CN116121602A - 一种铝基轻质双金属材料、其制备方法及其应用 - Google Patents

一种铝基轻质双金属材料、其制备方法及其应用 Download PDF

Info

Publication number
CN116121602A
CN116121602A CN202310013203.3A CN202310013203A CN116121602A CN 116121602 A CN116121602 A CN 116121602A CN 202310013203 A CN202310013203 A CN 202310013203A CN 116121602 A CN116121602 A CN 116121602A
Authority
CN
China
Prior art keywords
aluminum
alloy
layer
based light
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310013203.3A
Other languages
English (en)
Inventor
张小立
卢冶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN202310013203.3A priority Critical patent/CN116121602A/zh
Publication of CN116121602A publication Critical patent/CN116121602A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/04Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/50Treatment of workpieces or articles during build-up, e.g. treatments applied to fused layers during build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/003Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

本发明涉及一种铝基轻质双金属材料、其制备方法及其应用,该材料的表层减磨材料是Al‑Sn‑Bi耐磨材料;衬背材料为耐疲劳高强度Al‑Li‑Cu‑Mg合金。是采用铝基金属材料管材包覆Sn‑Bi合金连续挤压制备成焊丝,然后进行电弧增材制造自动送丝,采用脉冲MIG焊或CMT工艺,利用多工位机械手和变位机相结合,能够高效堆焊小直径圆柱轴承内部和端面的Al‑Sn‑Bi合金耐磨层。该材料可用于制备不同类型的轻质滑动轴瓦,以替代滚动轴承或现有钢衬油膜轴承等,该铝基轻质双金属材料的强度、耐磨性、耐温性以及热传导性都远高于塑料轴承,因此极大的提高线性滑动轴承的使用载荷和速度。

Description

一种铝基轻质双金属材料、其制备方法及其应用
技术领域
本发明涉及一种双金属材料、其制备方法及其用作制备滑动轴瓦的应用,属于材料领域。
背景技术
针对高速发展的汽车运输业带来的化石能源消耗和环境污染日趋严重,车身轻量化和动力电池化是目前解决该问题的两个主要途径,同时提供安全行使、延长使用寿命和提升人性化也是汽车科技发展的重要方向[1~3]。目前电动汽车除了发动机被替换外,其他部分仍继承于传统汽车,内燃机为动力的传统汽车除了发动机系统关键部位采用铜合金轴瓦材料的滑动轴承外,其他绝大部分机械传动结构采用滚动轴承,滚动轴承振动和噪声较大,使用寿命较短,对金属屑特别敏感,而且由于滚动轴承空间和重量受限,高负载和摆动运动可能造成其他损伤;同时承受负荷的能力比同样体积的滑动轴承小得多,滚动轴承的径向尺寸较大,制备轴承材料一般是高合金钢,具有高应力冲击、高硬度耐磨性、高疲劳强度等性能,因此具有较大的重量[4,5]。
新兴电池动力汽车设备的运行要求对轴承性能要求日益增长:在各种负载、速度和温度条件下具有良好的耐磨性、抗摩擦性以及优越的抗振动负载能力,运行无噪音、高精度和尺寸稳定性,同时要求轻质、减小外壳尺寸和节省空间。符合滑动轴承各种材料的开发,尤其具有自润滑性能的轴承材料开发以来,免维护和较长的使用寿命,滑动轴承越来越多被汽车工程设计人员所采用,从简单的汽车门铰链到机械结构复杂、要求苛刻的零件,如转向器、变速排挡和减震系统等[6]。设计工程师在各种应用中逐渐更多的使用滑动轴承尤其是油膜轴承替代滚动轴承。因其设计简单且具有成本效益,滑动轴承能够提供许多独特优势:其中可倾瓦径向轴承是高速旋转机器径向轴承的首选,具有高度稳定性、良好的抗震性以及尺寸准确性;整体式或剖分式滑动轴承都具有使用寿命长、可靠、平稳运行,紧凑一片式设计,节省空间、减轻重量、减小外壳尺寸等特点,同时直接按压配合装配工艺降低成本。
铝基轻质合金由于优良的综合力学性能、耐腐蚀性能和加工工艺性能以及较低的制造成本被广泛用于轴承部件[7,8],特别是加入那些拥有软质点相的合金例如Sn形成的Al-Sn合金。锡在铝中的固溶极限低于0.09wt.%Sn,在Al-Sn合金中,Sn颗粒分布在连续的Al固溶体合金基体上,由于坚韧的Al基体和作为固体润滑剂的Sn的存在相结合使得Al-Sn合金具有优良的摩擦性能。设计师和制造商在亲生态要求的推动下,用自润滑轴承取代油脂润滑。如Al-Pb、Al-Bi和Al-In等偏晶铝合金,被认为是汽车发动机中先进轴承的潜在材料,其材料组织特征就是难混溶的自润滑软质元素质点均匀地分布在较硬的金属基体中。而且铝基材料低弹性模量的这一特点正是轴承合金所需要的。在上述形成偏晶合金的元素中,铟的弹性模量最低,其次是铅。铅也被认为是比锡更有效的软相质点,可以赋予合金适当的抗粘连和抗摩擦性能。然而,由于环境问题,铅在商业用途方面受到严格限制,这促使在摩擦磨损工程中选用Bi等软质合金元素来取代Pb元素应用于铝基轴瓦材料[9~13]。
鉴于成本和制造工艺,目前的Al-Sn双金属滑动轴承采用钢作为衬背材料,通常采用双层板轧制、粉末烧结或通过浇铸以及电弧堆焊的方法在钢基背衬表面形成一层Al-Sn合金减摩层,精加工后获得所需形状的轴瓦或瓦块[14~16]。这种制备工艺脱瓦率高、复层金属接合强度低,Al/Sn室温下不互溶且比重差值太大易出现宏观偏析等铸造缺陷等,并且钢背复合材料质量大。同时Al/Fe为基的异种金属焊接接合面都会出现焊接冶金缺陷。
参考文献:
[1]陈辛波,杭鹏,王叶枫.电动汽车轻量化技术研究现状与发展趋势[J].汽车工程师,2015,000(011):23-57.
[2]李廷凯.浅析电动汽车车身轻量化设计[J].汽车实用技术,2021,046(016):201-206.
[3]史践.电动汽车与轻量化技术[J].汽车工艺与材料,2011,000(001):24-29
[4]李程辉.滚动轴承和滑动轴承的比较与选用[J].河南科技,2013,000(018):82-82.
[5]曹洪柱,汪新福.滚动轴承与滑动轴承的比较[J].农机使用与维修,1999(02):30.
[6]清水昭.自润滑滑动轴承在机车车辆上的应用[J].国外机车车辆工艺,2007,000(002):32-35.
[7]司家勇,顾红,曾建民,高岩.铝锡合金摩擦磨损性能的研究[J].铸造,2005,054(006):591-594.
[8]WEI Xuanchen,ZHANG Fangxu,TANG Hongyun,YANG Wenchao,ZHANYongzhong.铝锡轴承合金的摩擦磨损机理与性能[J].广西科学,2018,025(006):639-644
[9]Thiago A.Costa,Marcelino Dias,Emmanuelle S.Freitas,etc,The effectof microstructure length scale on dry sliding wear behaviour of monotecticAl-Bi-Sn alloys[J],Journal of Alloys and Compounds 689(2016)767~776
[10]R.Gawarkiewicz,M.Wasilczuck,Wear measurements of self-lubricatingbearing materials in small oscillatory movement,Wear,263(2007)458~462.
[11]黎旺,孙倩,江鸿翔,赵九洲.Al-Bi合金凝固过程及微合金化元素Sn的影响.金属学报[J],2019,55(7):831-839
[12]郑智琳.Al-Bi-Sn难混溶合金液相分离及凝固组织控制研究[D].辽宁:大连理工大学,2019.
[13]朱国乾.含铋铝基轴承材料摩擦磨损性能研究[D].合肥工业大学.2017.7
[14]赖曲芳,曾美琴,鲁忠臣.机械合金化制备Al-12%Sn合金的显微组织与耐磨性能[J].机械工程材料,2010(4):65~68.
[15]章萍芝,卢晓军,李彦利,等.水平连铸Al-Sn板坯制造铝钢轴瓦[J].特种铸造及有色合金,2000(4):50-52.
[16]陈振华.铝-钢滑动轴承电弧增材制造组织及性能研究[D].东南大学。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种铝基轻质双金属材料、其制备方法及其应用,该材料是一种轻质高韧性的铝合金衬背和耐磨层结合的双层复合材料,可用于制备不同类型的轻质滑动轴瓦,以替代滚动轴承或现有钢衬油膜轴承等。
为达到上述目的,本发明采用以下技术方案:
一种铝基轻质双金属材料,是包括铝合金衬背层和减磨材料表层的双层复合材料;其中,铝合金衬背层为耐疲劳高强度Al-Li-Cu-Mg高韧性铝合金,其化学成分包含1.0~2.0%Li,1.5~2.5%Cu,0.5~1.0%Mg,0.1~0.15%Zr,0.1%RE,余量为Al(均为质量分数);衬背材料是Al-Li-Cu-Mg高韧性铝合金,大大降低了轴瓦的重量,同时可以保证轴瓦的疲劳强度和抗压强度。
减磨材料是Al-Sn-Bi耐磨材料,详言之是Al-9%Sn-3%Bi合金,其化学成分包含8.0~10.0%Sn,2.5~3.5%Bi,0.1~0.2%Ti,0.1~0.2%Zr,余量为Al。
上述铝基轻质滑动轴瓦材料的制备方法,是采用铝包锡铋合金焊丝(Al-Sn-Bi耐磨材料)在铝基材料(Al-Li-Cu-Mg高韧性铝合金)表面进行MIG(熔化极惰性气体保护焊)或CMT(冷金属过渡焊)堆焊得到双层金属。
堆焊的工艺为:电流180~280A,电压为15~25V,焊接速度为20~50mm/min.。在堆焊过程中,已堆焊层冷却至温度120~150℃时再进行下一层的堆焊,并采用功率超声工具头作用于衬板夹具的弹簧支撑件,对堆焊金属层在凝固过程中施加超声振动。
Al-0.2%Ti-0.2%Zr合金管包覆Sn75Bi25合金棒材采用Conform连续挤压成直径为1.6mm~3.0mm的焊丝,合金焊丝横截面Al合金层厚度和Sn75Bi25合金丝的直径根据权利要求1中的化学成分占比来确定。
双金属材料所用的衬背为Al-Li-Cu-Mg合金,在520±20℃成分均匀化热处理后进行形变热处理,即降温至320±20℃时快速成形轴瓦形状和尺寸并淬入水中快速冷却,后续精加工至所需尺寸和形状精度。
有益效果:
(1)、本发明提供了一种低成本高性能轻质滑动轴承材料。背衬材料采用Al-Li-Mg-Cu合金,经过形变热处理(控轧控冷工艺)后的强度在400~450MPa,伸长率在9%~12%,并且具有良好的耐腐蚀性能,密度在2.7g/cm3左右。用来替代目前常用的衬背材料20号和30号钢,能够减轻2/3的重量。减摩层材料采用Al-9%Sn-3%Bi合金,具有良好的自润滑减摩性能,可用来替代成本较高和质量较重的Sn基巴氏合金和铜合金等轴承材料。
(2)、本发明采用铝基金属材料管材包覆Sn-Bi合金连续挤压制备成焊丝,得到的该铝合金包覆SnBi合金焊丝具有良好的力学性能和耐腐蚀性,用以进行电弧增材制造自动送丝,更加适应于现代化数字制造工艺。同时解决了传统制造双层轴瓦合金以及异种金属间焊接产生的问题。如推力轴承在传统浇铸工艺中,内部复合层需要进行离心浇铸,端部采用重力浇铸,使得耐磨合金层与基层金属结合性差,容易出现脱层以及缩松、气孔等其他铸造缺陷。采用脉冲MIG焊或CMT工艺,利用多工位机械手和变位机相结合,能够高效堆焊小直径圆柱轴承内部和端面的Al-Sn-Bi合金耐磨层。
(3)本发明提供了一种合金轴承,可用来替代塑料材质的自润滑线性滑动轴承,并且综合性能更加优越。利用电弧增材制造加工成线性滑动轴承,用来替代目前应用的塑料自润滑线性轴承,不仅符合机械制造业发展的生态要求方面,同时铝基合金双层金属由于强度、耐磨性、耐温性以及热传导性都远高于塑料轴承,因此能够极大的提高线性滑动轴承的使用载荷和速度。
附图说明
图1为电机轴瓦电弧增材制造设备示意图;
其中,1-硬弹簧夹具;2-焊枪;3-陶瓷超声工具头;4-铝合金衬背;5-Al-Sn-Bi堆焊层;
图2为薄壁轴瓦电弧增材制造设备示意图;
图3为实施例1所得在Al基强韧性合金上采用MIG堆焊的Al-9%Sn-3%Bi合金层的扫描电镜照片。其中(a)为双金属合金结合界面图,由Al-Li-Cu-Mg衬背、冶金结合层和Al-Sn-Bi堆焊层组成;(b)为Al-9%Sn-3%Bi堆焊组织照片,其围观组织由α-Al固溶体基体上分布着β-Sn和θ-Bi颗粒组成。
具体实施方式
下面通过具体实施例对本发明做进一步详细描述,但不因此限制本发明的范围。
实施例1DQ11-100A型号,内径D=100mm电机轴瓦,Al-Sn-Bi合金层厚度为3mm。
(1)包覆合金焊丝制备过程:完全退火软态的Al-0.2%Ti-0.2%Zr包覆Sn75Bi25加工,铝合金管尺寸为φ11mm×4.5mm,Sn75Bi25合金丝的直径为φ2mm;采用Conform连续挤压加工成φ2mm×0.8mm铝合金管包覆φ0.4mmSn75Bi25合金丝的焊丝,连续挤压模具温度控制在350℃。
(2)衬背采用Al-Li-Cu-Mg高韧性铝合金化学成分为1.2%Li,1.8%Cu,0.5%Mg,0.1%Zr,0.1%RE,其余为Al),铝合金坯料在500℃成分均匀化热处理后,降温至300℃时快速挤压变形成衬背形状和尺寸,并淬入水中快速冷却,挤压模具温度在260~280℃,后续精加工至所需尺寸和形状精度。
(3)电弧增材制造过程:采用MIG焊设备和变位机相配合,机器臂安装好焊枪和超声工具头,其示意图如图1所示。步骤(1)所得铝包锡铋合金焊丝在衬背内表面进行MIG堆焊得到双层金属。每一道环形焊缝焊接过程中焊枪和超声工具头固定,通过变位机旋转堆焊完一道焊缝后,机器臂移动一个焊缝宽度距离,进行下一相邻焊缝焊接。
堆焊层数为3层,堆焊的工艺特征为:电流220A,电压为19V,焊丝送丝速度6.3m/min,轴瓦顺时针转动,内表面线速度为35mm/min.,20KHz,100W的超声振动工具头作用于堆焊层,调整工具头端面控制每层焊道厚度在1~1.5mm,焊道宽度在2~3mm。
(4)退火加时效处理和精加工成形:制备的双层金属轴瓦材料在170℃~190℃进行热处理,时长为2小时,消除焊接残余应力和时效处理。所得铝基双金属材料的抗拉强度为112MPa,拉剪试验测得双金属结合层强度93Mpa,Al-Sn-Bi减摩层的硬度为HBS28~32,电镜图见图3所示,双层金属结合界面存在一冶金过渡层,厚度在100μm左右,堆焊层微观组织是由α-Al固溶体基体上分布着块状β-Sn和θ-Bi颗粒组成。
(5)最后根据图纸要求进行轴瓦剖分后机加工,尺寸、形状和位置公差符合标准,同时对定位环、油槽、定位销孔等进行成形加工。
实施例2铝合金轻质曲柄连杆薄壁轴瓦,外径DL=80mm,轴瓦厚度为3mm,耐磨合金层厚度为0.35mm。
(1)包覆合金焊丝制备过程和实施例1相同;
(2)衬背采用Al-Li-Cu-Mg高韧性铝合金,化学成分为1.5%Li,2.0%Cu,0.6%Mg,0.1%Zr,0.1%RE,其余为Al),厚度10mm的铝合金坯料在530℃成分均匀化热处理后,降温至320℃时双辊轧制成3mm的薄板后,浸入水中快速冷却,最后多辊连轧冷轧至2.65±0.1mm。
(3)电弧增材制造过程,采用MIG焊设备和变为机相配合,机器臂安装好焊枪和超声工具头,其加工示意图如图2所示。
将步骤(1)得到的铝包锡铋合金焊丝在衬背内表面进行CMT堆焊得到双层金属。堆焊层数为1层,堆焊的工艺特征为:电流180A,电压为23V,焊丝送丝速度7.5m/min.,机器臂直线移动速度为50mm/min.20KHz,200W的超声振动工具头作用于堆焊层,调整工具头端面控制每层焊道厚度在0.5~0.8mm,焊道宽度在2~3mm。所得铝基双金属材料的抗拉强度为109Mpa,拉剪试验测得双金属结合层强度为87Mpa,Al-Sn-Bi减摩层的硬度为HBS28~32。
(4)粗加工、辊弯成形和退火加时效处:制备的双层金属轴瓦材料进行粗加工达到尺寸要求后进行辊弯成型达到外径为D80mm,继续在170℃~190℃进行热处理,时长为2小时,消除焊接和压力加工残余应力和时效处理。
(5)精加工成形:最后根据图纸要求进行机加工,尺寸、形状和位置公差符合标准,同时对定位环、油槽、定位销孔等进行成形加工。
以上述本发明的理想实施例为启示,通过上述的说明内容,本领域的技术人员完全可以在不偏离本项发明技术思想的范围内,进行多样的更改、替换和变化等,均包含在本发明的保护范围之内。

Claims (7)

1.一种铝基轻质双金属材料,其特征在于:表层减磨材料是Al-Sn-Bi耐磨材料;衬背材料为经过控轧控冷工艺处理的耐疲劳高强度Al-Li-Cu-Mg合金;是采用铝包锡铋合金焊丝在铝基材料表面进行MIG或CMT堆焊得到。
2.根据权利要求1所述的铝基轻质双金属材料,其特征在于:所述的Al-Sn-Bi耐磨材料为Al-9%Sn-3%Bi合金,化学成分包含8.0~10.0%Sn,2.5~3.5%Bi,0.1~0.2%Ti,0.1~0.2%Zr,余量为Al;具有良好的自润滑减摩性能;上述百分数为质量分数。
3.根据权利要求1所述的铝基轻质双金属材料,其特征在于:所述Al-Li-Cu-Mg合金的化学成分包含1.0~2.0%Li,1.5~2.5%Cu,0.5~1.0%Mg,0.1~0.15%Zr,0.1%RE,余量为Al;经过形变热处理后的强度在400~450MPa,伸长率在9%~12%,具有良好的耐腐蚀性能,密度在2.7g/cm3左右;上述百分数为质量分数。
4.权利要求1所述的铝基轻质双金属材料用于制造滑动轴瓦的用途。
5.根据权利要求1至3任一项所述的铝基轻质双金属材料的制备方法,其特征在于:步骤如下:
(1)包覆合金焊丝的制备:Al-0.2%Ti-0.2%Zr合金管包覆Sn75Bi25合金棒材,采用CONFORM连续挤压成直径为1.6mm~3.0mm的Al-9%Sn-3%Bi合金焊丝,备用;
(2)准备衬背:铝基材料为Al-Li-Cu-Mg合金,在520±20℃成分均匀化热处理后进行形变热处理,降温至320±20℃时快速成形轴瓦形状和尺寸,并淬入水中快速冷却,后续精加工至所需尺寸和形状精度;
(3)电弧增材制造:采用步骤(1)所得铝包锡铋合金焊丝在铝基材料表面进行MIG或CMT堆焊得到双层金属。
6.根据权利要求5所述的铝基轻质双金属材料的制备方法,其特征在于:步骤(3)中,堆焊的工艺特征为:电流180~280A,电压为15~25V,焊接速度为20~50mm/min。
7.根据权利要求5所述的铝基轻质双金属材料的制备方法,其特征在于:步骤(3)中,在堆焊过程中,已堆焊层冷却至温度120~150℃时再进行下一层的堆焊,并采用功率超声工具头作用于衬板夹具的弹簧支撑件,对堆焊金属层在凝固过程中施加超声振动。
CN202310013203.3A 2023-01-05 2023-01-05 一种铝基轻质双金属材料、其制备方法及其应用 Pending CN116121602A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310013203.3A CN116121602A (zh) 2023-01-05 2023-01-05 一种铝基轻质双金属材料、其制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310013203.3A CN116121602A (zh) 2023-01-05 2023-01-05 一种铝基轻质双金属材料、其制备方法及其应用

Publications (1)

Publication Number Publication Date
CN116121602A true CN116121602A (zh) 2023-05-16

Family

ID=86304139

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310013203.3A Pending CN116121602A (zh) 2023-01-05 2023-01-05 一种铝基轻质双金属材料、其制备方法及其应用

Country Status (1)

Country Link
CN (1) CN116121602A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000248325A (ja) * 1999-02-26 2000-09-12 Denso Corp アルミニウム合金配管材
US20140190952A1 (en) * 2010-02-10 2014-07-10 Illinois Tool Works Inc. Aluminum alloy welding wire
WO2014157650A1 (ja) * 2013-03-29 2014-10-02 大豊工業株式会社 アルミニウム合金、すべり軸受、およびすべり軸受の製造方法
CN108247298A (zh) * 2018-01-17 2018-07-06 苏州虎伏新材料科技有限公司 一种用于制备滑动轴承瓦块的双金属材料及其制备方法
CN109296643A (zh) * 2018-11-29 2019-02-01 上海交通大学 一种应用于滑动轴承的双层金属复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000248325A (ja) * 1999-02-26 2000-09-12 Denso Corp アルミニウム合金配管材
US20140190952A1 (en) * 2010-02-10 2014-07-10 Illinois Tool Works Inc. Aluminum alloy welding wire
WO2014157650A1 (ja) * 2013-03-29 2014-10-02 大豊工業株式会社 アルミニウム合金、すべり軸受、およびすべり軸受の製造方法
CN108247298A (zh) * 2018-01-17 2018-07-06 苏州虎伏新材料科技有限公司 一种用于制备滑动轴承瓦块的双金属材料及其制备方法
CN109296643A (zh) * 2018-11-29 2019-02-01 上海交通大学 一种应用于滑动轴承的双层金属复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
肖志强;: "轴瓦双金属轴承材料的种类与复合工艺", 新技术新工艺, no. 08, 25 August 2008 (2008-08-25) *
苗玉刚;李春旺;尹晨豪;魏超;: "船用铝/钢焊接接头BC-MIG电弧增材制造工艺", 焊接学报, no. 12, 25 December 2019 (2019-12-25) *

Similar Documents

Publication Publication Date Title
US20090003752A1 (en) Sn-Containing Heavy-Duty Material Composition, Method for the Production of a Heavy-Duty Coating, and Use Thereof
JP2535126B2 (ja) 多層すべり軸受および軸受組立体
KR100385410B1 (ko) 미끄럼표면베어링용제재
US20230003255A1 (en) Method for producing a sliding layer of a sliding-contact bearing using an alloy and/ or a material
WO2010009326A1 (en) Method for twin roll casting of aluminum clad magnesium
CZ295510B6 (cs) Kompozitní vrstvený materiál pro kluzné elementy a způsob jeho výroby
CN104837621A (zh) 滑动轴承复合材料
CN105316532B (zh) 用于多层结构滑动轴承的铝合金‑钢双金属材料制造方法
GB2175603A (en) Overlay alloy used for a surface-layer of sliding material, sliding material having a surface layer comprising said alloy and the manufacturing method of the sliding material
US20070199442A1 (en) Piston pin with slide layer for connecting rod eye for internal combustion engines
JPH07116541B2 (ja) アルミニウム系軸受合金およびその製造方法
US5413875A (en) Copper alloy sliding bearing with high-strength back metal
JP2013249536A (ja) 軸受部品及び溶射法
JP4389026B2 (ja) 摺動材料およびその製造方法
ZA200106323B (en) Plain bearing.
Barnhurst Zinc and Zinc alloys
CN116121602A (zh) 一种铝基轻质双金属材料、其制备方法及其应用
CN114231967A (zh) 一种铝青铜合金-钢复合双金属耐磨轴承材料制造方法
CN112222575B (zh) 一种滑动轴承轴瓦材料及其制备方法
CN108266425B (zh) 一种双金属结构活塞杆及其加工方法
FR2552832A1 (fr) Palier lisse et procede pour sa fabrication
GB2251661A (en) A lead containing copper alloy bearing
von Hehl et al. Aluminum and aluminum alloys
GB2270128A (en) Bearings
CN113441701B (zh) 厚壁铝基双金属轴承的制造方法及厚壁铝基双金属轴承

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination