CN116143185A - A method for preparing high-purity cobalt sulfate from electrolytic manganese sulfide slag - Google Patents
A method for preparing high-purity cobalt sulfate from electrolytic manganese sulfide slag Download PDFInfo
- Publication number
- CN116143185A CN116143185A CN202211579679.5A CN202211579679A CN116143185A CN 116143185 A CN116143185 A CN 116143185A CN 202211579679 A CN202211579679 A CN 202211579679A CN 116143185 A CN116143185 A CN 116143185A
- Authority
- CN
- China
- Prior art keywords
- current
- pulse width
- current output
- manganese
- sulfate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 title claims abstract description 37
- 229910000361 cobalt sulfate Inorganic materials 0.000 title claims abstract description 36
- 229940044175 cobalt sulfate Drugs 0.000 title claims abstract description 36
- 239000002893 slag Substances 0.000 title claims abstract description 30
- CADICXFYUNYKGD-UHFFFAOYSA-N sulfanylidenemanganese Chemical compound [Mn]=S CADICXFYUNYKGD-UHFFFAOYSA-N 0.000 title claims abstract description 27
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims abstract description 72
- 230000000903 blocking effect Effects 0.000 claims abstract description 43
- 229940099596 manganese sulfate Drugs 0.000 claims abstract description 28
- 239000011702 manganese sulphate Substances 0.000 claims abstract description 28
- 235000007079 manganese sulphate Nutrition 0.000 claims abstract description 28
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 claims abstract description 28
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 claims abstract description 16
- 238000002360 preparation method Methods 0.000 claims abstract description 11
- 238000012544 monitoring process Methods 0.000 claims description 28
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 26
- 238000011217 control strategy Methods 0.000 claims description 21
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 18
- 239000012535 impurity Substances 0.000 claims description 17
- 229910017052 cobalt Inorganic materials 0.000 claims description 15
- 239000010941 cobalt Substances 0.000 claims description 15
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 15
- 239000012074 organic phase Substances 0.000 claims description 15
- 239000002244 precipitate Substances 0.000 claims description 14
- 238000000746 purification Methods 0.000 claims description 14
- 239000000706 filtrate Substances 0.000 claims description 12
- 238000002386 leaching Methods 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000003350 kerosene Substances 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- ATTFYOXEMHAYAX-UHFFFAOYSA-N magnesium nickel Chemical compound [Mg].[Ni] ATTFYOXEMHAYAX-UHFFFAOYSA-N 0.000 claims description 6
- 239000000047 product Substances 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 4
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 239000011572 manganese Substances 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- YPIFGDQKSSMYHQ-UHFFFAOYSA-N 7,7-dimethyloctanoic acid Chemical compound CC(C)(C)CCCCCC(O)=O YPIFGDQKSSMYHQ-UHFFFAOYSA-N 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 3
- GZMKWMMWAHQTHD-UHFFFAOYSA-L [Mn++].OS([O-])(=O)=O.OS([O-])(=O)=O Chemical compound [Mn++].OS([O-])(=O)=O.OS([O-])(=O)=O GZMKWMMWAHQTHD-UHFFFAOYSA-L 0.000 claims description 3
- MYYPUXZNVLDNLK-UHFFFAOYSA-N [Ni].[Co].S(O)(O)(=O)=O Chemical compound [Ni].[Co].S(O)(O)(=O)=O MYYPUXZNVLDNLK-UHFFFAOYSA-N 0.000 claims description 3
- 239000008346 aqueous phase Substances 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 claims description 3
- CJDPJFRMHVXWPT-UHFFFAOYSA-N barium sulfide Chemical class [S-2].[Ba+2] CJDPJFRMHVXWPT-UHFFFAOYSA-N 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000000658 coextraction Methods 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 238000005868 electrolysis reaction Methods 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims description 3
- 239000011268 mixed slurry Substances 0.000 claims description 3
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 claims description 3
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 239000012286 potassium permanganate Substances 0.000 claims description 3
- 238000007127 saponification reaction Methods 0.000 claims description 3
- 238000007789 sealing Methods 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- YOCZZJWFWDUAAR-UHFFFAOYSA-N sulfanyl-sulfanylidene-bis(2,4,4-trimethylpentyl)-$l^{5}-phosphane Chemical compound CC(C)(C)CC(C)CP(S)(=S)CC(C)CC(C)(C)C YOCZZJWFWDUAAR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 230000001376 precipitating effect Effects 0.000 claims description 2
- 238000007670 refining Methods 0.000 claims description 2
- AWAJFEHOZQSMMS-UHFFFAOYSA-M sodium;carbamothioate Chemical compound [Na+].NC([O-])=S AWAJFEHOZQSMMS-UHFFFAOYSA-M 0.000 claims description 2
- 239000000126 substance Substances 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 2
- 230000006870 function Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003674 animal food additive Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/10—Sulfates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/02—Oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明属于化工材料技术领域,公开了一种从电解锰硫化渣中制备高纯硫酸钴的方法,本发明采用将菱锰矿制取的硫酸锰溶液,以及将工业品硫酸锰溶解制得硫酸锰溶液;通过硫酸锰制备二氧化锰;将二氧化锰和电解锰硫化渣破碎过筛。本发明通过制备二氧化锰方法可以制备高质量二氧化锰;从而大大提高制备硫酸钴质量;同时,通过离心装置离心控制方法可以在离心装置运行过程中,获得离心装置电机当前的输出电流及当前的输出脉宽,以结合已获取的当前的输出电流及当前的输出脉宽对离心装置当前的顶盖的阻挡情况进行判定,大大提高安全性,保障制备正常进行。
The invention belongs to the technical field of chemical materials, and discloses a method for preparing high-purity cobalt sulfate from electrolytic manganese sulfide slag. The invention adopts manganese sulfate solution prepared from rhodochrosite, and dissolves industrial manganese sulfate to prepare manganese sulfate solution; prepare manganese dioxide by manganese sulfate; crush and sieve manganese dioxide and electrolytic manganese sulfide slag. The present invention can prepare high-quality manganese dioxide through the method for preparing manganese dioxide; thereby greatly improving the quality of cobalt sulfate prepared; at the same time, the current output current and current output current of the motor of the centrifugal device can be obtained during the operation of the centrifugal device through the centrifugal control method The output pulse width can be combined with the current output current and the current output pulse width to judge the blocking situation of the current top cover of the centrifugal device, which greatly improves the safety and ensures the normal progress of the preparation.
Description
技术领域technical field
本发明属于化工材料技术领域,尤其涉及一种从电解锰硫化渣中制备高纯硫酸钴的方法。The invention belongs to the technical field of chemical materials, and in particular relates to a method for preparing high-purity cobalt sulfate from electrolytic manganese sulfide slag.
背景技术Background technique
硫酸钴,是一种无机化合物,化学式为CoSO4,为玫瑰红色结晶性粉末,主要用于陶瓷釉料和油漆催干剂,也用于电镀、碱性电池、生产含钴颜料和其他钴产品,还可用作催化剂、分析试剂、饲料添加剂、轮胎胶粘剂、立德粉添加剂等;然而,现有从电解锰硫化渣中制备高纯硫酸钴的方法采用的二氧化锰原料质量差,影响制备硫酸钴质量;同时,制备过程采用的离心装置容易产生安全事故,影响制备正常进行。Cobalt sulfate is an inorganic compound with a chemical formula of CoSO4. It is a rose-red crystalline powder. It is mainly used in ceramic glazes and paint driers, and is also used in electroplating, alkaline batteries, and the production of cobalt-containing pigments and other cobalt products. Also can be used as catalyzer, analysis reagent, feed additive, tire adhesive, lithopone additive etc.; Yet, the manganese dioxide raw material quality that the existing method for preparing high-purity cobalt sulfate from electrolytic manganese sulfide slag adopts is poor, affects the preparation of sulfuric acid The quality of cobalt; at the same time, the centrifugal device used in the preparation process is prone to safety accidents, which affects the normal preparation.
通过上述分析,现有技术存在的问题及缺陷为:Through the above analysis, the problems and defects in the prior art are:
(1)现有从电解锰硫化渣中制备高纯硫酸钴的方法采用的二氧化锰原料质量差,影响制备硫酸钴质量。(1) The existing method for preparing high-purity cobalt sulfate from electrolytic manganese sulfide slag uses poor quality manganese dioxide raw materials, which affects the quality of preparing cobalt sulfate.
(2)制备过程采用的离心装置容易产生安全事故,影响制备正常进行。(2) The centrifugal device adopted in the preparation process is prone to safety accidents, which affects the normal preparation.
发明内容Contents of the invention
针对现有技术存在的问题,本发明提供了一种从电解锰硫化渣中制备高纯硫酸钴的方法。Aiming at the problems in the prior art, the invention provides a method for preparing high-purity cobalt sulfate from electrolytic manganese sulfide slag.
本发明是这样实现的,一种从电解锰硫化渣中制备高纯硫酸钴的方法包括:The present invention is achieved in that a method for preparing high-purity cobalt sulfate from electrolytic manganese sulfide slag comprises:
步骤一,配置监测设备参数,通过监测设备监测粉碎装置工作状态;通过粉碎装置将菱锰矿进行粉碎,过筛;在室温条件下,将菱锰矿粉末与相同质量的水混合;将混合浆料中与氢氧化钠或偏钒酸铵充分混合,然后在保持温度为66℃的条件下搅拌,且不断通入空气;之后过滤、分离,得沉淀物和滤液;最后将所得的沉淀物,然后在55℃条件下烘干,以得到去除了硫的菱锰矿;采用将菱锰矿制取的硫酸锰溶液,以及将工业品硫酸锰溶解制得硫酸锰溶液;通过硫酸锰制备二氧化锰;将二氧化锰和电解锰硫化渣破碎过筛;Step 1, configure the parameters of the monitoring equipment, and monitor the working status of the crushing device through the monitoring equipment; crush and sieve the rhodochrosite through the crushing device; mix the rhodochrosite powder with water of the same quality at room temperature; mix the mixed slurry with Mix well with sodium hydroxide or ammonium metavanadate, then stir while keeping the temperature at 66°C, and keep feeding air; then filter and separate to obtain precipitate and filtrate; Drying at 55°C to obtain rhodochrosite from which sulfur has been removed; using manganese sulfate solution prepared from rhodochrosite and dissolving industrial manganese sulfate to obtain manganese sulfate solution; preparing manganese dioxide through manganese sulfate; Manganese oxide and electrolytic manganese sulfide slag are crushed and screened;
所述监测设备监测方法:The monitoring method of the monitoring equipment:
通过监测设备中的电压表监测粉碎装置电压数据;Monitor the voltage data of the crushing device through the voltmeter in the monitoring equipment;
通过监测设备中的电流表监测粉碎装置电流数据;Monitor the current data of the crushing device through the ammeter in the monitoring equipment;
通过监测设备中的电阻表监测粉碎装置电阻数据;Monitor the resistance data of the crushing device through the resistance meter in the monitoring equipment;
通过监测设备中的诊断电路监测粉碎装置故障数据;Monitor the failure data of the crushing device through the diagnostic circuit in the monitoring equipment;
步骤二,将过筛后的二氧化锰和电解锰硫化渣,加入稀硫酸、皂化的P204、磺化煤油,得到负载锰有机相和富钴镍镁溶液;Step 2, adding dilute sulfuric acid, saponified P204, and sulfonated kerosene to the sieved manganese dioxide and electrolytic manganese sulfide slag to obtain a manganese-loaded organic phase and a cobalt-rich nickel-magnesium solution;
步骤三,取富钴镍镁溶液,加入皂化的新癸酸、磺化煤油、稀硫酸、皂化的P507-Cyanex301,得到富钴有机相和硫酸镍溶液;分离出富钴有机相,加入硫酸进行反萃,得到高纯富载硫酸钴溶液和P507-Cyanex301有机相;Step 3, take the cobalt-rich nickel-magnesium solution, add saponified neodecanoic acid, sulfonated kerosene, dilute sulfuric acid, and saponified P507-Cyanex301 to obtain a cobalt-rich organic phase and a nickel sulfate solution; separate the cobalt-rich organic phase, add sulfuric acid to carry out Back extraction to obtain high-purity enriched cobalt sulfate solution and P507-Cyanex301 organic phase;
步骤四,分离出高纯富载硫酸钴溶液,将其蒸发浓缩、结晶、通过离心装置离心,得到高纯硫酸钴。Step 4, separating the high-purity cobalt sulfate-rich solution, evaporating, concentrating, crystallizing, and centrifuging through a centrifugal device to obtain high-purity cobalt sulfate.
进一步,所述二氧化锰与电解硫化渣的质量比为3:1,所述稀硫酸的质量浓度为100g/L,反应的液固比为8:1,所述浸出的温度为95℃,氧气压力为1MPa,浸出时间为190min,浸出的终点pH为5;Further, the mass ratio of the manganese dioxide to the electrolytic sulfide slag is 3:1, the mass concentration of the dilute sulfuric acid is 100g/L, the liquid-solid ratio of the reaction is 8:1, and the leaching temperature is 95°C, The oxygen pressure is 1MPa, the leaching time is 190min, and the final pH of leaching is 5;
所述分离出的钴镍硫酸溶液,将其pH调节至5;所述第四有机萃取剂,是由P507-Cyanex301协萃体系与磺化煤油按体积分数为10%~40%混合,P507与Cyanex301的质量配比为3:1,再用氢氧化钠皂化,皂化率为53%,有机相与水相相比O/A=3:1。The pH of the separated cobalt-nickel sulfuric acid solution is adjusted to 5; the fourth organic extractant is mixed with P507-Cyanex301 co-extraction system and sulfonated kerosene at a volume fraction of 10% to 40%, P507 and The mass ratio of Cyanex301 is 3:1, and then saponified with sodium hydroxide, the saponification rate is 53%, and the O/A=3:1 of the organic phase and the aqueous phase.
进一步,所述制备二氧化锰方法如下:Further, the method for preparing manganese dioxide is as follows:
(1)采用将菱锰矿制取的硫酸锰溶液,以及将工业品硫酸锰溶解制得硫酸锰溶液;然后进行精制除杂;将硫酸锰浸出液输入至容器内,加入改性硫化钡,启动设置在外轴上的搅拌棒进行搅拌,使溶液沉淀;向上提升外轴,使设置在外轴内的中空内轴靠近所述容器底端的一段露出,容器内的溶液经露出的一段内轴过滤掉沉淀;(1) Manganese sulfate solution prepared from rhodochrosite, and manganese sulfate solution prepared by dissolving industrial manganese sulfate; then refining and impurity removal; input manganese sulfate leaching solution into the container, add modified barium sulfide, and start the setting The stirring bar on the outer shaft is stirred to make the solution precipitate; the outer shaft is lifted up, so that a section of the hollow inner shaft arranged in the outer shaft near the bottom of the container is exposed, and the solution in the container is filtered through the exposed section of the inner shaft to remove the precipitate;
(2)过滤后的滤液从内轴内腔流出,流出的滤液进入设置在容器下侧的净化池;在净化池内加入福美钠与滤液反应生成沉淀;反应完成后,经净化池底部的过滤装置滤掉沉淀,得到净化液;再对净化液进行二段除杂;(2) The filtered filtrate flows out from the inner cavity of the inner shaft, and the outflowing filtrate enters the purification pool arranged on the lower side of the container; add sodium thiocarbamate in the purification pool to react with the filtrate to form a precipitate; after the reaction is completed, pass through the filter device at the bottom of the purification pool Filter out the precipitate to obtain a purified solution; then perform a second stage of impurity removal on the purified solution;
(3)将二段除杂过滤后的溶液静置,再超细过滤至加热容器中加热;再将加热容器中的溶液输送至隔膜电解槽,采用硫酸-硫酸锰体系进行电解,在阳极上析出二氧化锰,将析出的二氧化锰剥离、破碎、漂洗、磨粉、掺混,得到二氧化锰产品。(3) Leave the solution after the second-stage impurity removal and filtration to stand, and then ultrafine filter it into the heating container for heating; then transport the solution in the heating container to the diaphragm electrolyzer, and use the sulfuric acid-manganese sulfate system for electrolysis, and then put it on the anode Precipitating manganese dioxide, stripping, crushing, rinsing, grinding and blending the precipitated manganese dioxide to obtain a manganese dioxide product.
进一步,所述搅拌时间45min。Further, the stirring time is 45min.
进一步,所述过滤装置包括设置在净化池底部且活动连接的密封盖板,盖板上设置有滤板。Further, the filter device includes a sealing cover plate arranged at the bottom of the purification pool and movably connected, and a filter plate is arranged on the cover plate.
进一步,所述二段除杂为加入高锰酸钾进行一段除杂,然后加入活性碳进行二段除杂。Further, the second-stage impurity removal is to add potassium permanganate to perform one-stage impurity removal, and then add activated carbon to perform second-stage impurity removal.
进一步,所述离心装置离心控制方法如下:Further, the centrifugal control method of the centrifugal device is as follows:
1)配置离心装置参数,通过监测设备获得所述离心装置电机当前的输出电流及当前的输出脉宽;1) configure the centrifugal device parameters, and obtain the current output current and the current output pulse width of the centrifugal device motor through monitoring equipment;
2)根据所述当前的输出电流及所述当前的输出脉宽,确定所述离心装置电机的目标控制策略;控制所述离心装置电机执行所述目标控制策略。2) Determine a target control strategy for the centrifugal device motor according to the current output current and the current output pulse width; control the centrifugal device motor to execute the target control strategy.
进一步,所述根据所述当前的输出电流及所述当前的输出脉宽,确定所述离心装置电机的目标控制策略,包括:Further, the determining the target control strategy of the centrifugal device motor according to the current output current and the current output pulse width includes:
根据所述当前的输出电流及所述当前的输出脉宽,确定所述离心装置的顶盖被阻挡的阻挡概率;determining a blocking probability that the top cover of the centrifugal device is blocked according to the current output current and the current output pulse width;
根据所述阻挡概率,确定所述离心装置电机的目标控制策略。A target control strategy for the motor of the centrifugal device is determined according to the blocking probability.
进一步,所述根据所述当前的输出电流及所述当前的输出脉宽,确定所述离心装置的顶盖被阻挡的阻挡概率,包括:Further, the determining the blocking probability that the top cover of the centrifugal device is blocked according to the current output current and the current output pulse width includes:
根据所述当前的输出电流,确定用于判定顶盖阻挡情况的电流影响因子;According to the current output current, determine the current influence factor for judging the blocking situation of the top cover;
根据所述当前的输出脉宽,确定用于判定顶盖阻挡情况的脉宽影响因子;According to the current output pulse width, determine the pulse width influencing factor for judging the top cover blocking situation;
根据所述电流影响因子及所述脉宽影响因子计算所述顶盖被阻挡的阻挡概率;calculating the blocking probability that the top cover is blocked according to the current influencing factor and the pulse width influencing factor;
所述根据所述电流影响因子及所述脉宽影响因子计算所述顶盖被阻挡的阻挡概率,包括:The calculation of the blocking probability that the top cover is blocked according to the current influence factor and the pulse width influence factor includes:
A=K*i+(1-K)*tA=K*i+(1-K)*t
其中,A为阻挡概率,K为参考因子,i为电流影响因子,t为脉宽影响因子。Among them, A is the blocking probability, K is the reference factor, i is the current influence factor, and t is the pulse width influence factor.
进一步,所述根据所述当前的输出电流,确定用于判定顶盖阻挡情况的电流影响因子,包括:Further, according to the current output current, determining the current influence factor for determining the blocking situation of the top cover includes:
将当前的输出电流输入至预设的隶属函数;Input the current output current into the preset membership function;
将所述预设的隶属函数输出的隶属度确定为用于判定顶盖阻挡情况的电流影响因子。The membership degree output by the preset membership function is determined as the current influence factor for judging the roof blocking situation.
所述根据所述当前的输出脉宽,确定用于判定顶盖阻挡情况的脉宽影响因子,包括:According to the current output pulse width, determining the pulse width influencing factor for judging the roof blocking situation includes:
将当前的输出脉宽输入至预设的隶属函数;Input the current output pulse width to the preset membership function;
将所述预设的隶属函数输出的隶属度确定为用于判定顶盖阻挡情况的脉宽影响因子;Determining the membership degree output by the preset membership function as a pulse width influencing factor for judging the roof blocking situation;
所述根据所述阻挡概率,确定所述离心装置电机的目标控制策略,包括:The determining the target control strategy of the centrifugal device motor according to the blocking probability includes:
确定所述阻挡概率所在的概率区间;determining the probability interval in which the blocking probability is located;
根据预设的对应关系,将与所述概率区间相对应的控制策略确定为所述离心装置电机的目标控制策略;Determining a control strategy corresponding to the probability interval as a target control strategy of the centrifugal device motor according to a preset corresponding relationship;
所述用于获得输出脉宽的装置包括用于产生脉冲信号的磁性件及用于确定脉冲信号宽度的霍尔元件,所述获得当前的输出脉宽,包括:The device for obtaining the output pulse width includes a magnetic element for generating a pulse signal and a Hall element for determining the pulse signal width, and the obtaining of the current output pulse width includes:
获得所述装置采集的当前的脉冲信号;Obtain the current pulse signal collected by the device;
将所述当前的脉冲信号的宽度确定为当前的输出脉宽。The width of the current pulse signal is determined as the current output pulse width.
结合上述的技术方案和解决的技术问题,请从以下几方面分析本发明所要保护的技术方案所具备的优点及积极效果为:Combining the above-mentioned technical solutions and technical problems to be solved, please analyze the advantages and positive effects of the technical solutions to be protected by the present invention from the following aspects:
第一、针对上述现有技术存在的技术问题以及解决该问题的难度,紧密结合本发明的所要保护的技术方案以及研发过程中结果和数据等,详细、深刻地分析本发明技术方案如何解决的技术问题,解决问题之后带来的一些具备创造性的技术效果。具体描述如下:First, in view of the technical problems existing in the above-mentioned prior art and the difficulty of solving the problems, closely combine the technical solution to be protected in the present invention and the results and data in the research and development process, etc., to analyze in detail how the technical solution of the present invention solves it Technical problems, some creative technical effects brought about after solving the problems. The specific description is as follows:
本发明通过制备二氧化锰方法可以制备高质量二氧化锰;从而大大提高制备硫酸钴质量;同时,通过离心装置离心控制方法可以在离心装置运行过程中,获得离心装置电机当前的输出电流及当前的输出脉宽,以结合已获取的当前的输出电流及当前的输出脉宽对离心装置当前的顶盖的阻挡情况进行判定,大大提高安全性,保障制备正常进行。The present invention can prepare high-quality manganese dioxide through the method for preparing manganese dioxide; thereby greatly improving the quality of cobalt sulfate prepared; at the same time, the current output current and current output current of the centrifugal device motor can be obtained during the operation of the centrifugal device through the centrifugal control method of the centrifugal device The output pulse width of the centrifuge device can be judged based on the obtained current output current and the current output pulse width, which greatly improves the safety and ensures the normal progress of the preparation.
第二,把技术方案看做一个整体或者从产品的角度,本发明所要保护的技术方案具备的技术效果和优点,具体描述如下:Second, regarding the technical solution as a whole or from the perspective of a product, the technical effects and advantages of the technical solution to be protected by the present invention are specifically described as follows:
本发明通过制备二氧化锰方法可以制备高质量二氧化锰;从而大大提高制备硫酸钴质量;同时,通过离心装置离心控制方法可以在离心装置运行过程中,获得离心装置电机当前的输出电流及当前的输出脉宽,以结合已获取的当前的输出电流及当前的输出脉宽对离心装置当前的顶盖的阻挡情况进行判定,大大提高安全性,保障制备正常进行。The present invention can prepare high-quality manganese dioxide through the method for preparing manganese dioxide; thereby greatly improving the quality of cobalt sulfate prepared; at the same time, the current output current and current output current of the centrifugal device motor can be obtained during the operation of the centrifugal device through the centrifugal control method of the centrifugal device The output pulse width of the centrifuge device can be judged based on the obtained current output current and the current output pulse width, which greatly improves the safety and ensures the normal progress of the preparation.
附图说明Description of drawings
图1是本发明实施例提供的从电解锰硫化渣中制备高纯硫酸钴的方法流程图。Fig. 1 is a flow chart of a method for preparing high-purity cobalt sulfate from electrolytic manganese sulfide slag provided by an embodiment of the present invention.
图2是本发明实施例提供的制备二氧化锰方法流程图。Fig. 2 is a flow chart of the method for preparing manganese dioxide provided by the embodiment of the present invention.
图3是本发明实施例提供的离心装置离心控制方法流程图。Fig. 3 is a flowchart of a centrifugal control method for a centrifugal device provided by an embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention more clear, the present invention will be further described in detail below in conjunction with the examples. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
一、解释说明实施例。为了使本领域技术人员充分了解本发明如何具体实现,该部分是对权利要求技术方案进行展开说明的解释说明实施例。1. Explain the embodiment. In order to make those skilled in the art fully understand how to implement the present invention, this part is an explanatory embodiment for explaining the technical solution of the claims.
如图1所示,本发明提供一种从电解锰硫化渣中制备高纯硫酸钴的方法包括以下步骤:As shown in Figure 1, the present invention provides a kind of method that prepares high-purity cobalt sulfate from electrolytic manganese sulfide slag and comprises the following steps:
S101,配置监测设备参数,通过监测设备监测粉碎装置工作状态;通过粉碎装置将菱锰矿进行粉碎,过筛;在室温条件下,将菱锰矿粉末与相同质量的水混合;将混合浆料中与氢氧化钠或偏钒酸铵充分混合,然后在保持温度为66℃的条件下搅拌,且不断通入空气;之后过滤、分离,得沉淀物和滤液;最后将所得的沉淀物,然后在55℃条件下烘干,以得到去除了硫的菱锰矿;采用将菱锰矿制取的硫酸锰溶液,以及将工业品硫酸锰溶解制得硫酸锰溶液;通过硫酸锰制备二氧化锰;将二氧化锰和电解锰硫化渣破碎过筛;S101, configuring monitoring equipment parameters, monitoring the working status of the crushing device through the monitoring equipment; crushing rhodochrosite through the crushing device, and sieving; at room temperature, mixing rhodochrosite powder with water of the same quality; mixing the mixed slurry with Mix sodium hydroxide or ammonium metavanadate thoroughly, then stir while maintaining the temperature at 66°C, and continuously feed air; then filter and separate to obtain precipitates and filtrates; Drying at ℃ to obtain rhodochrosite from which sulfur has been removed; use manganese sulfate solution prepared from rhodochrosite, and dissolve industrial manganese sulfate to obtain manganese sulfate solution; prepare manganese dioxide through manganese sulfate; Crushing and screening of manganese and electrolytic manganese sulfide slag;
所述监测设备监测方法:The monitoring method of the monitoring equipment:
通过监测设备中的电压表监测粉碎装置电压数据;Monitor the voltage data of the crushing device through the voltmeter in the monitoring equipment;
通过监测设备中的电流表监测粉碎装置电流数据;Monitor the current data of the crushing device through the ammeter in the monitoring equipment;
通过监测设备中的电阻表监测粉碎装置电阻数据;Monitor the resistance data of the crushing device through the resistance meter in the monitoring equipment;
通过监测设备中的诊断电路监测粉碎装置故障数据;Monitor the failure data of the crushing device through the diagnostic circuit in the monitoring equipment;
S102,将过筛后的二氧化锰和电解锰硫化渣,加入稀硫酸、皂化的P204、磺化煤油,得到负载锰有机相和富钴镍镁溶液;S102, adding dilute sulfuric acid, saponified P204, and sulfonated kerosene to the sieved manganese dioxide and electrolytic manganese sulfide slag to obtain a manganese-loaded organic phase and a cobalt-rich nickel-magnesium solution;
S103,取富钴镍镁溶液,加入皂化的新癸酸、磺化煤油、稀硫酸、皂化的P507-Cyanex301,得到富钴有机相和硫酸镍溶液;分离出富钴有机相,加入硫酸进行反萃,得到高纯富载硫酸钴溶液和P507-Cyanex301有机相;S103, take the cobalt-rich nickel-magnesium solution, add saponified neodecanoic acid, sulfonated kerosene, dilute sulfuric acid, and saponified P507-Cyanex301 to obtain a cobalt-rich organic phase and a nickel sulfate solution; separate the cobalt-rich organic phase, add sulfuric acid for reaction extraction to obtain a high-purity enriched cobalt sulfate solution and a P507-Cyanex301 organic phase;
S104,分离出高纯富载硫酸钴溶液,将其蒸发浓缩、结晶、通过离心装置离心,得到高纯硫酸钴。S104, isolating a high-purity rich-loaded cobalt sulfate solution, evaporating, concentrating, crystallizing, and centrifuging through a centrifugal device to obtain high-purity cobalt sulfate.
本发明提供的二氧化锰与电解硫化渣的质量比为3:1,所述稀硫酸的质量浓度为100g/L,反应的液固比为8:1,所述浸出的温度为95℃,氧气压力为1MPa,浸出时间为190min,浸出的终点pH为5;The mass ratio of manganese dioxide and electrolytic sulfide slag provided by the present invention is 3:1, the mass concentration of the dilute sulfuric acid is 100g/L, the liquid-solid ratio of the reaction is 8:1, and the leaching temperature is 95°C. The oxygen pressure is 1MPa, the leaching time is 190min, and the final pH of leaching is 5;
所述分离出的钴镍硫酸溶液,将其pH调节至5;所述第四有机萃取剂,是由P507-Cyanex301协萃体系与磺化煤油按体积分数为10%~40%混合,P507与Cyanex301的质量配比为3:1,再用氢氧化钠皂化,皂化率为53%,有机相与水相相比O/A=3:1。The pH of the separated cobalt-nickel sulfuric acid solution is adjusted to 5; the fourth organic extractant is mixed with P507-Cyanex301 co-extraction system and sulfonated kerosene at a volume fraction of 10% to 40%, P507 and The mass ratio of Cyanex301 is 3:1, and then saponified with sodium hydroxide, the saponification rate is 53%, and the O/A=3:1 of the organic phase and the aqueous phase.
如图2所示,本发明提供的制备二氧化锰方法如下:As shown in Figure 2, the method for preparing manganese dioxide provided by the invention is as follows:
S201,采用将菱锰矿制取的硫酸锰溶液,以及将工业品硫酸锰溶解制得硫酸锰溶液;然后进行精制除杂;将硫酸锰浸出液输入至容器内,加入改性硫化钡,启动设置在外轴上的搅拌棒进行搅拌,使溶液沉淀;向上提升外轴,使设置在外轴内的中空内轴靠近所述容器底端的一段露出,容器内的溶液经露出的一段内轴过滤掉沉淀;S201, use the manganese sulfate solution prepared from rhodochrosite, and dissolve the industrial manganese sulfate to obtain the manganese sulfate solution; then refine and remove impurities; input the manganese sulfate leaching solution into the container, add modified barium sulfide, and start the setting outside The stirring rod on the shaft is stirred to make the solution precipitate; the outer shaft is lifted upwards, so that a section of the hollow inner shaft arranged in the outer shaft near the bottom of the container is exposed, and the solution in the container is filtered out through the exposed section of the inner shaft;
S202,过滤后的滤液从内轴内腔流出,流出的滤液进入设置在容器下侧的净化池;在净化池内加入福美钠与滤液反应生成沉淀;反应完成后,经净化池底部的过滤装置滤掉沉淀,得到净化液;再对净化液进行二段除杂;S202, the filtered filtrate flows out from the inner cavity of the inner shaft, and the outflowed filtrate enters the purification pool arranged on the lower side of the container; sodium formazine is added in the purification pool to react with the filtrate to form a precipitate; after the reaction is completed, filter through the filter device at the bottom of the purification pool Remove the precipitate to obtain the purification solution; then carry out the second stage of impurity removal on the purification solution;
S203,将二段除杂过滤后的溶液静置,再超细过滤至加热容器中加热;再将加热容器中的溶液输送至隔膜电解槽,采用硫酸-硫酸锰体系进行电解,在阳极上析出二氧化锰,将析出的二氧化锰剥离、破碎、漂洗、磨粉、掺混,得到二氧化锰产品。S203, the solution after the second-stage impurity removal and filtration is left to stand, and then ultra-finely filtered to the heating container for heating; then the solution in the heating container is transported to the diaphragm electrolyzer, and the sulfuric acid-manganese sulfate system is used for electrolysis, and the solution is precipitated on the anode Manganese dioxide: stripping, crushing, rinsing, grinding and blending the precipitated manganese dioxide to obtain the manganese dioxide product.
本发明提供的搅拌时间45min。The stirring time provided by the present invention is 45min.
本发明提供的过滤装置包括设置在净化池底部且活动连接的密封盖板,盖板上设置有滤板。The filter device provided by the present invention comprises a sealing cover plate arranged at the bottom of the purification pool and movably connected, and a filter plate is arranged on the cover plate.
本发明提供的二段除杂为加入高锰酸钾进行一段除杂,然后加入活性碳进行二段除杂。The two-stage impurity removal provided by the present invention is to add potassium permanganate to perform one-stage impurity removal, and then add activated carbon to perform second-stage impurity removal.
如图3所示,本发明提供的离心装置离心控制方法如下:As shown in Figure 3, the centrifugal control method of the centrifugal device provided by the present invention is as follows:
S301,配置离心装置参数,通过监测设备获得所述离心装置电机当前的输出电流及当前的输出脉宽;S301, configure the parameters of the centrifugal device, and obtain the current output current and the current output pulse width of the motor of the centrifugal device through the monitoring equipment;
S302,根据所述当前的输出电流及所述当前的输出脉宽,确定所述离心装置电机的目标控制策略;控制所述离心装置电机执行所述目标控制策略。S302. Determine a target control strategy for the centrifugal device motor according to the current output current and the current output pulse width; and control the centrifugal device motor to execute the target control strategy.
本发明提供的根据所述当前的输出电流及所述当前的输出脉宽,确定所述离心装置电机的目标控制策略,包括:According to the present invention, according to the current output current and the current output pulse width, determining the target control strategy of the motor of the centrifugal device includes:
根据所述当前的输出电流及所述当前的输出脉宽,确定所述离心装置的顶盖被阻挡的阻挡概率;determining a blocking probability that the top cover of the centrifugal device is blocked according to the current output current and the current output pulse width;
根据所述阻挡概率,确定所述离心装置电机的目标控制策略。A target control strategy for the motor of the centrifugal device is determined according to the blocking probability.
本发明提供的根据所述当前的输出电流及所述当前的输出脉宽,确定所述离心装置的顶盖被阻挡的阻挡概率,包括:According to the present invention, according to the current output current and the current output pulse width, determining the blocking probability that the top cover of the centrifugal device is blocked includes:
根据所述当前的输出电流,确定用于判定顶盖阻挡情况的电流影响因子;According to the current output current, determine the current influence factor for judging the blocking situation of the top cover;
根据所述当前的输出脉宽,确定用于判定顶盖阻挡情况的脉宽影响因子;According to the current output pulse width, determine the pulse width influencing factor for judging the top cover blocking situation;
根据所述电流影响因子及所述脉宽影响因子计算所述顶盖被阻挡的阻挡概率;calculating the blocking probability that the top cover is blocked according to the current influencing factor and the pulse width influencing factor;
所述根据所述电流影响因子及所述脉宽影响因子计算所述顶盖被阻挡的阻挡概率,包括:The calculation of the blocking probability that the top cover is blocked according to the current influence factor and the pulse width influence factor includes:
A=K*i+(1-K)*tA=K*i+(1-K)*t
其中,A为阻挡概率,K为参考因子,i为电流影响因子,t为脉宽影响因子。Among them, A is the blocking probability, K is the reference factor, i is the current influence factor, and t is the pulse width influence factor.
本发明提供的根据所述当前的输出电流,确定用于判定顶盖阻挡情况的电流影响因子,包括:According to the current output current provided by the present invention, determining the current influencing factor for judging the blocking situation of the top cover includes:
将当前的输出电流输入至预设的隶属函数;Input the current output current into the preset membership function;
将所述预设的隶属函数输出的隶属度确定为用于判定顶盖阻挡情况的电流影响因子;Determining the membership degree output by the preset membership function as the current influence factor for judging the roof blocking situation;
所述根据所述当前的输出脉宽,确定用于判定顶盖阻挡情况的脉宽影响因子,包括:According to the current output pulse width, determining the pulse width influencing factor for judging the roof blocking situation includes:
将当前的输出脉宽输入至预设的隶属函数;Input the current output pulse width to the preset membership function;
将所述预设的隶属函数输出的隶属度确定为用于判定顶盖阻挡情况的脉宽影响因子;Determining the membership degree output by the preset membership function as a pulse width influencing factor for judging the roof blocking situation;
所述根据所述阻挡概率,确定所述离心装置电机的目标控制策略,包括:The determining the target control strategy of the centrifugal device motor according to the blocking probability includes:
确定所述阻挡概率所在的概率区间;determining the probability interval in which the blocking probability is located;
根据预设的对应关系,将与所述概率区间相对应的控制策略确定为所述离心装置电机的目标控制策略;Determining a control strategy corresponding to the probability interval as a target control strategy of the centrifugal device motor according to a preset corresponding relationship;
所述用于获得输出脉宽的装置包括用于产生脉冲信号的磁性件及用于确定脉冲信号宽度的霍尔元件,所述获得当前的输出脉宽,包括:The device for obtaining the output pulse width includes a magnetic element for generating a pulse signal and a Hall element for determining the pulse signal width, and the obtaining of the current output pulse width includes:
获得所述装置采集的当前的脉冲信号;Obtain the current pulse signal collected by the device;
将所述当前的脉冲信号的宽度确定为当前的输出脉宽。The width of the current pulse signal is determined as the current output pulse width.
二、应用实施例。为了证明本发明的技术方案的创造性和技术价值,该部分是对权利要求技术方案进行具体产品上或相关技术上的应用实施例。2. Application examples. In order to prove the creativity and technical value of the technical solution of the present invention, this part is the application example of the claimed technical solution on specific products or related technologies.
本发明通过制备二氧化锰方法可以制备高质量二氧化锰;从而大大提高制备硫酸钴质量;同时,通过离心装置离心控制方法可以在离心装置运行过程中,获得离心装置电机当前的输出电流及当前的输出脉宽,以结合已获取的当前的输出电流及当前的输出脉宽对离心装置当前的顶盖的阻挡情况进行判定,大大提高安全性,保障制备正常进行。The present invention can prepare high-quality manganese dioxide through the method for preparing manganese dioxide; thereby greatly improving the quality of cobalt sulfate prepared; at the same time, the current output current and current output current of the centrifugal device motor can be obtained during the operation of the centrifugal device through the centrifugal control method of the centrifugal device The output pulse width of the centrifuge device can be judged based on the obtained current output current and the current output pulse width, which greatly improves the safety and ensures the normal progress of the preparation.
应当注意,本发明的实施方式可以通过硬件、软件或者软件和硬件的结合来实现。硬件部分可以利用专用逻辑来实现;软件部分可以存储在存储器中,由适当的指令执行系统,例如微处理器或者专用设计硬件来执行。本领域的普通技术人员可以理解上述的设备和方法可以使用计算机可执行指令和/或包含在处理器控制代码中来实现,例如在诸如磁盘、CD或DVD-ROM的载体介质、诸如只读存储器(固件)的可编程的存储器或者诸如光学或电子信号载体的数据载体上提供了这样的代码。本发明的设备及其模块可以由诸如超大规模集成电路或门阵列、诸如逻辑芯片、晶体管等的半导体、或者诸如现场可编程门阵列、可编程逻辑设备等的可编程硬件设备的硬件电路实现,也可以用由各种类型的处理器执行的软件实现,也可以由上述硬件电路和软件的结合例如固件来实现。It should be noted that the embodiments of the present invention can be realized by hardware, software, or a combination of software and hardware. The hardware part can be implemented using dedicated logic; the software part can be stored in memory and executed by a suitable instruction execution system such as a microprocessor or specially designed hardware. Those of ordinary skill in the art will understand that the above-described devices and methods can be implemented using computer-executable instructions and/or contained in processor control code, for example, on a carrier medium such as a magnetic disk, CD or DVD-ROM, such as a read-only memory Such code is provided on a programmable memory (firmware) or on a data carrier such as an optical or electronic signal carrier. The device and its modules of the present invention may be implemented by hardware circuits such as VLSI or gate arrays, semiconductors such as logic chips, transistors, etc., or programmable hardware devices such as field programmable gate arrays, programmable logic devices, etc., It can also be realized by software executed by various types of processors, or by a combination of the above-mentioned hardware circuits and software such as firmware.
三、实施例相关效果的证据。本发明实施例在研发或者使用过程中取得了一些积极效果,和现有技术相比的确具备很大的优势,下面内容结合试验过程的数据、图表等进行描述。3. Evidence of the relevant effects of the embodiment. The embodiment of the present invention has achieved some positive effects in the process of research and development or use, and indeed has great advantages compared with the prior art. The following content is described in conjunction with the data and charts of the test process.
本发明通过制备二氧化锰方法可以制备高质量二氧化锰;从而大大提高制备硫酸钴质量;同时,通过离心装置离心控制方法可以在离心装置运行过程中,获得离心装置电机当前的输出电流及当前的输出脉宽,以结合已获取的当前的输出电流及当前的输出脉宽对离心装置当前的顶盖的阻挡情况进行判定,大大提高安全性,保障制备正常进行。The present invention can prepare high-quality manganese dioxide through the method for preparing manganese dioxide; thereby greatly improving the quality of cobalt sulfate prepared; at the same time, the current output current and current output current of the centrifugal device motor can be obtained during the operation of the centrifugal device through the centrifugal control method of the centrifugal device The output pulse width of the centrifuge device can be judged based on the obtained current output current and the current output pulse width, which greatly improves the safety and ensures the normal progress of the preparation.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,都应涵盖在本发明的保护范围之内。The above is only a specific embodiment of the present invention, but the protection scope of the present invention is not limited thereto. Anyone familiar with the technical field within the technical scope disclosed in the present invention, whoever is within the spirit and principles of the present invention Any modifications, equivalent replacements and improvements made within shall fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211579679.5A CN116143185A (en) | 2022-12-08 | 2022-12-08 | A method for preparing high-purity cobalt sulfate from electrolytic manganese sulfide slag |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211579679.5A CN116143185A (en) | 2022-12-08 | 2022-12-08 | A method for preparing high-purity cobalt sulfate from electrolytic manganese sulfide slag |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116143185A true CN116143185A (en) | 2023-05-23 |
Family
ID=86339822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211579679.5A Pending CN116143185A (en) | 2022-12-08 | 2022-12-08 | A method for preparing high-purity cobalt sulfate from electrolytic manganese sulfide slag |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116143185A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1112248A (en) * | 1994-05-16 | 1995-11-22 | 南京理工大学 | Intelligent monitor for extrusion crusher |
CN103131847A (en) * | 2013-03-16 | 2013-06-05 | 重庆大学 | Method for desulphurizing high-sulphur rhodochrosite |
CN107419115A (en) * | 2017-09-30 | 2017-12-01 | 柳州凯通新材料科技有限公司 | A kind of processing method of electrolytic manganese dioxide |
CN112662877A (en) * | 2020-12-02 | 2021-04-16 | 广西科技师范学院 | Method for preparing high-purity nickel sulfate from electrolytic manganese sulfide slag |
CN114377862A (en) * | 2021-11-30 | 2022-04-22 | 青岛海尔生物医疗科技有限公司 | Method and device for controlling a centrifuge, centrifuge and storage medium |
-
2022
- 2022-12-08 CN CN202211579679.5A patent/CN116143185A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1112248A (en) * | 1994-05-16 | 1995-11-22 | 南京理工大学 | Intelligent monitor for extrusion crusher |
CN103131847A (en) * | 2013-03-16 | 2013-06-05 | 重庆大学 | Method for desulphurizing high-sulphur rhodochrosite |
CN107419115A (en) * | 2017-09-30 | 2017-12-01 | 柳州凯通新材料科技有限公司 | A kind of processing method of electrolytic manganese dioxide |
CN112662877A (en) * | 2020-12-02 | 2021-04-16 | 广西科技师范学院 | Method for preparing high-purity nickel sulfate from electrolytic manganese sulfide slag |
CN114377862A (en) * | 2021-11-30 | 2022-04-22 | 青岛海尔生物医疗科技有限公司 | Method and device for controlling a centrifuge, centrifuge and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104911359B (en) | A kind of process that cobalt and nickel are extracted from manganese waste slag | |
CN104393364B (en) | A kind of method for preparing PbO from the direct wet method of waste lead acid battery | |
US9533273B2 (en) | Systems and methods for isolating a particulate product when recycling lead from spent lead-acid batteries | |
CN103088207B (en) | Efficient vanadium extraction method by performing alkali roasting on vanadium mineral | |
CN103146923B (en) | Method for producing lead oxide by recovering waste lead-acid batteries based on atom economy way | |
US20160308261A1 (en) | Zero lead pollution process for recycling used lead acid batteries | |
CN110668483A (en) | Method for preparing aluminum fluoride by electrolyzing aluminum carbon slag | |
CN101928838A (en) | A method for removing and recovering arsenic from lead anode slime | |
CN108975406B (en) | Method and device for producing APT (ammonium paratungstate) by using tungsten-containing waste | |
CN111056576A (en) | Method for preparing battery-grade cobalt sulfate from low-grade cobalt-sulfur tailings | |
CN107585789B (en) | A method of high-purity molybdenum trioxide is prepared using hydrometallurgy molybdenum concentrate | |
WO2015057189A1 (en) | Recovery of high purity lead oxide from lead acid battery paste | |
CN115566307B (en) | Method for recovering high-purity lithium oxalate and high-purity lithium hydroxide from waste lithium battery | |
CN116143185A (en) | A method for preparing high-purity cobalt sulfate from electrolytic manganese sulfide slag | |
AU2008202382A1 (en) | Methods of making and washing scorodite | |
CN104762471B (en) | A method for enhanced leaching of tellurium slag | |
US11814699B2 (en) | Recovery of precious metals from copper anode slime | |
JP4717917B2 (en) | Manufacturing method and cleaning method of scorodite | |
CN106834749A (en) | The method of Vanadium Concentrationin from v-bearing steel slag | |
CN117509743A (en) | A method for recycling waste lithium iron phosphate black powder using a rotary kiln method | |
CN113044889B (en) | A kind of co-production process of cobalt sulfate and cobalt chloride | |
CN107675201A (en) | The preparation method of electrolytic manganese dioxide | |
CN211644603U (en) | Device for extracting or purifying selenium by wet method | |
JP5232806B2 (en) | Manufacturing method and cleaning method of scorodite | |
CN115074528A (en) | Method for treating monazite by grinding and leaching process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20230523 |
|
RJ01 | Rejection of invention patent application after publication |