CN116171053B - Full perovskite laminated solar cell and preparation method thereof - Google Patents
Full perovskite laminated solar cell and preparation method thereof Download PDFInfo
- Publication number
- CN116171053B CN116171053B CN202310276686.6A CN202310276686A CN116171053B CN 116171053 B CN116171053 B CN 116171053B CN 202310276686 A CN202310276686 A CN 202310276686A CN 116171053 B CN116171053 B CN 116171053B
- Authority
- CN
- China
- Prior art keywords
- transport layer
- hole transport
- perovskite
- solar cell
- tandem solar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 19
- 230000005525 hole transport Effects 0.000 claims abstract description 84
- 239000000463 material Substances 0.000 claims abstract description 45
- 238000004528 spin coating Methods 0.000 claims description 63
- 238000000034 method Methods 0.000 claims description 40
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 38
- 238000010521 absorption reaction Methods 0.000 claims description 31
- 238000000137 annealing Methods 0.000 claims description 29
- 239000002243 precursor Substances 0.000 claims description 25
- 230000004888 barrier function Effects 0.000 claims description 23
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 14
- 239000002904 solvent Substances 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- -1 4-(7-(4-(bis(4-methoxyphenyl)amino)-2,5-difluorophenyl)benzo[c][1,2,5]thiadiazol-4-yl )benzoic acid Chemical compound 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 2
- 229910021641 deionized water Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims 1
- 230000006798 recombination Effects 0.000 abstract description 9
- 238000005215 recombination Methods 0.000 abstract description 9
- 238000001338 self-assembly Methods 0.000 abstract description 4
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 abstract description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 abstract 1
- 150000001732 carboxylic acid derivatives Chemical group 0.000 abstract 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical group S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract 1
- 239000010408 film Substances 0.000 description 25
- 238000004544 sputter deposition Methods 0.000 description 16
- 239000012296 anti-solvent Substances 0.000 description 12
- 238000002207 thermal evaporation Methods 0.000 description 12
- 229920001167 Poly(triaryl amine) Polymers 0.000 description 9
- 238000000151 deposition Methods 0.000 description 9
- 238000000605 extraction Methods 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 229920000144 PEDOT:PSS Polymers 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 8
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 8
- 238000004140 cleaning Methods 0.000 description 8
- 230000008021 deposition Effects 0.000 description 8
- 230000006872 improvement Effects 0.000 description 7
- 238000012546 transfer Methods 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000000231 atomic layer deposition Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000004770 highest occupied molecular orbital Methods 0.000 description 4
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 4
- 238000001755 magnetron sputter deposition Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000004873 anchoring Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000000411 transmission spectrum Methods 0.000 description 2
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种全钙钛矿叠层太阳能电池及其制备方法,属于太阳能电池技术领域,该叠层太阳能电池宽带隙顶电池中的空穴传输层材料与窄带隙底电池中的空穴传输层材料相同,空穴传输层材料为具有自组装特性的材料,具体为磷酸端基的SAM材料、羧酸端基的SAM材料、硫酸端基的SAM材料或异氰酸端基的SAM材料。该全钙钛矿叠层太阳能电池可有效改善现有的叠层太阳能电池所存在的制备工艺复杂、成本高以及严重的界面非辐射复合等问题。
The invention discloses an all-perovskite laminated solar cell and a preparation method thereof, belonging to the technical field of solar cells. The laminated solar cell has a hole transport layer material in a wide bandgap top cell and a hole transport layer in a narrow bandgap bottom cell. The materials of the transport layer are the same, and the material of the hole transport layer is a material with self-assembly properties, specifically a SAM material with a phosphoric acid end group, a SAM material with a carboxylic acid end group, a SAM material with a sulfuric acid end group, or a SAM material with an isocyanate end group. . This all-perovskite tandem solar cell can effectively improve the existing tandem solar cells' problems such as complex preparation process, high cost and serious interface non-radiative recombination.
Description
技术领域Technical field
本发明属于太阳能电池技术领域,具体涉及一种全钙钛矿叠层太阳能电池及其制备方法。The invention belongs to the technical field of solar cells, and specifically relates to an all-perovskite stacked solar cell and a preparation method thereof.
背景技术Background technique
太阳能电池作为一种可以直接把太阳能转化成电能的装置,在现有能源结构中占有重要的地位。其中钙钛矿太阳能电池因其突出的光电特性和简易的制备流程,受到了人们的广泛关注。目前,单结钙钛矿太阳能电池的认证效率已突破25.7%,但其效率的提升受到肖克莱-奎伊瑟(S-Q)极限(~33%)的限制。为充分利用太阳光谱,减少电池热耗散,进而突破单结器件的S-Q极限,发展多结叠层钙钛矿太阳能电池极具前景。As a device that can directly convert solar energy into electrical energy, solar cells occupy an important position in the existing energy structure. Among them, perovskite solar cells have attracted widespread attention due to their outstanding photoelectric properties and simple preparation process. Currently, the certified efficiency of single-junction perovskite solar cells has exceeded 25.7%, but its efficiency improvement is limited by the Shockley-Quisser (S-Q) limit (~33%). In order to make full use of the solar spectrum, reduce battery heat dissipation, and break through the S-Q limit of single-junction devices, the development of multi-junction stacked perovskite solar cells is very promising.
两端钙钛矿-钙钛矿(全钙钛矿)叠层太阳能电池通常由宽带隙(1.7~1.9eV)顶电池和窄带隙(1.0~1.3eV)底电池组成。虽然全钙钛矿叠层太阳能电池的效率已超过单结钙钛矿太阳能电池,但是严重的界面非辐射复合限制了其性能的进一步提升。为了降低这种损耗和制造成本,选择合适的空穴传输材料至关重要。现有技术中公开的全钙钛矿叠层太阳能电池中的宽带隙和窄带隙的空穴传输层材料通常分别为PTAA和PEDOT:PSS,即现有技术中的全钙钛矿叠层太阳电池中两个子电池中分别采用了不同的空穴传输层材料,导致电池的制备过程更加复杂,增加了生产成本,对设备和环境的要求也更高;而且,现有技术中的PEDOT:PSS空穴传输层对近红外光存在较强的寄生吸收,其酸性还会引起窄带隙钙钛矿薄膜的降解,不利于叠层器件的稳定性;而且,空穴传输层/钙钛矿薄膜界面存在着严重的界面非辐射复合问题。Two-terminal perovskite-perovskite (all-perovskite) tandem solar cells usually consist of a wide-bandgap (1.7-1.9eV) top cell and a narrow-bandgap (1.0-1.3eV) bottom cell. Although the efficiency of all-perovskite tandem solar cells has exceeded that of single-junction perovskite solar cells, severe interfacial non-radiative recombination limits further improvements in performance. To reduce this loss and manufacturing cost, it is crucial to select appropriate hole transport materials. The hole transport layer materials of wide bandgap and narrow bandgap in all-perovskite tandem solar cells disclosed in the prior art are usually PTAA and PEDOT:PSS respectively, that is, all-perovskite tandem solar cells in the prior art. Different hole transport layer materials are used in the two sub-batteries, which makes the preparation process of the battery more complicated, increases the production cost, and requires higher equipment and environment; moreover, the PEDOT:PSS hole in the existing technology The hole transport layer has strong parasitic absorption of near-infrared light, and its acidity will also cause the degradation of the narrow bandgap perovskite film, which is not conducive to the stability of the stacked device; moreover, the hole transport layer/perovskite film interface exists There is a serious problem of non-radiative recombination at the interface.
发明内容Contents of the invention
针对现有技术中的上述不足,本发明提供了一种全钙钛矿叠层太阳能电池及其制备方法,该全钙钛矿叠层太阳能电池可有效改善现有的叠层太阳能电池存在的制备过程复杂、成本高以严重的界面非辐射复合问题。In view of the above-mentioned deficiencies in the prior art, the present invention provides an all-perovskite tandem solar cell and a preparation method thereof. The all-perovskite tandem solar cell can effectively improve the preparation process of existing tandem solar cells. The process is complex, the cost is high and there are serious problems of non-radiative recombination at the interface.
为实现上述目的,本发明解决其技术问题所采用的技术方案是:In order to achieve the above objects, the technical solutions adopted by the present invention to solve the technical problems are:
一种全钙钛矿叠层太阳能电池,宽带隙顶电池中的空穴传输层材料与窄带隙底电池中的空穴传输层材料相同。An all-perovskite tandem solar cell in which the hole transport layer material in the wide bandgap top cell is the same as the hole transport layer material in the narrow bandgap bottom cell.
进一步地,空穴传输层材料为具有自组装特性的材料。Furthermore, the material of the hole transport layer is a material with self-assembly properties.
进一步地,具有自组装特性的材料为磷酸端基的SAM材料、羧酸端基的SAM材料、硫酸端基的SAM材料或异氰酸端基的SAM材料。Further, the material with self-assembly properties is a SAM material with phosphate end groups, a SAM material with carboxylic acid end groups, a SAM material with sulfate end groups or a SAM material with isocyanate end groups.
进一步地,空穴传输层材料为4-(7-(4-(双(4-甲氧基苯基)氨基)-2,5-二氟苯基)苯并[c][1,2,5]噻二唑-4-基)苯甲酸。Further, the hole transport layer material is 4-(7-(4-(bis(4-methoxyphenyl)amino)-2,5-difluorophenyl)benzo[c][1,2, 5]thiadiazol-4-yl)benzoic acid.
进一步地,宽带隙顶电池中的空穴传输层和窄带隙底电池中的空穴传输层的厚度均为3-15nm。Further, the thickness of the hole transport layer in the wide band gap top cell and the hole transport layer in the narrow band gap bottom cell are both 3-15 nm.
上述的全钙钛矿叠层太阳能电池的制备方法,包括以下步骤:The above-mentioned preparation method of all-perovskite tandem solar cells includes the following steps:
(1)将空穴传输层材料溶解于溶剂中,制备空穴传输层前体溶液;(1) Dissolve the hole transport layer material in a solvent to prepare a hole transport layer precursor solution;
(2)将步骤(1)中的空穴传输层前体溶液旋涂在ITO透明导电玻璃上,进行退火处理,制得宽带隙顶电池的空穴传输层;(2) Spin-coat the hole transport layer precursor solution in step (1) on the ITO transparent conductive glass, and perform annealing treatment to prepare the hole transport layer of the wide bandgap top battery;
(3)在步骤(2)中宽带隙顶电池的空穴传输层上依次沉积宽带隙钙钛矿吸收层、电子传输层和中间连接层;(3) sequentially deposit a wide-bandgap perovskite absorption layer, an electron-transport layer and an intermediate connection layer on the hole-transport layer of the wide-band-gap top cell in step (2);
(4)在步骤(3)中中间连接层上旋涂步骤(1)中的空穴传输层前体溶液,进行退火处理,制得窄带隙底电池的空穴传输层;(4) Spin-coating the hole transport layer precursor solution in step (1) on the intermediate connecting layer in step (3), and perform annealing treatment to prepare the hole transport layer of the narrow bandgap bottom battery;
(5)在步骤(4)中窄带隙底电池的空穴传输层上依次沉积窄带隙钙钛矿吸收层、电子传输层和金属电极,制得全钙钛矿叠层太阳能电池。(5) Sequentially deposit a narrow band gap perovskite absorption layer, an electron transport layer and a metal electrode on the hole transport layer of the narrow band gap bottom cell in step (4) to prepare an all-perovskite tandem solar cell.
本发明中如宽带隙钙钛矿吸收层、电子传输层、中间连接层、窄带隙钙钛矿吸收层、金属电极等沉积方式如无特别说明,可按照本领域常规方法进行,若无特殊限定或具体说明的部件或原料,可选用本领域的常规部件或原料。In the present invention, the deposition methods such as wide bandgap perovskite absorption layer, electron transport layer, intermediate connection layer, narrow bandgap perovskite absorption layer, metal electrode, etc. can be carried out according to conventional methods in the art unless otherwise specified. Unless otherwise specified, or specifically described components or raw materials, conventional components or raw materials in this field may be used.
进一步地,步骤(1)中溶剂为甲苯、乙醇、异丙醇、去离子水或乙醚,空穴传输层前体溶液的浓度为0.3-0.8mg/mL。Further, in step (1), the solvent is toluene, ethanol, isopropyl alcohol, deionized water or ether, and the concentration of the hole transport layer precursor solution is 0.3-0.8 mg/mL.
进一步地,步骤(2)和步骤(4)中旋涂参数相同,具体为:旋涂速度为3000-5000rpm,旋涂时间为20-40s。Further, the spin coating parameters in step (2) and step (4) are the same, specifically: the spin coating speed is 3000-5000 rpm, and the spin coating time is 20-40 s.
进一步地,步骤(2)和步骤(4)中退火参数相同,具体为:退火温度为80-130℃,退火时间为5-20min。Further, the annealing parameters in step (2) and step (4) are the same, specifically: the annealing temperature is 80-130°C, and the annealing time is 5-20 minutes.
进一步地,步骤(3)中所述电子传输层由C60或C70传输层和二氧化锡阻挡层组成,步骤(5)中所述电子传输层由C60或C70传输层和二氧化锡阻挡层组成,或由C60或C70传输层和BCP阻挡层组成。Further, the electron transport layer described in step (3) is composed of a C 60 or C 70 transport layer and a tin dioxide barrier layer, and the electron transport layer described in step (5) is composed of a C 60 or C 70 transport layer and a tin dioxide barrier layer. consists of a tin barrier layer, or a C 60 or C 70 transfer layer and a BCP barrier layer.
进一步地,步骤(3)中中间连接层材料为IZO(氧化锌铟)或ITO(氧化铟锡)或AZO(氧化锌铝)或Au,步骤(5)中金属电极材料为Cu或Ag。Further, the material of the intermediate connection layer in step (3) is IZO (indium zinc oxide) or ITO (indium tin oxide) or AZO (aluminum zinc oxide) or Au, and the metal electrode material in step (5) is Cu or Ag.
本发明所产生的有益效果为:The beneficial effects produced by the present invention are:
1、本发明将同一空穴传输层材料同时应用于宽窄带隙两个子电池中,简化了叠层太阳能电池的制备过程,降低了对生产设备和制备工艺的要求,特别是当卷对卷、狭缝涂布制备大面积器件或组件时,优势更加明显,极大的减少了人力、物力、财力的投入,对降低叠层器件的制备成本和加快规模化生产具有重大的意义。1. The present invention applies the same hole transport layer material to two sub-cells with wide and narrow band gaps at the same time, which simplifies the preparation process of laminated solar cells and reduces the requirements for production equipment and preparation processes, especially when roll-to-roll, When slit coating is used to prepare large-area devices or components, the advantages are more obvious. It greatly reduces the investment in manpower, material resources, and financial resources. It is of great significance to reducing the preparation cost of laminated devices and accelerating large-scale production.
2、本发明中采用给受体P型分子等具有自组装特性的材料代替叠层钙钛矿太阳能电池中宽带隙子电池中的PTAA材料和窄带隙子电池中的PEDOT:PSS材料作为叠层器件中的空穴传输层,其主要工作原理为:第一,自组装空穴传输层具有很好的空穴提取性能,从而保证了空穴的有效转移和提取;第二,由于该类自组装空穴传输层厚度极薄,当沉积在ITO表面后,它们具有比PTAA和PEDOT:PSS更好的透光率,可以提高钙钛矿薄膜对太阳光的有效利用;第三,在宽带隙顶电池中,相比于PTAA的HOMO能级,自组装材料的HOMO能级和宽带隙钙钛矿的价带更加匹配,这有利于减少空穴传输的界面能级势垒,加速空穴的提取,减少能量损失,另外给自组装材料上的功能化基团可以钝化宽带隙钙钛矿薄膜表面的缺陷,从而显著地降低了空穴传输层/宽带隙钙钛矿薄膜界面的非辐射复合;而在窄带隙底电池中,自组装空穴传输层不仅可以减少界面的非辐射复合,还可以通过和Sn2+之间的强相互作用,通过延缓锡铅窄带隙钙钛矿的结晶速度来改善其结晶动力学,从而制备出具有更高结晶度、更低缺陷态密度的高质量锡铅窄带隙钙钛矿薄膜。综上,该空穴传输层极大地提高了两个子电池的光电转换效率,从而可制备更高效稳定的叠层钙钛矿太阳能电池。2. In the present invention, materials with self-assembly properties such as donor-acceptor P-type molecules are used to replace the PTAA material in the wide-band gap sub-cell and the PEDOT:PSS material in the narrow-band-gap sub-cell in the tandem perovskite solar cell as the stack. The main working principles of the hole transport layer in the device are: first, the self-assembled hole transport layer has good hole extraction performance, thus ensuring the effective transfer and extraction of holes; second, due to this type of self-assembled hole transport layer The thickness of the assembled hole transport layer is extremely thin. When deposited on the ITO surface, they have better light transmittance than PTAA and PEDOT:PSS, which can improve the effective utilization of sunlight by the perovskite film; third, in the wide bandgap In the top cell, compared with the HOMO energy level of PTAA, the HOMO energy level of the self-assembled material matches the valence band of the wide-bandgap perovskite better, which is beneficial to reducing the interface energy level barrier for hole transmission and accelerating the removal of holes. Extraction, reducing energy loss, and adding functional groups on self-assembled materials can passivate defects on the surface of the wide-bandgap perovskite film, thereby significantly reducing non-radiation at the hole transport layer/wide-bandgap perovskite film interface Recombination; in narrow-bandgap bottom cells, the self-assembled hole transport layer can not only reduce non-radiative recombination at the interface, but also delay the crystallization of tin-lead narrow-bandgap perovskite through the strong interaction with Sn 2+ speed to improve its crystallization kinetics, thereby preparing high-quality tin-lead narrow bandgap perovskite films with higher crystallinity and lower defect state density. In summary, this hole transport layer greatly improves the photoelectric conversion efficiency of the two sub-cells, thereby enabling the preparation of more efficient and stable tandem perovskite solar cells.
3、本发明中的空穴传输层有效改善了全钙钛矿叠层太阳能电池中中间连接层近红外光透过率低、易引起钙钛矿薄膜降解氧化的问题,主要是由于本发明中使用的自组装空穴传输层厚度极薄,为3-15nm,可以降低对太阳光的吸收和发射,从而减少了太阳光的损失,这利于更多的太阳光照射到钙钛矿薄膜表面,加强两个子电池对太阳光的充分利用,尤其是减少了中间连接层对近红外光的寄生吸收,改善了窄带隙钙钛矿薄膜的质量,在提升器件光电转换效率的同时增强了器件的稳定性。3. The hole transport layer in the present invention effectively improves the problem that the near-infrared light transmittance of the intermediate connection layer in the all-perovskite tandem solar cell is low and easily causes degradation and oxidation of the perovskite film. This is mainly due to the problem in the present invention. The thickness of the self-assembled hole transport layer used is extremely thin, 3-15nm, which can reduce the absorption and emission of sunlight, thereby reducing the loss of sunlight, which is beneficial to more sunlight reaching the surface of the perovskite film. Strengthen the full utilization of sunlight by the two sub-cells, especially reduce the parasitic absorption of near-infrared light by the intermediate connection layer, improve the quality of the narrow bandgap perovskite film, improve the photoelectric conversion efficiency of the device and enhance the stability of the device sex.
而且,本申请中的空穴传输层厚度极薄,对薄膜厚度不均的容忍度较大,本申请中的空穴传输层材料通过锚定基团锚定在ITO表面后会更加有序地排列,且排列取向更加平行于ITO,因此可以有效提高空穴的提取和转移速率。而现有技术中PTAA、PEDOT:PSS等传统空穴传输层在ITO表面无序排列,空穴的提取和转移能力差。Moreover, the hole transport layer in this application is extremely thin and has a greater tolerance for uneven film thickness. The hole transport layer material in this application will be more orderly after being anchored on the ITO surface through anchoring groups. Arrangement, and the alignment orientation is more parallel to ITO, so the extraction and transfer rate of holes can be effectively improved. In the existing technology, traditional hole transport layers such as PTAA and PEDOT:PSS are arranged randomly on the surface of ITO, and their hole extraction and transfer capabilities are poor.
附图说明Description of the drawings
图1为现有技术全钙钛矿叠层太阳能电池结构示意图;Figure 1 is a schematic structural diagram of an all-perovskite tandem solar cell in the prior art;
图2为本发明中全钙钛矿叠层太阳能电池结构示意图;Figure 2 is a schematic structural diagram of an all-perovskite tandem solar cell in the present invention;
图3为实施例3和对比例1中宽带隙顶电池的紫外可见透射光谱图;Figure 3 is the ultraviolet-visible transmission spectrum of the wide-bandgap top cell in Example 3 and Comparative Example 1;
图4为实施例3和对比例1中窄带隙底电池的紫外可见透射光谱图;Figure 4 is the ultraviolet-visible transmission spectrum of the narrow bandgap bottom cell in Example 3 and Comparative Example 1;
图5为对比例1中全钙钛矿叠层太阳能电池的J-V曲线图;Figure 5 is a J-V curve of the all-perovskite tandem solar cell in Comparative Example 1;
图6为实施例3中全钙钛矿叠层太阳能电池的J-V曲线图。Figure 6 is a J-V curve of the all-perovskite tandem solar cell in Example 3.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明,即所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。In order to make the purpose, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with examples. It should be understood that the specific embodiments described here are only used to explain the present invention and are not used to limit the present invention. That is, the described embodiments are only some embodiments of the present invention, rather than all embodiments.
因此,以下对提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。Therefore, the following detailed description of the embodiments of the invention is not intended to limit the scope of the claimed invention, but rather to represent selected embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without any creative work fall within the scope of protection of the present invention.
需要说明的是,术语“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that relational terms such as "first" and "second" are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that these entities or operations are mutually exclusive. any such actual relationship or sequence exists between them. Furthermore, the terms "comprises," "comprises," or any other variations thereof are intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus that includes a list of elements includes not only those elements, but also those not expressly listed other elements, or elements inherent to the process, method, article or equipment. Without further limitation, an element qualified by the statement "comprises a..." does not exclude the presence of additional identical elements in the process, method, article, or device that includes the element.
下面结合实施例和附图对本发明的特征和性能作进一步的详细描述。The features and performance of the present invention will be described in further detail below with reference to the embodiments and drawings.
实施例1Example 1
一种全钙钛矿叠层太阳能电池,其制备方法包括以下步骤:An all-perovskite tandem solar cell, its preparation method includes the following steps:
(1)将4-(7-(4-(双(4-甲氧基苯基)氨基)-2,5-二氟苯基)苯并[c][1,2,5]噻二唑-4-基)苯甲酸材料溶解于甲苯中,制备浓度为0.3mg/mL的空穴传输层前体溶液;(1) 4-(7-(4-(Bis(4-methoxyphenyl)amino)-2,5-difluorophenyl)benzo[c][1,2,5]thiadiazole -4-yl)benzoic acid material is dissolved in toluene to prepare a hole transport layer precursor solution with a concentration of 0.3 mg/mL;
(2)将步骤(1)中的空穴传输层前体溶液旋涂在清洗干净的ITO透明导电玻璃上,旋涂速度为4000rpm,旋涂时间为40s,然后进行退火处理,退火温度为80℃,退火时间为20min,制得厚度为6nm的空穴传输层;(2) Spin-coat the hole transport layer precursor solution in step (1) on the cleaned ITO transparent conductive glass at a spin-coating speed of 4000 rpm and a spin-coating time of 40 s, and then perform annealing treatment at an annealing temperature of 80 ℃, annealing time is 20min, and a hole transport layer with a thickness of 6nm is obtained;
(3)采用反溶剂法在步骤(2)中制得的空穴传输层上滴加宽带隙钙钛矿前体溶液进行旋涂,低速旋涂300rpm,旋涂时间为10s,高速旋涂2000rpm,旋涂时间为60s,反溶剂乙醚在高速旋涂期间第30秒时滴下,然后于依次在50℃条件下进行退火8min、90℃条件下退火17min,制得宽带隙钙钛矿吸收层;(3) Use the anti-solvent method to drop the wide-bandgap perovskite precursor solution on the hole transport layer prepared in step (2) for spin coating. The low speed spin coating is 300 rpm, the spin coating time is 10 s, and the high speed spin coating is 2000 rpm. , the spin coating time is 60s, the anti-solvent ether is dropped at the 30th second during high-speed spin coating, and then annealed at 50°C for 8 minutes and 90°C for 17 minutes to prepare a wide-bandgap perovskite absorption layer;
(4)采用热蒸发法在步骤(3)中制得的宽带隙钙钛矿吸收层上沉积20nm厚的C60传输层,具体操作为:打开电源,缓慢加热C60,至温度在530℃以上,使蒸发速率在直至沉积厚度达到20nm;然后采用原子层沉积在C60电子传输层沉积20nm厚的二氧化锡阻挡层,具体操作为:设置沉积室温度为90℃,锡源脉冲时间为100ms,清洗时间为30s,水源脉冲时间为100ms,清洗时间为30s;(4) Use thermal evaporation method to deposit a 20nm thick C 60 transmission layer on the wide bandgap perovskite absorption layer prepared in step (3). The specific operation is: turn on the power and slowly heat C 60 until the temperature is 530°C. Above, the evaporation rate is Until the deposition thickness reaches 20nm; then use atomic layer deposition to deposit a 20nm thick tin dioxide barrier layer on the C 60 electron transport layer. The specific operations are: set the deposition chamber temperature to 90°C, the tin source pulse time to 100ms, and the cleaning time to 30s. , the water source pulse time is 100ms, and the cleaning time is 30s;
(5)采用射频磁控溅射法在步骤(4)中制得的二氧化锡阻挡层上溅射120nm厚的IZO薄膜,具体参数为:溅射功率为70W,溅射气压为0.5Pa,氩气流量为30sccm,控制溅射时间调整溅射厚度;(5) Use the radio frequency magnetron sputtering method to sputter a 120nm thick IZO film on the tin dioxide barrier layer prepared in step (4). The specific parameters are: the sputtering power is 70W, the sputtering pressure is 0.5Pa, The argon gas flow rate is 30 sccm, and the sputtering time is controlled to adjust the sputtering thickness;
(6)采用旋涂法在步骤(5)中制得的IZO薄膜旋涂步骤(1)中的空穴传输层前体溶液,旋涂速度为4000rpm,旋涂时间为40s,然后退火处理,退火温度为80℃,退火时间为20min,制得6nm厚的空穴传输层;(6) The IZO thin film prepared in step (5) is spin-coated with the hole transport layer precursor solution in step (1) by spin coating at a spin coating speed of 4000 rpm and a spin coating time of 40 s, and then annealed. The annealing temperature is 80°C, the annealing time is 20 minutes, and a 6nm thick hole transport layer is obtained;
(7)采用反溶剂法在步骤(6)中制得的空穴传输层上旋涂窄带隙钙钛矿吸收层,低速500rpm,旋涂时间为20s,高速4000rpm,旋涂时间为60s,反溶剂氯苯在高速旋涂期间第15秒时滴下,然后于依次在80℃条件下进行退火20min、50℃条件下退火20min,制得窄带隙钙钛矿吸收层;(7) Use the anti-solvent method to spin-coat the narrow-bandgap perovskite absorption layer on the hole transport layer prepared in step (6). The low speed is 500 rpm, the spin coating time is 20 s, the high speed is 4000 rpm, the spin coating time is 60 s, and reverse The solvent chlorobenzene was dropped at the 15th second during high-speed spin coating, and then annealed at 80°C for 20 minutes and 50°C for 20 minutes to prepare a narrow bandgap perovskite absorption layer;
(8)采用热蒸发法在步骤(7)中制得的窄带隙钙钛矿吸收层上依次沉积20nm厚的C60传输层和20nm厚的二氧化锡阻挡层;(8) Use thermal evaporation method to sequentially deposit a 20nm thick C 60 transmission layer and a 20nm thick tin dioxide barrier layer on the narrow bandgap perovskite absorption layer prepared in step (7);
(9)采用热蒸发法在步骤(8)中制得的二氧化锡阻挡层上沉积100nm厚的铜电极,制得全钙钛矿叠层太阳能电池。(9) Use thermal evaporation method to deposit a 100nm thick copper electrode on the tin dioxide barrier layer prepared in step (8) to prepare a full perovskite tandem solar cell.
实施例2Example 2
一种全钙钛矿叠层太阳能电池,其制备方法包括以下步骤:An all-perovskite tandem solar cell, its preparation method includes the following steps:
(1)将4-(7-(4-(双(4-甲氧基苯基)氨基)-2,5-二氟苯基)苯并[c][1,2,5]噻二唑-4-基)苯甲酸材料溶解于甲苯中,制备浓度为0.8mg/mL的空穴传输层前体溶液;(1) 4-(7-(4-(Bis(4-methoxyphenyl)amino)-2,5-difluorophenyl)benzo[c][1,2,5]thiadiazole -4-yl)benzoic acid material is dissolved in toluene to prepare a hole transport layer precursor solution with a concentration of 0.8 mg/mL;
(2)将步骤(1)中的空穴传输层前体溶液旋涂在清洗干净的ITO透明导电玻璃上,旋涂速度为5000rpm,旋涂时间为20s,然后进行退火处理,退火温度为130℃,退火时间为5min,制得厚度为15nm的空穴传输层;(2) Spin-coat the hole transport layer precursor solution in step (1) on the cleaned ITO transparent conductive glass at a spin-coating speed of 5000 rpm and a spin-coating time of 20 s, and then perform annealing treatment at an annealing temperature of 130 ℃, annealing time is 5min, and a hole transport layer with a thickness of 15nm is obtained;
(3)采用反溶剂法在步骤(2)中制得的空穴传输层上滴加宽带隙钙钛矿前体溶液进行旋涂,低速旋涂800rpm,旋涂时间为2s,高速旋涂4000rpm,旋涂时间为30s,反溶剂乙醚在高速旋涂期间第30秒时滴下,然后于依次在70℃条件下进行退火2min、130℃条件下退火8min,制得宽带隙钙钛矿吸收层;(3) Use the anti-solvent method to drop the wide-bandgap perovskite precursor solution on the hole transport layer prepared in step (2) for spin coating. The low speed spin coating is 800 rpm, the spin coating time is 2 s, and the high speed spin coating is 4000 rpm. , the spin coating time is 30s, the anti-solvent ether is dropped at the 30th second during high-speed spin coating, and then annealed at 70°C for 2 minutes and 130°C for 8 minutes to prepare a wide-bandgap perovskite absorption layer;
(4)采用热蒸发法在步骤(3)中制得的宽带隙钙钛矿吸收层上沉积20nm厚的C70传输层,具体操作为:打开电源,缓慢加热C70,至温度在530℃以上,使蒸发速率在直至沉积厚度达到20nm;然后采用原子层沉积在C70电子传输层沉积20nm厚的二氧化锡阻挡层,具体操作为:设置沉积室温度为90℃,锡源脉冲时间为100ms,清洗时间为30s,水源脉冲时间为100ms,清洗时间为30s;(4) Use thermal evaporation method to deposit a 20nm thick C 70 transmission layer on the wide bandgap perovskite absorption layer prepared in step (3). The specific operation is: turn on the power and slowly heat C 70 until the temperature is 530°C. Above, the evaporation rate is Until the deposition thickness reaches 20nm; then use atomic layer deposition to deposit a 20nm thick tin dioxide barrier layer on the C 70 electron transport layer. The specific operations are: set the deposition chamber temperature to 90°C, the tin source pulse time to 100ms, and the cleaning time to 30s. , the water source pulse time is 100ms, and the cleaning time is 30s;
(5)采用射频磁控溅射法在步骤(4)中制得的二氧化锡阻挡层上溅射120nm厚的IZO薄膜,具体参数为:溅射功率为70W,溅射气压为0.5Pa,氩气流量为30sccm,控制溅射时间调整溅射厚度;(5) Use the radio frequency magnetron sputtering method to sputter a 120nm thick IZO film on the tin dioxide barrier layer prepared in step (4). The specific parameters are: the sputtering power is 70W, the sputtering pressure is 0.5Pa, The argon gas flow rate is 30 sccm, and the sputtering time is controlled to adjust the sputtering thickness;
(6)采用旋涂法在步骤(5)中制得的IZO薄膜旋涂步骤(1)中的空穴传输层前体溶液,旋涂速度为5000rpm,旋涂时间为20s,然后退火处理,退火温度为130℃,退火时间为5min,制得15min厚的空穴传输层;(6) Use the spin coating method to spin-coat the IZO film prepared in step (5) with the hole transport layer precursor solution in step (1). The spin-coating speed is 5000 rpm, the spin-coating time is 20 s, and then annealed. The annealing temperature is 130°C, the annealing time is 5 minutes, and a 15-minute-thick hole transport layer is obtained;
(7)采用反溶剂法在步骤(6)中制得的空穴传输层上旋涂窄带隙钙钛矿吸收层,低速1200rpm,旋涂时间为8s,高速7000rpm,旋涂时间为30s,反溶剂氯苯在高速旋涂期间第15秒时滴下,然后于依次在120℃条件下进行退火10min、60℃条件下退火10min,制得窄带隙钙钛矿吸收层;(7) Use the anti-solvent method to spin-coat the narrow-bandgap perovskite absorption layer on the hole transport layer prepared in step (6). The low speed is 1200 rpm, the spin coating time is 8 s, the high speed is 7000 rpm, the spin coating time is 30 s, and reverse The solvent chlorobenzene was dropped at the 15th second during high-speed spin coating, and then annealed at 120°C for 10 minutes and 60°C for 10 minutes to prepare a narrow bandgap perovskite absorption layer;
(8)采用热蒸发法在步骤(7)中制得的窄带隙钙钛矿吸收层上依次沉积20nm厚的C60传输层和20nm厚的BCP阻挡层;(8) Use thermal evaporation method to sequentially deposit a 20nm thick C 60 transmission layer and a 20nm thick BCP barrier layer on the narrow bandgap perovskite absorption layer prepared in step (7);
(9)采用热蒸发法在步骤(8)中制得的二氧化锡阻挡层上沉积100nm厚的铜电极,制得全钙钛矿叠层太阳能电池。(9) Use thermal evaporation method to deposit a 100nm thick copper electrode on the tin dioxide barrier layer prepared in step (8) to prepare a full perovskite tandem solar cell.
实施例3Example 3
一种全钙钛矿叠层太阳能电池,其制备方法包括以下步骤:An all-perovskite tandem solar cell, its preparation method includes the following steps:
(1)将4-(7-(4-(双(4-甲氧基苯基)氨基)-2,5-二氟苯基)苯并[c][1,2,5]噻二唑-4-基)苯甲酸材料溶解于甲苯中,制备浓度为0.5mg/mL的空穴传输层前体溶液;(1) 4-(7-(4-(Bis(4-methoxyphenyl)amino)-2,5-difluorophenyl)benzo[c][1,2,5]thiadiazole -4-yl)benzoic acid material is dissolved in toluene to prepare a hole transport layer precursor solution with a concentration of 0.5 mg/mL;
(2)将步骤(1)中的空穴传输层前体溶液旋涂在清洗干净的ITO透明导电玻璃上,旋涂速度为4000rpm,旋涂时间为30s,然后进行退火处理,退火温度为110℃,退火时间为10min,制得厚度为10nm的空穴传输层;(2) Spin-coat the hole transport layer precursor solution in step (1) on the cleaned ITO transparent conductive glass at a spin-coating speed of 4000 rpm and a spin-coating time of 30 s, and then perform annealing treatment at an annealing temperature of 110 ℃, annealing time is 10min, and a hole transport layer with a thickness of 10nm is obtained;
(3)采用反溶剂法在步骤(2)中制得的空穴传输层上滴加宽带隙钙钛矿前体溶液进行旋涂,低速旋涂500rpm,旋涂时间为7s,高速旋涂3000rpm,旋涂时间为50s,反溶剂乙醚在高速旋涂期间第20秒时滴下,然后于依次在60℃条件下进行退火5min、110℃条件下退火12min,制得宽带隙钙钛矿吸收层;(3) Use the anti-solvent method to drop the wide-bandgap perovskite precursor solution on the hole transport layer prepared in step (2) for spin coating. The low speed spin coating is 500 rpm, the spin coating time is 7 s, and the high speed spin coating is 3000 rpm. , the spin coating time is 50s, the anti-solvent ether is dropped at the 20th second during high-speed spin coating, and then annealed at 60°C for 5 minutes and 110°C for 12 minutes to prepare a wide-bandgap perovskite absorption layer;
(4)采用热蒸发法在步骤(3)中制得的宽带隙钙钛矿吸收层上沉积20nm厚的C60传输层,具体操作为:打开电源,缓慢加热C60,至温度在530℃以上,使蒸发速率在直至沉积厚度达到20nm;然后采用原子层沉积在C60电子传输层沉积20nm厚的二氧化锡阻挡层,具体操作为:设置沉积室温度为90℃,锡源脉冲时间为100ms,清洗时间为30s,水源脉冲时间为100ms,清洗时间为30s;(4) Use thermal evaporation method to deposit a 20nm thick C 60 transmission layer on the wide bandgap perovskite absorption layer prepared in step (3). The specific operation is: turn on the power and slowly heat C 60 until the temperature is 530°C. Above, the evaporation rate is Until the deposition thickness reaches 20nm; then use atomic layer deposition to deposit a 20nm thick tin dioxide barrier layer on the C 60 electron transport layer. The specific operations are: set the deposition chamber temperature to 90°C, the tin source pulse time to 100ms, and the cleaning time to 30s. , the water source pulse time is 100ms, and the cleaning time is 30s;
(5)采用射频磁控溅射法在步骤(4)中制得的二氧化锡阻挡层上溅射120nm厚的IZO薄膜,具体参数为:溅射功率为30W,溅射气压为0.3Pa,氩气流量为23sccm,控制溅射时间调整溅射厚度;(5) Use the radio frequency magnetron sputtering method to sputter a 120nm thick IZO film on the tin dioxide barrier layer prepared in step (4). The specific parameters are: the sputtering power is 30W, the sputtering pressure is 0.3Pa, The argon gas flow rate is 23 sccm, and the sputtering time is controlled to adjust the sputtering thickness;
(6)采用旋涂法在步骤(5)中制得的IZO薄膜旋涂步骤(1)中的空穴传输层前体溶液,旋涂速度为4000rpm,旋涂时间为30s,然后退火处理,退火温度为110℃,退火时间为15min,制得8min厚的空穴传输层;(6) Use the spin coating method to spin-coat the IZO thin film prepared in step (5) with the hole transport layer precursor solution in step (1), the spin-coating speed is 4000 rpm, the spin-coating time is 30 s, and then annealed, The annealing temperature is 110°C, the annealing time is 15 minutes, and an 8-minute-thick hole transport layer is obtained;
(7)采用反溶剂法在步骤(6)中制得的空穴传输层上旋涂窄带隙钙钛矿吸收层,低速800rpm,旋涂时间为10s,高速6000rpm,旋涂时间为50s,反溶剂氯苯在高速旋涂期间第15秒时滴下,然后于依次在100℃条件下进行退火15min、55℃条件下退火15min,制得窄带隙钙钛矿吸收层;(7) Use the anti-solvent method to spin-coat the narrow-bandgap perovskite absorption layer on the hole transport layer prepared in step (6), at a low speed of 800 rpm, a spin coating time of 10 s, a high speed of 6000 rpm, a spin coating time of 50 s, and reverse The solvent chlorobenzene was dropped at the 15th second during high-speed spin coating, and then annealed at 100°C for 15 minutes and 55°C for 15 minutes to prepare a narrow bandgap perovskite absorption layer;
(8)采用热蒸发法在步骤(7)中制得的窄带隙钙钛矿吸收层上依次沉积20nm厚的C60传输层和20nm厚的二氧化锡阻挡层;(8) Use thermal evaporation method to sequentially deposit a 20nm thick C 60 transmission layer and a 20nm thick tin dioxide barrier layer on the narrow bandgap perovskite absorption layer prepared in step (7);
(9)采用热蒸发法在步骤(8)中制得的二氧化锡阻挡层上沉积100nm厚的铜电极,制得全钙钛矿叠层太阳能电池。(9) Use thermal evaporation method to deposit a 100nm thick copper electrode on the tin dioxide barrier layer prepared in step (8) to prepare a full perovskite tandem solar cell.
对比例1Comparative example 1
一种全钙钛矿叠层太阳能电池,其制备方法包括以下步骤:An all-perovskite tandem solar cell, its preparation method includes the following steps:
(1)分别制备PTAA空穴传输层前体溶液和PEDOT:PSS空穴传输层前体溶液;(1) Prepare PTAA hole transport layer precursor solution and PEDOT:PSS hole transport layer precursor solution respectively;
(2)将PTAA空穴传输层前体溶液旋涂在清洗干净的ITO透明导电玻璃上,旋涂速度为4000rpm,旋涂时间为30s,然后进行退火处理,退火温度为110℃,退火时间为10min,制得厚度为10nm的空穴传输层;(2) Spin-coat the PTAA hole transport layer precursor solution on the cleaned ITO transparent conductive glass at a spin-coating speed of 4000 rpm and a spin-coating time of 30 s, and then perform annealing treatment at a temperature of 110°C and an annealing time of 10min, a hole transport layer with a thickness of 10nm is obtained;
(3)采用反溶剂法在步骤(2)中制得的空穴传输层上滴加宽带隙钙钛矿前体溶液进行旋涂,低速旋涂500rpm,旋涂时间为7s,高速旋涂3000rpm,旋涂时间为50s,反溶剂乙醚在高速旋涂期间第20秒时滴下,然后于依次在60℃条件下进行退火5min、110℃条件下退火12min,制得宽带隙钙钛矿吸收层;(3) Use the anti-solvent method to drop the wide-bandgap perovskite precursor solution on the hole transport layer prepared in step (2) for spin coating. The low speed spin coating is 500 rpm, the spin coating time is 7 s, and the high speed spin coating is 3000 rpm. , the spin coating time is 50s, the anti-solvent ether is dropped at the 20th second during high-speed spin coating, and then annealed at 60°C for 5 minutes and 110°C for 12 minutes to prepare a wide-bandgap perovskite absorption layer;
(4)采用热蒸发法在步骤(3)中制得的宽带隙钙钛矿吸收层上沉积20nm厚的C60电子传输层,具体操作为:打开电源,缓慢加热C60,至温度在530℃以上,使蒸发速率在直至沉积厚度达到20nm;然后采用原子层沉积在C60电子传输层沉积20nm厚的二氧化锡电子传输层,具体操作为:设置沉积室温度为90℃,锡源脉冲时间为100ms,清洗时间为30s,水源脉冲时间为100ms,清洗时间为30s;(4) Use thermal evaporation method to deposit a 20nm thick C 60 electron transport layer on the wide bandgap perovskite absorption layer prepared in step (3). The specific operation is: turn on the power and slowly heat C 60 until the temperature is 530 ℃ or above, so that the evaporation rate is Until the deposition thickness reaches 20nm; then use atomic layer deposition to deposit a 20nm thick tin dioxide electron transport layer on the C 60 electron transport layer. The specific operations are: set the deposition chamber temperature to 90°C, the tin source pulse time to 100ms, and the cleaning time to 30s, the water source pulse time is 100ms, and the cleaning time is 30s;
(5)采用射频磁控溅射法在步骤(4)中制得的二氧化锡阻挡层上溅射120nm厚的IZO薄膜,具体参数为:溅射功率为70W,溅射气压为0.5Pa,氩气流量为30sccm,控制溅射时间调整溅射厚度;(5) Use the radio frequency magnetron sputtering method to sputter a 120nm thick IZO film on the tin dioxide barrier layer prepared in step (4). The specific parameters are: the sputtering power is 70W, the sputtering pressure is 0.5Pa, The argon gas flow rate is 30 sccm, and the sputtering time is controlled to adjust the sputtering thickness;
(6)采用旋涂法在步骤(5)中制得的IZO薄膜旋涂PEDOT:PSS空穴传输层前体溶液,旋涂速度为4000rpm,旋涂时间为30s,然后退火处理,退火温度为110℃,退火时间为15min,制得8nm厚的空穴传输层;(6) Use the spin coating method to spin-coat the PEDOT:PSS hole transport layer precursor solution on the IZO film prepared in step (5). The spin-coating speed is 4000 rpm and the spin-coating time is 30 s. Then, it is annealed. The annealing temperature is 110℃, annealing time is 15min, and an 8nm thick hole transport layer is produced;
(7)采用反溶剂法在步骤(6)中制得的空穴传输层上旋涂窄带隙钙钛矿吸收层,低速800rpm,旋涂时间为10s,高速6000rpm,旋涂时间为50s,反溶剂氯苯在高速旋涂期间第15秒时滴下,然后于依次在100℃条件下进行退火15min、55℃条件下退火15min,制得窄带隙钙钛矿吸收层;(7) Use the anti-solvent method to spin-coat the narrow-bandgap perovskite absorption layer on the hole transport layer prepared in step (6), at a low speed of 800 rpm, a spin coating time of 10 s, a high speed of 6000 rpm, a spin coating time of 50 s, and reverse The solvent chlorobenzene was dropped at the 15th second during high-speed spin coating, and then annealed at 100°C for 15 minutes and 55°C for 15 minutes to prepare a narrow bandgap perovskite absorption layer;
(8)采用热蒸发法在步骤(7)中制得的窄带隙钙钛矿吸收层上依次沉积20nm厚的C60电子传输层和20nm厚的二氧化锡阻挡层;(8) Use thermal evaporation method to sequentially deposit a 20nm thick C 60 electron transport layer and a 20nm thick tin dioxide barrier layer on the narrow bandgap perovskite absorption layer prepared in step (7);
(9)采用热蒸发法在步骤(8)中制得的二氧化锡电子传输层上沉积100nm厚的铜电极,制得全钙钛矿叠层太阳能电池。(9) Use thermal evaporation method to deposit a 100nm thick copper electrode on the tin dioxide electron transport layer prepared in step (8) to prepare a full perovskite tandem solar cell.
试验例Test example
以实施例3中的全钙钛矿叠层太阳能电池为例,分别对实施例3和对比例1中的全钙钛矿叠层太阳能电池的性能进行测试,具体结果见图3-6。Taking the all-perovskite tandem solar cell in Example 3 as an example, the performance of the all-perovskite tandem solar cell in Example 3 and Comparative Example 1 was tested respectively. The specific results are shown in Figure 3-6.
通过图3可以看出,在300-450nm波段SAM的透光率更高,这样将有更多短波段的太阳光照射到宽带隙钙钛矿薄膜表面,而宽带隙钙钛矿薄膜正好主要吸收短波长的太阳光,这无疑可以使宽带隙钙钛矿吸收层吸收更多的光子,从而提高宽带隙顶电池的输出电流。It can be seen from Figure 3 that the light transmittance of SAM is higher in the 300-450nm band, so that more short-wavelength sunlight will illuminate the surface of the wide-bandgap perovskite film, and the wide-bandgap perovskite film mainly absorbs Short-wavelength sunlight, which undoubtedly allows the wide-bandgap perovskite absorption layer to absorb more photons, thereby increasing the output current of the wide-bandgap top cell.
通过图4可以看出,在700-1200nm波段可以看见SAM的透光率更高,这样将有更多长波段的太阳光照射到窄带隙钙钛矿薄膜表面,而窄带隙钙钛矿薄膜正好主要吸收长波段的太阳光,这无疑可以使窄带隙钙钛矿吸收层吸收更多的光子,从而提高窄带隙底电池的输出电流。As can be seen from Figure 4, the light transmittance of SAM can be seen to be higher in the 700-1200nm band, so that more long-wavelength sunlight will illuminate the surface of the narrow-bandgap perovskite film, and the narrow-bandgap perovskite film is exactly It mainly absorbs long-wavelength sunlight, which undoubtedly allows the narrow-bandgap perovskite absorption layer to absorb more photons, thereby increasing the output current of the narrow-bandgap bottom cell.
对比图5和图6,可以看出,VOC的提升主要基于SAM/钙钛矿界面非辐射复合的明显减少,主要是:在宽带隙顶电池中,相比于PTAA的HOMO能级,SAM材料的HOMO能级和宽带隙钙钛矿的价带更加匹配,这有利于减少空穴传输的界面能级势垒,加速空穴的提取,减少能量损失,另外自组装材料上的功能化基团可以钝化宽带隙钙钛矿薄膜表面的缺陷,从而显著地降低了空穴传输层/宽带隙钙钛矿薄膜界面的非辐射复合;而在窄带隙底电池中,自组装空穴传输层不仅可以减少界面的非辐射复合,还可以通过和Sn2+之间的强相互作用,通过延缓锡铅窄带隙钙钛矿的结晶速度来改善其结晶动力学,从而制备了具有更高结晶度、更缺陷态密度的高质量锡铅窄带隙钙钛矿薄膜。综上,该空穴传输层极大提高了两个子电池的光电转换效率,从而可制备更高效稳定的叠层钙钛矿太阳能电池。Comparing Figure 5 and Figure 6, it can be seen that the improvement of V OC is mainly based on the significant reduction of non-radiative recombination at the SAM/perovskite interface, mainly: in the wide bandgap top cell, compared with the HOMO energy level of PTAA, SAM The HOMO energy level of the material matches the valence band of the wide-bandgap perovskite better, which is beneficial to reducing the interface energy level barrier for hole transmission, accelerating hole extraction, and reducing energy loss. In addition, the functionalized groups on the self-assembled material The group can passivate the defects on the surface of the wide-bandgap perovskite film, thereby significantly reducing the non-radiative recombination of the hole transport layer/wide-bandgap perovskite film interface; and in the narrow-bandgap bottom battery, the self-assembled hole transport layer Not only can it reduce non-radiative recombination at the interface, but it can also improve the crystallization kinetics of tin-lead narrow-bandgap perovskite by slowing down its crystallization speed through the strong interaction with Sn 2+ , thereby preparing materials with higher crystallinity. , high-quality tin-lead narrow bandgap perovskite films with higher defect state density. In summary, this hole transport layer greatly improves the photoelectric conversion efficiency of the two sub-cells, thereby enabling the preparation of more efficient and stable tandem perovskite solar cells.
JSC的提升主要基于图3和图4中两个波段太阳光透过率的提升,使得宽窄带隙钙钛矿薄膜都可以吸收到更多的光子,另一个原因是窄带隙钙钛矿薄膜质量的提升,使底电池的输出电流更高,从而和顶电池的电流更加匹配;FF的提升则是由于SAM/钙钛矿界面空穴传输和提取能力的增强,这主要是由于自身的材料特性,以及自组装材料通过锚定集团锚定在ITO表面后更加有序的排列,且排列取向更加平行于ITO,这样可以有效提高空穴的提取和转移效率。而PTAA、PEDOT:PSS等传统空穴传输层在ITO表面无序排列,空穴的提取和转移能力差。基于此,本申请中新型结构的叠层器件具有更高的光电转换效率。The improvement of J SC is mainly based on the improvement of solar transmittance in the two bands shown in Figure 3 and Figure 4, which allows both wide and narrow band gap perovskite films to absorb more photons. Another reason is that the narrow band gap perovskite film The improvement in quality makes the output current of the bottom cell higher, thus more closely matching the current of the top cell; the improvement of FF is due to the enhanced hole transport and extraction capabilities of the SAM/perovskite interface, which is mainly due to its own material Characteristics, and the more orderly arrangement of self-assembled materials after being anchored on the ITO surface through anchoring groups, and the arrangement orientation is more parallel to ITO, which can effectively improve the hole extraction and transfer efficiency. However, traditional hole transport layers such as PTAA and PEDOT:PSS are arranged randomly on the surface of ITO, and their hole extraction and transfer capabilities are poor. Based on this, the stacked device with the new structure in this application has higher photoelectric conversion efficiency.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310276686.6A CN116171053B (en) | 2023-03-21 | 2023-03-21 | Full perovskite laminated solar cell and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310276686.6A CN116171053B (en) | 2023-03-21 | 2023-03-21 | Full perovskite laminated solar cell and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116171053A CN116171053A (en) | 2023-05-26 |
CN116171053B true CN116171053B (en) | 2023-11-21 |
Family
ID=86422008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310276686.6A Active CN116171053B (en) | 2023-03-21 | 2023-03-21 | Full perovskite laminated solar cell and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116171053B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116887652B (en) * | 2023-09-07 | 2023-11-24 | 南开大学 | A two-terminal perovskite organic tandem solar cell and its preparation method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110311042A (en) * | 2019-05-31 | 2019-10-08 | 南京邮电大学 | A kind of preparation method of self-assembled monolayer and perovskite solar cell and perovskite solar cell |
CN110600612A (en) * | 2019-06-11 | 2019-12-20 | 华东理工大学 | P-i-n type perovskite battery hole transport layer based on self-assembly engineering |
CN113892192A (en) * | 2019-05-23 | 2022-01-04 | 瑞士电子显微技术研究与开发中心股份有限公司 | Method for manufacturing photovoltaic cell |
CN114512613A (en) * | 2022-02-21 | 2022-05-17 | 四川大学 | Intermediate connecting layer structure of perovskite/perovskite two-end laminated solar cell and preparation method and application thereof |
CN114824094A (en) * | 2022-05-06 | 2022-07-29 | 天合光能股份有限公司 | Charge transport layer structure of a perovskite/crystalline silicon tandem solar cell and perovskite/crystalline silicon tandem solar cell |
CN115215901A (en) * | 2022-08-03 | 2022-10-21 | 厦门大学 | Self-assembly hole transport material based on 7H-dibenzocarbazole and synthetic method |
CN115440891A (en) * | 2022-09-29 | 2022-12-06 | 南开大学 | A perovskite-based solar cell |
-
2023
- 2023-03-21 CN CN202310276686.6A patent/CN116171053B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113892192A (en) * | 2019-05-23 | 2022-01-04 | 瑞士电子显微技术研究与开发中心股份有限公司 | Method for manufacturing photovoltaic cell |
CN110311042A (en) * | 2019-05-31 | 2019-10-08 | 南京邮电大学 | A kind of preparation method of self-assembled monolayer and perovskite solar cell and perovskite solar cell |
CN110600612A (en) * | 2019-06-11 | 2019-12-20 | 华东理工大学 | P-i-n type perovskite battery hole transport layer based on self-assembly engineering |
CN114512613A (en) * | 2022-02-21 | 2022-05-17 | 四川大学 | Intermediate connecting layer structure of perovskite/perovskite two-end laminated solar cell and preparation method and application thereof |
CN114824094A (en) * | 2022-05-06 | 2022-07-29 | 天合光能股份有限公司 | Charge transport layer structure of a perovskite/crystalline silicon tandem solar cell and perovskite/crystalline silicon tandem solar cell |
CN115215901A (en) * | 2022-08-03 | 2022-10-21 | 厦门大学 | Self-assembly hole transport material based on 7H-dibenzocarbazole and synthetic method |
CN115440891A (en) * | 2022-09-29 | 2022-12-06 | 南开大学 | A perovskite-based solar cell |
Non-Patent Citations (2)
Title |
---|
Dávid Forgács, et al..Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells.Adv. Energy Mater..2016,第7卷page 1602121(1-6) & Supporting Information. * |
Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells;Dávid Forgács, et al.;Adv. Energy Mater.;第7卷;page 1602121(1-6) & Supporting Information * |
Also Published As
Publication number | Publication date |
---|---|
CN116171053A (en) | 2023-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112133833B (en) | Stable and efficient perovskite solar cell and preparation method thereof | |
CN114512613B (en) | Intermediate connecting layer structure of perovskite/perovskite two-end laminated solar cell and preparation method and application thereof | |
CN111129315A (en) | Inverted plane heterojunction hybrid perovskite solar cell and preparation method thereof | |
CN108321298A (en) | A kind of high efficiency planar heterojunction perovskite thin film solar cell and preparation method | |
CN111081883B (en) | A high-efficiency and stable planar heterojunction perovskite solar cell and preparation method | |
CN110098335A (en) | A kind of perovskite solar battery and preparation method thereof based on ionic liquid modification hole transmission layer | |
CN108198941A (en) | Full-inorganic perovskite solar cell with ultraviolet light strainability and preparation method thereof and its application in optical field | |
CN107359243A (en) | A kind of tertiary blending organic polymer solar cell device | |
CN116171053B (en) | Full perovskite laminated solar cell and preparation method thereof | |
CN111192964B (en) | A kind of perovskite quantum dot solar cell and preparation method thereof | |
CN110416413B (en) | A kind of perovskite solar cell with high-performance gradient electron transport layer and its preparation method | |
CN108365105A (en) | A kind of perovskite solar cell and preparation method thereof | |
CN111223993B (en) | Semitransparent perovskite solar cell with high open-circuit voltage | |
CN118510298A (en) | Composite electrode and preparation method and application thereof | |
CN113241409B (en) | Perovskite solar cell and preparation method | |
CN118574431A (en) | Antisolvent-free full perovskite laminated solar cell and preparation method and application thereof | |
WO2023123190A1 (en) | Perovskite cell, preparation method therefor, and photovoltaic module comprising same | |
CN116367563A (en) | N-I-P perovskite/silicon laminated solar cell and preparation method thereof | |
CN110993795B (en) | Solar cell based on copper oxide quantum dot interface layer and preparation method of interface layer | |
CN222073786U (en) | Perovskite/crystalline silicon laminated battery | |
CN114400290B (en) | Preparation method and application of conductive electrode and composite cover plate glass | |
CN116443921B (en) | A low-defect TixZn1-xO composite cathode interface material and its preparation method and application in organic optoelectronic devices | |
CN115521286B (en) | Electron transport layer additive, electron transport layer and perovskite solar cell | |
CN119767998B (en) | High-efficiency perovskite photovoltaic device based on aromatic weak boric acid modification and preparation method thereof | |
CN114497387A (en) | Semitransparent organic solar cell with enhanced near infrared light absorption and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |