.
Specifically, in the process of putting the scintillator ceramic biscuit into a high-temperature high-pressure reaction kettle to be treated to obtain perovskite scintillator ceramic, setting parameters to 300 ℃,12 MPa, and maintaining the pressure for 10 hours to obtain perovskite scintillator transparent ceramic; wherein the pressure is provided by means of a nitrogen cylinder.
One or more technical schemes provided by the invention have at least the following technical effects or advantages:
The invention obtains scintillator powder through vacuum sintering, and the scintillator powder is subjected to dry pressing molding and then is sequentially subjected to temperature isostatic pressing and high-temperature high-pressure reaction kettle treatment to obtain transparent perovskite scintillator ceramic. By adjusting parameters such as temperature, pressure, dwell time and the like, the high-temperature high-pressure reaction kettle can obtain CsCuX (X=Cl, br and I) halide scintillator ceramic with the transmittance of more than 15% at the emission wavelength, the porosity of the ceramic is reduced, namely the compactness of the ceramic is increased, the problems of light scattering and light crosstalk of the ceramic can be effectively reduced, and the spatial resolution of X-ray detection imaging is improved. The invention utilizes the high-temperature and high-pressure reaction kettle to provide a high-temperature and high-pressure environment with the temperature higher than 300 ℃ to promote the accelerated flow, rearrangement and densification of crystal grains of the perovskite scintillator biscuit, and effectively solves the technical problems of long-time high temperature and long preparation period in the prior art.
Drawings
FIG. 1 is a flow chart of a method for preparing perovskite scintillator ceramics provided by an embodiment of the present invention;
FIG. 2 is an SEM image of a Cs 3Cu2I5 perovskite scintillator transparent ceramic prepared by an example of the invention;
FIG. 3 is a graph showing the transmittance of Cs 3Cu2I5 perovskite scintillator transparent ceramics prepared by an example of the present invention.
Detailed Description
The embodiment of the invention solves the technical problems of long-time high temperature and long preparation period in the prior art by providing the preparation method of the perovskite scintillator ceramic.
In order to better understand the above technical solutions, the following detailed description will refer to the accompanying drawings and specific embodiments.
Referring to fig. 1, the preparation method of perovskite scintillator ceramic provided by the embodiment of the invention includes:
step S110: mixing CsX and CuX according to the required proportion, grinding and pouring into a quartz ampoule;
The method is specifically described, high purity CsX and high purity iodine CuX are weighed according to a certain mole ratio in a glove box, mixed and ground uniformly in an agate mortar, and poured into a quartz ampoule.
In order to reduce the powder remaining on the wall of the quartz ampoule and affecting the subsequent sealing, the powder is fed into the bottom of the quartz ampoule through a glass funnel.
In order to prevent the introduction of impurities, the quartz ampoule and the glass funnel were sequentially ultrasonically cleaned with dilute hydrochloric acid, ethanol, and deionized water. The agate mortar is ultrasonically cleaned by dimethylformamide, ethanol and deionized water. And after each ultrasonic treatment, washing with deionized water for 2-3 times, and then placing the solution into a drying oven to remove residual deionized water.
Step S120: vacuumizing the quartz ampoule and sealing the tube;
The method specifically describes the steps of vacuumizing a quartz ampoule and sealing the ampoule, and comprises the following steps:
After the quartz ampoule was evacuated to 5X 10 -3 Pa by a vacuum pump, the tube was sealed by oxyhydrogen flame. The vacuum state in the quartz ampoule can avoid the adverse effect of the atmosphere on the solid phase reaction of the powder.
Step S130: placing the sealed quartz ampoule into a muffle furnace for high-temperature sintering;
the specific explanation of this step is that in the process of placing the sealed quartz ampoule into a muffle furnace to carry out high-temperature sintering, the setting parameters are that the temperature is raised from room temperature 20 ℃ to 500 ℃ for 4 hours, the heat is preserved for 12 hours under the condition of 500 ℃, and then the cooling speed is lowered from 500 ℃ to room temperature 20 ℃ for 12 hours.
Step S140: tabletting and molding the sintered polycrystalline compact to obtain a scintillator tablet;
describing the step specifically, tabletting and molding the sintered polycrystalline compact to obtain a scintillator tablet, wherein the method comprises the following steps:
And (3) dry-pressing the sintered polycrystalline compact by using a hand-operated single-punch tablet press by using a tablet die to obtain the scintillator tablet.
In order to prevent impurities from being introduced into CsCuX powder, before the sintered polycrystalline compact is subjected to tabletting and molding, the sintered polycrystalline compact is taken out, and an impurity layer on the surface of the polycrystalline compact is polished and removed, and then the polycrystalline compact is ground into powder.
Step S150: carrying out temperature isostatic pressing on the scintillator tabletting to obtain a scintillator ceramic biscuit;
The method is specifically described in the step, and in the process of carrying out temperature isostatic pressing on the scintillator tabletting, parameters are set to be 80 ℃, 80MPa, and the pressure is maintained for 24 hours to obtain the scintillator ceramic biscuit.
Step S160: and (3) placing the scintillator ceramic biscuit into a high-temperature high-pressure reaction kettle for treatment to obtain the perovskite scintillator ceramic.
The specific explanation of the step is that in the process of putting the scintillator ceramic biscuit into a high-temperature high-pressure reaction kettle to obtain perovskite scintillator ceramic, parameters are set to 300 ℃, 12MPa, and the pressure is maintained for 10 hours to obtain perovskite scintillator transparent ceramic; wherein the pressure is provided by means of a nitrogen cylinder.
Referring to fig. 2, the perovskite scintillator ceramic prepared by the method provided by the embodiment of the invention has a surface morphology observed under a scanning electron microscope, and surface grains are compact. Referring to fig. 3, the transmittance curve of the perovskite scintillator ceramic prepared by the method provided by the embodiment of the invention has the transmittance exceeding 15% at the position of 441nm of the luminescence wavelength, and the transmittance is improved.
The embodiment of the invention provides a method for preparing transparent perovskite scintillator ceramic by high-temperature high-pressure reaction kettle treatment, which is characterized in that a certain temperature and pressure environment is provided by the high-temperature high-pressure reaction kettle, so that grains of a perovskite scintillator biscuit are accelerated to flow, rearranged and densified, pores in the ceramic are eliminated, the transparency of the ceramic is improved, the method also has the advantages of low cost and easiness in operation, and the transparent large-area perovskite scintillator ceramic can be obtained and has the advantage of high spatial resolution in X-ray detection imaging.
While preferred embodiments of the present invention have been described, additional variations and modifications in those embodiments may occur to those skilled in the art once they learn of the basic inventive concepts. It is therefore intended that the following claims be interpreted as including the preferred embodiments and all such alterations and modifications as fall within the scope of the invention.
It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention also include such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.

Claims (5)

1. A method of preparing a perovskite scintillator ceramic, comprising:
mixing CsX and CuX according to the required proportion, grinding and pouring into a quartz ampoule;
vacuumizing the quartz ampoule and sealing the tube;
placing the sealed quartz ampoule into a muffle furnace for high-temperature sintering to obtain a polycrystalline compact;
Taking out the polycrystalline compact, polishing to remove an impurity layer on the surface of the polycrystalline compact, grinding into powder, tabletting and forming to obtain a scintillator tabletting;
carrying out temperature isostatic pressing on the scintillator tabletting to obtain a scintillator ceramic biscuit;
placing the scintillator ceramic biscuit into a high-temperature high-pressure reaction kettle for treatment to obtain perovskite scintillator ceramic;
Setting parameters at 300 ℃ and 12 MPa in the process of putting the scintillator ceramic biscuit into a high-temperature high-pressure reaction kettle to obtain perovskite scintillator ceramic, and maintaining the pressure for 10 hours to obtain CsCuX perovskite scintillator ceramic with the transmittance of more than 15% at the position of 441 nanometers of luminous wavelength; wherein x=cl, br, I; wherein the pressure is provided by means of a nitrogen cylinder.
2. The method for preparing the perovskite scintillator ceramic according to claim 1, wherein the steps of evacuating the quartz ampoule and sealing the tube include:
after the quartz ampoule was evacuated to 5X 10 -3 Pa by a vacuum pump, the tube was sealed by oxyhydrogen flame.
3. The method for preparing the perovskite scintillator ceramic according to claim 1, wherein in the process of placing the sealed quartz ampoule into a muffle furnace for high-temperature sintering, setting parameters to be 4h, heating from room temperature to 500 ℃, preserving heat for 12h under the condition of 500 ℃, and then cooling from 500 ℃ to room temperature to 20 ℃ at a cooling rate of 12 h.
4. The method of producing a perovskite scintillator ceramic of claim 1, wherein the tabletting comprises:
and (3) performing dry compression molding by using a hand-operated single-punch tablet press by using a tablet mold to obtain the scintillator tablet.
5. The method for producing the perovskite scintillator ceramic according to claim 1, wherein the parameters are set to 80 ℃ and 80: 80 MPa in the process of performing temperature isostatic pressing on the scintillator preform, and the scintillator ceramic biscuit is obtained after pressure maintaining for 24 hours.
CN202310127476.0A 2023-02-14 2023-02-14 Preparation method of perovskite scintillator ceramic Active CN116178014B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310127476.0A CN116178014B (en) 2023-02-14 2023-02-14 Preparation method of perovskite scintillator ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310127476.0A CN116178014B (en) 2023-02-14 2023-02-14 Preparation method of perovskite scintillator ceramic

Publications (2)

Publication Number Publication Date
CN116178014A CN116178014A (en) 2023-05-30
CN116178014B true CN116178014B (en) 2024-06-18

Family

ID=86434125

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310127476.0A Active CN116178014B (en) 2023-02-14 2023-02-14 Preparation method of perovskite scintillator ceramic

Country Status (1)

Country Link
CN (1) CN116178014B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113023764A (en) * 2021-03-19 2021-06-25 襄阳汽车职业技术学院 Preparation method of copper-based perovskite nanocrystalline film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4170002A1 (en) * 2020-06-22 2023-04-26 Shanghai Institute of Ceramics, Chinese Academy of Sciences Low-dimensional perovskite-structured metal halide, preparation method therefor, and application thereof
CN111778017A (en) * 2020-06-30 2020-10-16 南京理工大学 Manganese-doped Cs with high light yield3Cu2I5Halide scintillator
CN112852414B (en) * 2021-01-13 2022-04-12 中山大学 Perovskite composite scintillator and preparation method and application thereof
CN113060762B (en) * 2021-03-25 2022-01-25 昆明理工大学 Perovskite X-ray scintillator and preparation method thereof
CN114989818A (en) * 2022-05-30 2022-09-02 东南大学 All-inorganic lead-free Cs 3 Cu 2 I 5 Perovskite scintillator film, preparation method and application

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113023764A (en) * 2021-03-19 2021-06-25 襄阳汽车职业技术学院 Preparation method of copper-based perovskite nanocrystalline film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Near-Unity Photoluminescence Quantum Yield in Blue-Emitting Cs3Cu2Br5-xIx(0≤x≤5);Rachel Roccanova et al;《ACS Applied Electronic Materials》;第1卷;第269-274页 *

Also Published As

Publication number Publication date
CN116178014A (en) 2023-05-30

Similar Documents

Publication Publication Date Title
JP2638669B2 (en) Ceramic body and its manufacturing method
JP6105690B2 (en) Method for producing gadolinium oxysulfide ceramic scintillator
JP4747587B2 (en) Method for producing calcium fluoride sintered body
CN1735572A (en) Rare earth garnet sintered body and its manufacturing method
CN102020470B (en) Preparation method of transparent yttria ceramics with high optical quality
CN101817683A (en) Method for preparing MgAlON transparent ceramic in pressureless sintering way
CN101851096A (en) Highly doped Yb, Er: YAG transparent ceramic and manufacturing method thereof
CN110041074B (en) Upconversion luminescent transparent ferroelectric ceramic material and preparation method and application thereof
CN104844217A (en) Preparation method of AlON transparent ceramic phosphor for warm-color warm-white LED packaging light source
CN102978701A (en) Er<3+>/Yb<3+> co-doped yttrium lithium fluoride monocrystal and preparation method thereof
JP2016041649A (en) METHOD FOR MANUFACTURING GADOLINIUM OXYSULFIDE (Gd2O2S) CERAMIC SCINTILLATOR
Kuznetsov et al. Optical fluoride nanoceramics
CN114685166A (en) Scintillation ceramic and preparation method and application thereof
CN107935581A (en) Equally distributed composite garnet scintillating ceramic of two-phase and preparation method thereof
CN101560102B (en) Method for preparing C-doped alpha-Al2O3 transparent ceramic thermoluminescent and photoluminescent material
CN116178014B (en) Preparation method of perovskite scintillator ceramic
CN110282650B (en) Gadolinium oxysulfide powder for X-ray detection and preparation method of scintillation ceramic thereof
CN104876587A (en) Preparation method of anti-purple-halo transparent ceramic panel for replacing sapphires
CN103265286B (en) Method for low-temperature preparation of Y2O3 and MgO codoped ZrO2 transparent ceramic through microwave sintering
CN110204336B (en) Preparation method of gadolinium oxysulfide powder and flash crystal ceramic
CN106588014B (en) A kind of Tm of luminescence enhancement3+Adulterate lutecia based transparent ceramics and preparation method
CN100358834C (en) High light output quick attenuation flash ceramic and its preparing method
CN109354497B (en) Ho-doped transparent scandium oxide ceramic and preparation method thereof
CN102409391B (en) Preparation method of yttrium-aluminum garnet single crystal
CN109354496B (en) Preparation method of yttrium vanadate transparent ceramic

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant