CN116119720A - 一种主族-过渡异金属簇嵌入的锰钼多酸化合物及其制备方法和应用 - Google Patents

一种主族-过渡异金属簇嵌入的锰钼多酸化合物及其制备方法和应用 Download PDF

Info

Publication number
CN116119720A
CN116119720A CN202310059981.6A CN202310059981A CN116119720A CN 116119720 A CN116119720 A CN 116119720A CN 202310059981 A CN202310059981 A CN 202310059981A CN 116119720 A CN116119720 A CN 116119720A
Authority
CN
China
Prior art keywords
transition
dissimilar metal
main group
manganese
metal cluster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310059981.6A
Other languages
English (en)
Inventor
郑寿添
陈怀斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202310059981.6A priority Critical patent/CN116119720A/zh
Publication of CN116119720A publication Critical patent/CN116119720A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2217At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/64Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/70Complexes comprising metals of Group VII (VIIB) as the central metal
    • B01J2531/72Manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种主族‑过渡异金属簇嵌入的锰钼多酸化合物,其分子式为(MV)2[Cu2I3](MnMo6O18L2)·nCH3CN,其中,L=2‑(hydroxymethyl)‑2‑(pyridine‑4‑yl)‑1,3‑propanediol,MV=1,1′‑dimethyl‑4,4′‑bipyridine‑1,1′‑diium;所述主族‑过渡异金属簇嵌入的锰钼多酸化合物的结构特征为双三羟基功能化的锰钼酸盐,通过铜卤簇[Cu2I3]连接形成一维无限链状结构;所述主族‑过渡异金属簇嵌入的锰钼多酸化合物的三维堆积结构中存在一维孔道,孔道中填充了质子化的紫精阳离子作为抗衡阳离子和数个乙腈溶剂分子;本发明所制备的主族‑过渡异金属簇嵌入的锰钼多酸化合物可作为非易失性存储材料,其具有结晶度好,稳定性高,且具有合成工艺简单,产率高等优点,可应用于催化、电化学传感器、电容器等领域。

Description

一种主族-过渡异金属簇嵌入的锰钼多酸化合物及其制备方法和应用
技术领域
本发明涉及信息存储材料技术领域,具体的说是一种主族-过渡异金属簇嵌入的锰钼多酸化合物及其制备方法和应用。
背景技术
随着大数据时代的发展,对大容量特别是高质量的数据存储提出了更高的要求。非易失性忆阻器是下一代存储设备的良好候选者,因为它们具有相当大的功能特性:低功耗,高访问速度,多状态切换和设备可扩展性。值得一提的是非易失性储存器件的制作比较简单、成本也比较低,有望在未来得到拓展和普及,因而具有很大的研究价值。非易失性储存器件的主要构成组件为:Ag(或Pt或Zn)电极、活性层膜、ITO玻璃基板,其原理是由于在活性层内部形成的反向空间电荷场,使得在电压逐渐递增或递减的过程中会引起电流的突变跳跃,突变此过程即为信号的写入和写出过程,一般用欧姆定律和空间电荷限制传导(SCLC)模型对器件的I-V曲线进行拟合。活性层膜作为非易失性储存器件中非常关键的一个组成部分,起到了反向空间电荷场的形成和电荷的传输的关键作用,其材料性能将直接影响到非易性储存器件的开关比、耐受性和稳定性。因此,研究开发高性能的非易失性储存材料对非易失性储存器件性能的提高具有极其重要的意义。用作非易失性储存器件的活性层材料应该满足以下基本条件:(1)活性层内部能够形成反向空间电荷场;(2)材料稳定性高;(3)材料的耐受性高;(4)制备成本低,产率高等。目前为止,一些优良的非易失性储存材料已经被报道,如:多金属氧酸盐基存储器、金属纳米粒子存储器、生物材料基存储器和有机材料基存储器等。
多金属氧酸盐(Polyoxometalates,POMs)简称多酸,通常是指由V、Nb、Ta、Mo和W等高价过渡金属的的无机氧酸盐经过缩聚脱水形成多核金属簇状结构,POMs的结构和类型都比较丰富,是一种很有前途的非易失性存储器活性材料。POMs是具有高氧化态金属的金属氧簇,具有较强的电子和质子转移/存储能力,因此也被形象的称为“电子海绵”。它们不仅具有富氧表面、丰富的氧化还原性能,而且具有较高的热稳定性。张蕲春教授课题组2014年在《Chemical Science》杂志上发表了一篇关于将多酸与聚合物结合地杂化材料,用于高密度数据存储的文章,之后对于多金属氧酸盐基存储器的探索引起了广大科学研究者的关注,希望合成出能在高温条件下工作,耐受性高,稳定性好,且制备简易,成本低的多金属氧酸盐基存储器。然而现有的大多数多酸的非易失性储存性能只能在不超过125℃条件下工作,且大多数多酸材料的耐受性和时间保留能力较差,限制其在实际应用的可能性。
发明内容
本发明的目的在于提供一种主族-过渡异金属簇嵌入的锰钼多酸化合物及其制备方法和应用,采用简单的溶剂热处理工艺,通过“一锅法”合成了一种含有主族-过渡异金属簇[Cu2I3]的双三羟基功能化锰钼酸盐,通过笼状的[Cu2I3]连接可形成具有一维孔道的三维堆积结构,孔道中填充了大量质子化的甲基紫精和乙腈分子;在非易失性储存过程中,材料中的活性层锰钼多酸化合物具有笼状的铜卤簇、易变价的安德森型的锰钼酸盐以及该化合物的三维堆积结构的一维孔道中填充了大量质子化的甲基紫精,这些特征有利于非易失性储存性能的提升,240℃的高温下开关比仍可达到102量级;且其循环次数高达700次;时间保留能力强,在室温、130℃和200℃下,保留时间高达104
为实现上述目的,本发明采用以下技术方案:
一种主族-过渡异金属簇嵌入的锰钼多酸化合物,其分子式为(MV)2[Cu2I3](MnMo6O18L2)·nCH3CN,其中,L=2-(hydroxymethyl)-2-(pyridine-4-yl)-1,3-propanediol,MV=1,1′-dimethyl-4,4′-bipyridine-1,1′-diium;所述主族-过渡异金属簇嵌入的锰钼多酸化合物的结构特征为双三羟基功能化的锰钼酸盐,通过铜卤簇[Cu2I3]连接形成一维无限链状结构;所述主族-过渡异金属簇嵌入的锰钼多酸化合物的三维堆积结构中存在一维孔道,孔道中填充了质子化的紫精阳离子作为抗衡阳离子和数个乙腈溶剂分子。
优选地,所述主族-过渡异金属簇嵌入的锰钼多酸化合物属于单斜晶系,空间群为P-1,对应空间群号为2,晶胞参数为:
Figure BDA0004061082830000031
Figure BDA0004061082830000032
一种主族-过渡异金属簇嵌入的锰钼多酸化合物的制备方法,具体包括以下步骤:
S1、合成双三羟基功能化锰钼酸盐前驱体(TBA)3MnMo6O18(L)2·2CH3CN;
S2、依次称取双三羟基功能化锰钼酸盐前驱体(TBA)3MnMo6O18(L)2·2CH3CN、甲基紫精、碘化亚铜、四己基碘化铵到聚四氟乙烯反应釜内,随后加入乙腈,并在常温下震荡1h使原料混匀溶解;
S3、将聚四氟乙烯反应釜置于恒温烘箱中进行溶剂热反应;
S4、反应冷却至室温后,用分析纯的乙醇进行清洗,真空干燥后得到0.2-1.5mm棕黄色长条状晶体;
S5、将得到的棕黄色长条状晶体溶解在二甲基亚砜溶液中,将该溶液旋涂在ITO玻璃上,烘干,点涂上银浆,再次烘干,得到具有优异耐高温非易失性储存性能的主族-过渡异金属簇嵌入的锰钼多酸化合物。
优选地,在步骤S2中所述锰钼酸盐前驱体(TBA)3MnMo6O18(L)2·2CH3CN、甲基紫精、碘化亚铜、四己基碘化铵、乙腈添加的摩尔比为:1:5.8:1.6:1:6490。
优选地,在步骤S3中所述溶剂热反应的反应温度为90℃,反应时间为3天。
一种主族-过渡异金属簇嵌入的锰钼多酸化合物在非易失性储存性能领域中的应用,所述主族-过渡异金属簇嵌入的锰钼多酸化合物应用于催化、电化学传感器、电容器。
采用上述技术方案后,本发明具有如下有益效果:本发明采用简单的溶剂热处理工艺,通过“一锅法”合成了一种含有主族-过渡异金属簇[Cu2I3]的双三羟基功能化锰钼酸盐,通过笼状的[Cu2I3]连接可形成具有一维孔道的三维堆积结构,孔道中填充了大量质子化的甲基紫精和乙腈分子;在非易失性储存过程中,材料中的活性层锰钼多酸化合物具有笼状的铜卤簇、易变价的安德森型的锰钼酸盐以及该化合物的三维堆积结构的一维孔道中填充了大量质子化的甲基紫精,这些特征有利于非易失性储存性能的提升;本发明所制备的主族-过渡异金属簇嵌入的锰钼多酸化合物可作为非易失性存储材料,该非易失性存储材料的开关闭在室温和240℃的高温下开关比可达到102量级;且其循环次数高达700次;时间保留能力强,在室温和130℃、200℃下,保留时间高达104,其循环性和时间保留能力要优于绝大部分多酸基非易失性存储材料;此外,其具有结晶度好,稳定性高,且具有合成工艺简单,产率高等优点,可应用于催化、电化学传感器、电容器等领域。
附图说明
图1为夹心层结构的非易失性存储器件的模型图;
图2为非易失性存储器件结构中扫描电镜图和原子力显微镜图,其中图a和图c为SEM下的器件的横截面图和表面图,图b和图d为AFM下的器件的表面粗糙度图和取样长度内粗糙度;
图3为实施例制备的主族-过渡异金属簇嵌入的锰钼多酸化合物的晶体形貌图;
图4为主族-过渡异金属簇嵌入的锰钼多酸化合物的结构图,其中图a为化合物的多面体球棍图,图b为化合物的球棍图,图c为化合物中安德森型的{MnMo6O24}的结构图,图d为主族-过渡异金属簇[Cu2I3];
图5为主族-过渡异金属簇嵌入的锰钼多酸化合物的三维堆积图,图a和b为不同方向的三维堆积图;
图6为实施例制备的主族-过渡异金属簇嵌入的锰钼多酸化合物的粉末衍射图;
图7为实施例制备的主族-过渡异金属簇嵌入的锰钼多酸化合物的热重分析图;
图8为实施例制备的主族-过渡异金属簇嵌入的锰钼多酸化合物ITO/1/Ag的I-V曲线图,其中图a为ITO/1/Ag在室温下的I-V曲线图,其中图b为ITO/1/Ag在不同下的I-V曲线图;
图9为实施例制备的主族-过渡异金属簇嵌入的锰钼多酸化合物的循环图和时间保留图,其中图a为ITO/1/Ag在室温下的I-V曲线图,其中图b为ITO/1/Ag在室温下的I-V曲线图;
图10为实施例制备的主族-过渡异金属簇嵌入的锰钼多酸化合物的时间保留图,其中图a为ITO/1/Ag在200℃下的I-t图,其中图b为ITO/1/Ag在130℃下的I-t曲线图;
图11为实施例制备的主族-过渡异金属簇嵌入的锰钼多酸化合物的机理模拟图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
参见图1-图11。
实施例:(MV)2[Cu2I3](MnMo6O18L2)·nCH3CN主族-过渡异金属簇嵌入的锰钼多酸化合物的制备:
S1、按照文献《Angewandte Chemie International Edition》(德国应用化学)(2016年第55卷6462-6466页)所提供的方法合成双三羟基功能化锰钼酸盐前驱体(TBA)3MnMo6O18(L)2·2CH3CN;
S2、依次称取双三羟基功能化锰钼酸盐前驱体(TBA)3MnMo6O18(L)2·2CH3CN(0.0118mmol,0.0248g)、甲基紫精(0.0697mmol,0.0127g)、碘化亚铜(0.0188mmol,0.0358g)、四己基碘化铵(0.1167mmol,0.0501g)到23mL容量的聚四氟乙烯反应釜内衬中,随后加入4mL乙腈,并在常温下震荡1h使原料混匀溶解,并将反应釜内衬装入不锈钢反应釜中;
S3、将聚四氟乙烯反应釜置于90℃的恒温烘箱中进行溶剂热反应3天;
S4、反应冷却至室温后,用分析纯的乙醇进行清洗,真空干燥后得到0.2-1.5mm棕黄色长条状晶体,如图2所示;
S5、将得到的棕黄色长条状晶体溶解在二甲基亚砜溶液中,将该溶液旋涂在ITO玻璃上,烘干,点涂上银浆,再次烘干,得到具有优异耐高温非易失性储存性能的主族-过渡异金属簇嵌入的锰钼多酸化合物。
实施例制得的(MV)2[Cu2I3](MnMo6O18L2)·nCH3CN主族-过渡异金属簇嵌入的锰钼多酸化合物的表征与性能测试:
(1)晶体结构测定
在显微镜下挑选大小合适、形状规则且透亮的单晶,通过BrukerAPEX II CCD衍射仪,在175(2)K下,采用石墨单色器单色化的Mo-Kα射线(λ=
Figure BDA0004061082830000062
)作为入射光源以收集晶体衍射数据。在结构解析中使用Shelextl-2018程序以直接法对晶体结构进行解析和精修,同时非氢原子及其各向异性化处理参数利用全矩阵最小二乘法进行修正,所有的氢原子通过理论加氢得到,所得晶体结构图如图3-5所示,晶体学数据以及精修参数见表1。
表1:化合物的晶体参数表
Figure BDA0004061082830000061
Figure BDA0004061082830000071
R1=∑||Fo|–|Fc||/∑|Fo|.wR2=[∑w(Fo 2–Fc 2)2/∑w(Fo 2)2]1/2;w=1/[σ2(Fo 2)+(xP)2+yP],P=(Fo 2+2Fc 2)/3,where x=0.025200,y=58.872799
(2)粉末衍射表征:
取适量所上述方法制备的单晶,将其充分研磨成粉末,在常温下测得传导材料的粉末衍射图(如图6)与根据单晶衍射数据模拟的衍射峰的对比可知,实验测定结果与Mercury软件拟合结果吻合的较好,由此可说明该化合物为纯相,其中晶体的各向异性导致了部分衍射峰在峰强上有所差异。
(3)热重分析表征:
化合物的热重曲线是在氩气气氛下以10℃/min的升温速率测定的,测定范围30-1000℃。如图7所示,热重曲线表面化合物在30-230℃的温度范围出现第一步失重,失重比例为5.0%,失重部分对应于结构中结晶乙腈分子的失去;200-550℃温度范围出现第二步失重,失重比例为35%,对应于结构中配位乙腈分子和质子化甲基紫精的失去;550℃后结构开始坍塌。
(4)非易失性存储性能测试:
器件制备方法:首先将获得的晶体粉末溶解在二甲基亚砜溶液中,然后将ITO玻璃用丙酮、乙醇、去离子水进行超声清洗后将其放入50℃烘箱中烘干,将烘干的ITO玻璃置于旋涂机上,再滴一滴制备好的晶体溶液,采用先低速后高速的办法将晶体溶液旋开,再将其放入50℃烘箱中烘干,最后用喷枪将银浆喷在烘干的样品上,制得的器件结构为夹心层结构即ITO/1/Ag。测试方法:在制备好的器件两端接上扫描电压测试其电双稳性能,在银浆上放正电级,在空白的没有涂样的ITO玻璃上放负电级,利用KEYSIGHT B2901A数字源仪表记录扫描后器件的I-V曲线图和保留时间图,测试电压范围为-5V到5V。测试结果通过扫描器件后的I-V曲线图得到材料的电双稳图,以此来表征器件的非易失性存储性能。
通过在室温条件下的非易失性存储性能测试,得到了按照实施例制备的非易失性存储材料主族-过渡异金属簇嵌入的锰钼多酸化合物的电压与电流的关系。如图8(a)所示,当扫描电压在(-5V→0V→0.85V)范围时,器件一直保持在高阻态(HRS)即关闭状态,当电压增加到0.85V(即写入电压)时,器件电流从高阻态变成了低阻态(即HRS→LRS),当回扫电压在(0.85V→5V,5V→0V→-4.19V)范围时,器件电流一直保持低阻态即LRS(开启状态),当电压为-4.19V(即写出电压)时,器件电流从低阻态突变成了高阻态(即LRS→HRS),之后扫描电压在(-4.19V→-5V)时,器件电流一直保持高阻态即HRS(关闭状态)。这样就形成了一个闭合的I-V曲线。下次循环又以相同的次序扫描器件。另外,在该器件中,写出电压相对于写入电压来说跟高一点,这表明了对于该器件来说“写入”信息比“擦除”来的更容易。当以-0.012V为该器件的读取电压来获取开关比时,该器件的开关比为2.38×102
通过在不同温度下的非易失性存储性能测试,得到了按照实施例制备的非易失性存储材料主族-过渡异金属簇嵌入的锰钼多酸化合物的电压与电流的关系。从图8(b)、图9和图10中可以看到,该非易失性存储材料(主族-过渡异金属簇嵌入的锰钼多酸化合物)可以循环700次之久,且温度从40℃升高至240℃,电双稳的开关比、循环性都没有明显的改变。在温度为130℃和200℃下,由实施例制备的非易失性存储材料(主族-过渡异金属簇嵌入的锰钼多酸化合物)的时间保留能力依然维持在104s,这一稳定性要优于大多数多金属氧酸非易失性存储材料。可以得出结论,温度的升高对非易失性存储性能没有明显的改变,这是因为POMs具有良好的热稳定性,能在一定的高温下保持其结构和性能稳定。
用欧姆定律和空间电荷限制传导(SCLC)模型对器件的I-V曲线进行拟合(见图11)。当电压低于写入电压和写出电压时,线性拟合符合欧姆定律(正扫描时斜率为1.03/1.26,负扫描时斜率为0.97/1.42),表明热激活电子注入有源层。当电压高于写入电压和写出电压时,线性拟合符合I∝v2关系(正扫斜率为29.59,负扫斜率为28.13),暗示了陷阱控制的SCLC传导的过程。在这个阶段,注入的载流子会形成一个倒置的空间电荷场,这将阻碍进一步的载流子注入。最后,随着外电场的增大,有源层注入了更多的载流子,从而在写入电压(写出电压)时发生HRS/LRS切换。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (6)

1.一种主族-过渡异金属簇嵌入的锰钼多酸化合物,其特征在于:
其分子式为(MV)2[Cu2I3](MnMo6O18L2)·nCH3CN,
其中,L=2-(hydroxymethyl)-2-(pyridine-4-yl)-1,3-propanediol,MV=1,1′-dimethyl-4,4′-bipyridine-1,1′-diium;所述主族-过渡异金属簇嵌入的锰钼多酸化合物的结构特征为双三羟基功能化的锰钼酸盐,通过铜卤簇[Cu2I3]连接形成一维无限链状结构;所述主族-过渡异金属簇嵌入的锰钼多酸化合物的三维堆积结构中存在一维孔道,孔道中填充了质子化的紫精阳离子作为抗衡阳离子和数个乙腈溶剂分子。
2.如权利要求1所述的一种主族-过渡异金属簇嵌入的锰钼多酸化合物,其特征在于:所述主族-过渡异金属簇嵌入的锰钼多酸化合物属于单斜晶系,空间群为P-1,对应空间群号为2,晶胞参数为:
Figure FDA0004061082820000011
Figure FDA0004061082820000012
α=72.664(2)°,γ=79.244(2)°,β=80.619(2)°。
3.一种如权利要求1-2任一项所述的主族-过渡异金属簇嵌入的锰钼多酸化合物的制备方法,其特征在于,具体包括以下步骤:
S1、合成双三羟基功能化锰钼酸盐前驱体(TBA)3MnMo6O18(L)2·2CH3CN;
S2、依次称取双三羟基功能化锰钼酸盐前驱体(TBA)3MnMo6O18(L)2·2CH3CN、甲基紫精、碘化亚铜、四己基碘化铵到聚四氟乙烯反应釜内,随后加入乙腈,并在常温下震荡1h使原料混匀溶解;
S3、将聚四氟乙烯反应釜置于恒温烘箱中进行溶剂热反应;
S4、反应冷却至室温后,用分析纯的乙醇进行清洗,真空干燥后得到0.2-1.5mm棕黄色长条状晶体;
S5、将得到的棕黄色长条状晶体溶解在二甲基亚砜溶液中,将该溶液旋涂在ITO玻璃上,烘干,点涂上银浆,再次烘干,得到具有优异耐高温非易失性储存性能的主族-过渡异金属簇嵌入的锰钼多酸化合物。
4.如权利要求3所述的一种主族-过渡异金属簇嵌入的锰钼多酸化合物的制备方法,其特征在于:在步骤S2中所述锰钼酸盐前驱体(TBA)3MnMo6O18(L)2·2CH3CN、甲基紫精、碘化亚铜、四己基碘化铵、乙腈添加的摩尔比为:1:5.8:1.6:1:6490。
5.如权利要求3所述的一种主族-过渡异金属簇嵌入的锰钼多酸化合物的制备方法,其特征在于:在步骤S3中所述溶剂热反应的反应温度为90℃,反应时间为3天。
6.一种如权利要求1-5任一项所述的主族-过渡异金属簇嵌入的锰钼多酸化合物在非易失性储存性能领域中的应用,其特征在于:所述主族-过渡异金属簇嵌入的锰钼多酸化合物应用于催化、电化学传感器、电容器。
CN202310059981.6A 2023-01-17 2023-01-17 一种主族-过渡异金属簇嵌入的锰钼多酸化合物及其制备方法和应用 Pending CN116119720A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310059981.6A CN116119720A (zh) 2023-01-17 2023-01-17 一种主族-过渡异金属簇嵌入的锰钼多酸化合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310059981.6A CN116119720A (zh) 2023-01-17 2023-01-17 一种主族-过渡异金属簇嵌入的锰钼多酸化合物及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN116119720A true CN116119720A (zh) 2023-05-16

Family

ID=86309687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310059981.6A Pending CN116119720A (zh) 2023-01-17 2023-01-17 一种主族-过渡异金属簇嵌入的锰钼多酸化合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116119720A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017133898A1 (en) * 2016-02-04 2017-08-10 Exxonmobil Chemical Patents Inc. Polyoxometalates comprising noble metals and corresponding metal clusters
CN114394623A (zh) * 2022-01-19 2022-04-26 福州大学 一种具有抗肿瘤生物活性的锑钨氧酸盐及其制备方法
CN114775036A (zh) * 2022-04-18 2022-07-22 哈尔滨理工大学 一种多层夹心型三维多酸基金属有机杂化材料的制备及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017133898A1 (en) * 2016-02-04 2017-08-10 Exxonmobil Chemical Patents Inc. Polyoxometalates comprising noble metals and corresponding metal clusters
CN114394623A (zh) * 2022-01-19 2022-04-26 福州大学 一种具有抗肿瘤生物活性的锑钨氧酸盐及其制备方法
CN114775036A (zh) * 2022-04-18 2022-07-22 哈尔滨理工大学 一种多层夹心型三维多酸基金属有机杂化材料的制备及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
邢垒;焦丽颖;: "二硫化钼二维原子晶体化学掺杂研究进展", 物理化学学报, no. 09, 15 September 2016 (2016-09-15), pages 1 *

Similar Documents

Publication Publication Date Title
Chen et al. Confinement-driven ferroelectricity in a two-dimensional hybrid lead iodide perovskite
Song et al. Impact of processing temperature and composition on the formation of methylammonium lead iodide perovskites
JP4303794B2 (ja) 多孔質フィルムとその調製方法
Li et al. A semiconducting molecular ferroelectric with a bandgap much lower than that of BiFeO3
Zhao et al. Efficient electrochromic device based on sol–gel prepared WO 3 films
Kumar et al. Enhancement in power conversion efficiency and stability of perovskite solar cell by reducing trap states using trichloroacetic acid additive in anti-solvent
CN102249307A (zh) 铌酸铋镁介质薄膜的制备方法
Li et al. Stable photovoltaic output and optically tunable resistive switching in all-inorganic flexible ferroelectric thin film with self-polarization characteristic
Dhar et al. Investigation of ion-mediated charge transport in methylammonium lead iodide perovskite
CN107910030B (zh) 一种柔性bnt铁电薄膜的制备方法
Liu et al. Modulating oxygen vacancies in BaSnO3 for printable carbon-based mesoscopic perovskite solar cells
Zhang et al. Exploring high-performance integration in a plastic crystal/film with switching and semiconducting behavior
Sahoo et al. Optical characterization of BMO thin film prepared by an unconventional sol-gel method
Jaffri et al. Expounded photoelectric and electrochemical profiling of LRE3+: β‐Ta2O5 (Ln3+= Ce3+, Pr3+, Nd3+) for high performance in energy systems
Liu et al. Control of the polarization of ferroelectric capacitors by the concurrent action of light and adsorbates
Ying et al. High-Tc Quadratic Nonlinear Optical and Dielectric Switchings in Fe-Based Plastic Crystalline Ferroelectric
He et al. Improvement of thiourea (Lewis base)-modified SnO2 electron-transport layer for carbon-based CsPbIBr2 perovskite solar cells
Zhang et al. Fabrication of one-dimensional organic nanofiber networks via electrophoretic deposition for a nonvolatile memory device
Bensemma et al. Photoelectrochemical properties of lead-free ferroelectric ceramic Ba (Ti 0.96 Mg 0.013 Nb 0.026) O 3: application to solar conversion of eosin
CN111171326B (zh) 以八核银团簇为结构重复单元的链状配位聚合物及其制备方法和应用
CN116119720A (zh) 一种主族-过渡异金属簇嵌入的锰钼多酸化合物及其制备方法和应用
Chen et al. Improved pseudo-capacitive performance of manganese oxide films synthesized by the facile sol–gel method with iron acetate addition
Wiston et al. Supercapacitor Performance of β-Cobalt Hydroxide Prepared via a One-Pot Hydrothermal Method
CN107697891B (zh) 碳包裹核壳结构碲化铋纳米棒的制备方法及其制备的碳包裹核壳结构碲化铋纳米棒和应用
Kariper et al. Synthesis and characterization of RuO2 thick film supercapacitor electrode: the effect of low temperature

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination