CN116113817A - 用于估计轮胎的磨损状态的方法 - Google Patents
用于估计轮胎的磨损状态的方法 Download PDFInfo
- Publication number
- CN116113817A CN116113817A CN202180056890.6A CN202180056890A CN116113817A CN 116113817 A CN116113817 A CN 116113817A CN 202180056890 A CN202180056890 A CN 202180056890A CN 116113817 A CN116113817 A CN 116113817A
- Authority
- CN
- China
- Prior art keywords
- ground
- tyre
- category
- state
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M17/00—Testing of vehicles
- G01M17/007—Wheeled or endless-tracked vehicles
- G01M17/02—Tyres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/24—Wear-indicating arrangements
- B60C11/243—Tread wear sensors, e.g. electronic sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/24—Wear-indicating arrangements
- B60C11/246—Tread wear monitoring systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C19/00—Tyre parts or constructions not otherwise provided for
- B60C2019/004—Tyre sensors other than for detecting tyre pressure
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Tires In General (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
一种用于估计轮胎的磨损状态的方法,包括以下步骤:‑记录在时间帧期间由轮胎在道路上滚动所产生的振动声学信号(1001);‑将时间信号(1001)转换为频率范围内的频率信号(1002);‑将频率范围分割成频带,并且将表示频率信号的数据项与每个频带相关联,表示数据项形成矩阵(1003)的变量;‑通过基于由与根据相同步骤的测量结果相关的一组矩阵构成的训练库的数据的机器学习(1004),在已知驾驶条件下,根据各自表示轮胎的磨损状态的程序,由矩阵预测磨损状态;以及‑在一系列M次连续预测中的N次相同预测之后,确定轮胎的磨损状态(1005)。
Description
技术领域
本发明涉及一种基于轮胎与地面动态接触时由轮胎产生的噪声来估计装配于在道路上行驶的车辆的轮胎的磨损状态的方法。
背景技术
为了与驾驶员或驾驶员辅助系统进行互动,了解轮胎的磨损状态是非常有用的,以便实时通知他们特别是由于轮胎的磨损状态的变化而引起的轮胎的抓地状况的变化和车辆的行驶稳定性。
因此,专利申请WO 2017/103474 A1提出了一种将轮胎的磨损状态和轮胎滚动的地面的状态两者结合的方法。然而,在车辆上可行的该方法使用了大量要通过判别分析进行管理的参数。大量的参数导致了计算时间和计算资源,这使得无论何种类型的机动车辆(特别是入门级车辆),该方法都难以以可接受的处理成本实现。此外,该方法的可靠性也会因间接考虑到数据处理过程中行驶速度的影响而受到影响。
以下发明的目的之一旨在提出一种利用自动方法(即,无需人为干预且无需使车辆静止)突显轮胎的磨损状态的演变的方法。此外,该方法必须容易实现,成本低且计算时间短,以便于实时处理,特别是当数据的后处理是在车辆上实现时。
发明内容
本发明涉及一种用于估计在道路表面上行驶的车辆的安装组件的轮胎的磨损状态的方法,包括以下步骤:
-记录在给定的时间帧期间由轮胎在道路表面上滚动所产生的振动声学信号的测量结果;
-将时间信号转换为给定的频率范围内的频率信号;
-将频率范围分割成具有预定宽度的至少一个频带,并且将表示所述至少一个频带中的频率信号的至少一个数据与至少一个频带相关联,源自测量结果的至少一个表示数据形成与所述测量结果相关的矩阵的至少一个变量;
-通过基于由一组矩阵构成的学习数据库的数据的机器学习,在已知行驶条件下,根据各自表示轮胎的磨损状态的模态,预测对应于与实现的测量结果相关的矩阵的轮胎的磨损状态,所述一组矩阵与根据上述相同步骤记录和实现的测量结果相关;
-在一系列M次连续预测中的N次相同预测之后,确定轮胎的磨损状态。
术语“振动声学信号”在此被理解为意指可以由传感器(例如,麦克风或加速度计类型的传感器)检测的任何振动和/或声学信号。
想法是使用这样一种传感器:例如,当轮胎经由轮辋装配在车辆上时,该传感器几乎不会改变轮胎在道路表面上滚动的响应。轮胎在道路上滚动的状况会产生在宽频谱中是振动的和/或声学的特定特征。该原理涉及在短时间内测量时间信号并且将该信号转换成频率信号,由于频率信号分布在宽频带上,因此频率信号的有用信息更容易获得。假设信号是伪周期性的,很容易设想将具有一定量采样的小时间样本转换成具有给定频率间距的宽带频谱。采样频率决定了频谱的宽度。一旦获得该频谱,就需要将其分成大量的频带,每个频带表示与振动声学特征相关的矩阵的维度。然后,对于每个频带,识别表示频带上的频谱的一个或更多个数据项。这些表示数据表示矩阵的第二维度。表示频谱的这些数据包括在含有频谱的平均值、中值、最大值、最小值或这些量的组合的组中。这些表示数据也可以是与频带上的频谱形状有关的量,其由频率或频带上相对于频带上的平均水平的特征来体现。例如,对于矩阵维度的频带划分可以实施为三分之一倍频带。
最后,通过基于由模型构建的矩阵的机器学习来预测轮胎的磨损状态,所述模型是利用在学习活动期间在先前步骤中形成的矩阵而获得的。在该学习活动期间,实施各种轮胎滚动测试,在此期间记录振动声学测量结果,然后按照每次滚动测试的相同协议进行分析。每次滚动测试都是在具有已知轮胎组件的特定车辆上实施的,尤其包括根据标称条件周围施加的各种压力和静载荷条件的轮胎磨损水平。每次滚动测试都涉及使车辆在具有预定的宏观粗糙度性质的道路上行驶,道路的气象状况是确定的。为此,根据轮胎胎面的高度,将轮胎的磨损状态分成称为崭新组或磨损组的至少两组。当装配在轮辋上并充气的轮胎的胎面高度位于最大高度和最大中间高度之间时,轮胎的状态被称为“崭新”,相反,轮胎的状态被称为“磨损”,所述轮胎的胎面高度范围在胎面的崭新状态下的径向外部高度(称为最大高度)与对应于胎面凹槽底部处的磨损标记的径向外部距离的最小高度之间,所述最大中间高度距最大高度和最小高度等距。也可以将磨损状态分为大量相同大小的类别。例如,如果希望在“崭新”、“半磨损”和“磨损”状态之间限定轮胎的磨损状态,这些不同状态之间的区分极限彼此是最大高度与最小高度之间的差的三分之二和高度差的三分之一。因此,每个类别或组分布在类似的胎面高度范围内。
在这种情况下,轮胎的磨损状态的大量测量和预测在统计上能够通过简单的模型快速评估轮胎的磨损类别。这个简单的数学模型仅需要较小的学习数据库,并且会产生非常快速的响应时间。因此,例如假设在一系列M次测量中出现N次相同的预测,无论例如道路的气象状况、道路的宏观粗糙度性质或行驶速度如何,都将能够检测到轮胎从一个磨损类别到另一个磨损类别的转变。事实上,与系统的其他敏感变量相比,轮胎的磨损状态在时域中变化缓慢。通过诸如压力或施加的静载荷的参数,这同样适用于轮胎的工作条件。当然,一系列测量M将由测量条件的多样性决定,并且出现次数N将由所述测量条件下的预测精度控制。因此,与现有技术文献的模型不同,决定在基本模型上乘以测量结果,以便通过信息冗余来预测轮胎的状态,轮胎的状态本质上变化缓慢。模型的简单性使得能够实现快速响应时间和车辆上的后处理。通过不必检查轮胎振动声学特征的过大的一组敏感参数,预测还在可靠性方面得到提高。
优选地,所述方法包括以下步骤:
-确定轮胎的行驶速度类别,其幅度是最大行驶速度的分数,优选地,最大行驶速度是300km/h;其中,行驶速度类别是机器学习的模态。
在这种特定情况下,行驶速度类别被添加为学习数据库的模态。这使得能够更快地预测轮胎的磨损状态,这是因为行驶速度显著地影响轮胎的振动声学响应,特别是以在宽频率窗口上测量的平均水平行驶。这种影响特别体现为与行驶速度成比例的轮胎的振动声学响应的增加。在由平均水平控制的振动声学响应中,表示数据的灵敏度可以衰减或消失。因此,通过考虑行驶速度作为模态,增强了表示频率信号的数据的灵敏度,这使得能够改进轮胎的磨损状态的预测。可以通过源自车辆的数据来评估速度,例如来自GPS(GlobalPositioning System,全球定位系统)的信息或在车辆的CAN总线上传送的信息项,或者通过安装在轮胎上的电子系统(例如,轮胎安装传感器(Tire Mounted Sensor,TMS)或轮胎压力监测系统(Tire Pressure Monitoring System,TPMS))直接或间接包含的信息项,或者通过任何其他方式来评估速度。为了系统的简单性,并且由于轮胎的振动声学响应的灵敏度,按速度类别对速度进行分类是足够的,优选地,大约10km/h的速度类别范围是低至学习数据库的大小的期望评估速度与轮胎的磨损状态的期望精度之间的良好折衷。这减小了用于预测的学习数据库,而不会过度影响精度。此外,轮胎的磨损状态的变化是缓慢的。由于这个原因,关于轮胎的磨损状态的信息冗余导致从一定数量M次振动声学测量中统计地确定轮胎的磨损状态。添加行驶速度或行驶速度类别使得该过程在振动声学测量的数量方面更加有效,以便向轮胎的磨损状态的正确信息收敛。
根据优选的实施方案,确定车辆的行驶速度包括以下步骤:
-记录在给定的第二时间帧期间由轮胎在道路表面上滚动所产生的振动声学信号的第二测量结果;
-将第二时间信号转换为给定的第二频率范围内的第二频率信号;
-将第二频率范围分割成具有预定宽度的至少一个频带,并且将表示所述至少一个频带中的第二频率信号的至少一个数据与至少一个频带相关联,源自第二测量结果的至少一个表示数据形成与所述第二测量结果相关的矩阵的至少一个变量;
-通过基于由一组矩阵构成的学习数据库的数据的第二机器学习,在已知行驶条件下,根据各自表示轮胎的行驶速度类别的模态,确定对应于与实现的第二测量结果相关的矩阵的轮胎的行驶速度类别,所述一组矩阵与根据上述相同步骤记录和实现的测量结果相关。
行驶速度可以通过轮胎在道路表面上滚动的振动声学测量结果来评估。为此,建议使用由仅考虑行驶速度或行驶速度类别作为模态的学习数据库构建的第二机器学习。实际上,轮胎的振动声学响应不仅取决于轮胎的磨损状态,而且取决于其他参数。然而,行驶速度影响轮胎的整个频谱,不仅影响某些特定频带,或者根据观察到的参数,至少这些频带不完全相同。因此,表示与行驶速度有关的振动声学特征矩阵的数据不同于轮胎的磨损状态的数据。因此,可以通过将频率信号划分为特定频带并评估每个频带上的特定表示数据,借助于特定的机器学习步骤来识别与轮胎的振动声学测量结果相对应的行驶速度或行驶速度类别。该频率划分及其表示数据本质上不同于与轮胎的磨损状态的识别矩阵相关的频率划分及表示数据。当然,该第二振动声学测量结果可以不同于磨损状态的振动声学测量结果。然而,没有什么能够阻止对两个机器学习步骤使用相同的测量结果。在该特定的实施方案中,在确定轮胎的磨损状态之前,需要识别行驶速度或行驶速度类别,这规定了任何后处理的顺序。最后,将行驶速度划分成各种速度类别使得模态的数量能够受到限制,这使得该方法在学习数据库的大小和后处理的响应时间方面都更加有效。与现有技术的文献不同,与对应于给定频带上的平均功率的单个数据不同,可以从行驶速度的评估考虑一组表示数据,这使得该方法在精度和可靠性方面更可靠。因此,显著减少了统计地预测轮胎的磨损状态所需的测量次数。
有利地,该方法包括以下附加步骤:
-确定地面状态类别;并且其中,如果地面状态类别是特定的地面状态类别,则地面状态类别是机器学习的模态或用于预测轮胎的磨损状态的条件。
在这种情况下,地面状态类别成为与轮胎的磨损状态有关的机器学习数据库的模态或用于实施预测轮胎的磨损状态的步骤的条件。在第一种情况下,地面状态类别被添加为模态。这具有这样的优点:通过减少为了向有用信息收敛而要实施的测量次数M,在统计上加速了轮胎的磨损状态的预测。然而,由于这些新的模态增加了模态之间的组合数量,学习数据库变得更大。因此,学习数据库的大小增加,并且与轮胎的磨损状态相关的数学模型变得更加复杂。在第二种情况下,发明人已经发现,当地面状态类别是特定的地面状态类别时,确定轮胎的磨损状态不涉及知晓地面状态类别,以便快速收敛于解决方案。因此,地面状态类别成为用于启动轮胎的磨损状态预测的简单指标。第二种情况使得学习数据库的大小和轮胎的磨损状态的数学模型的大小能够受到限制。然而,符合预测的测量结果的数量仅限于满足与特定地面状态类别有关的条件的那些测量结果。这在轮胎的磨损状态的情况下不是不利的,轮胎的磨损状态是随时间缓慢变化的参数。当然,在预测轮胎的磨损状态的步骤之前,必须确定地面状态类别。将地面状态类别的使用与行驶速度类别的使用相结合以便进一步限制向与轮胎的磨损状态有关的信息收敛所需的测量结果的数量是很有可能的,但不是必需的。最后,该道路表面状态可以通过与车辆的GPS位置相关联的地图有关的气象信息或通过车辆上的任何其他装置(例如,雨量传感器、挡风玻璃雨刮器致动器等)来获得。
具体而言,地面状态类别包括在含有干燥、潮湿、湿润、下雪和结冰类别的组中。
地面状态对应于地面的气象状况。气象状况包括在含有干燥状态、潮湿状态和湿润状态或诸如下雪或结冰状态的冬季状态的组中。在优选的实施方案中,下雪状态可以包括在含有新鲜雪状态、压实的雪状态、粒状雪状态和融化的雪状态的组中。
潮湿状态的特征在于水位与道路表面的自然粗糙度齐平。例如,该潮湿状态对应于少量降雨或强降雨之后道路变干所获得的地面状态。至于湿润状态,湿润状态的特征在于水位超过道路表面的自然粗糙度的水平。实际上,湿润状态对应于通常在0.5毫米至1毫米之间的水位。
地面的气象状况可以通过与车辆的GPS位置相关的气象预报、车辆上的传感器的响应(例如,挡风玻璃雨刮器的启动或挡风玻璃上的雨量检测传感器)来确定。最后,通过关联车辆移动的环境的外界温度,可以识别与冬季状态相关的雪的存在或形成。
有利地,特定地面状态类别包括“干噪”地面状态类别。
在不将地面状态类别作为与轮胎的磨损状态有关的机器学习的模态的特定气象状况中,“干燥”地面状态是指不论其形状和数量如何,轮胎与地面之间的接触都不受水的存在影响的表面。发明人已经发现,特定的地面状态类别也可以混合“湿润/潮湿”和“干燥”地面状态类别,而不影响机器学习对轮胎的磨损状态的预测,尽管对单个“干燥”地面状态类别的限制会提高预测的概率。然而,优选地应当避免“湿润”地面状态类别。
该特定状态使得不论环境温度如何,都能够选择在干燥天气中进行的振动声学测量,这能够限制用于预测轮胎的磨损状态的测量结果的数量,这使得该方法更加有效。实际上,相对于利用干燥天气下的振动声学测量获得的频谱,水的存在改变了获得的频谱的一部分,这自然会造成频谱的分散,并且不可避免地影响了预测的质量。
根据第二实施方案,确定地面状态类别包括以下附加步骤:
-记录在给定的第三时间帧期间由轮胎在道路表面上滚动所产生的振动声学信号的第三测量结果;
-将第三时间信号转换为给定的第三频率范围内的第三频率信号;
-将第三频率范围分割成具有预定宽度的至少一个频带,并且将表示所述至少一个频带中的第三频率信号的至少一个数据与至少一个频带相关联,源自第三测量结果的至少一个表示数据形成与所述第三测量结果相关的矩阵的至少一个变量;
-通过基于由一组矩阵构成的学习数据库的数据的第三机器学习,在已知行驶条件下,根据各自表示至少一个地面状态类别的模态,确定对应于与实现的第三测量结果相关的矩阵的地面状态类别,所述一组矩阵与根据上述相同步骤记录和实现的测量结果相关。
道路表面的气象状况可以通过轮胎在道路表面上滚动的振动声学测量结果来评估。为此,使用第三机器学习,其由考虑地面状态类别作为模态的学习数据库构建。此外,行驶速度类别还可以考虑作为该第三机器学习的模态或者作为确定地面状态的条件,以减小该第三机器学习的学习数据库,这使得识别道路表面的气象状况类别更加有效。实际上,轮胎的振动声学响应不仅取决于轮胎的磨损状态,还取决于其他参数,例如行驶速度。然而,行驶速度影响轮胎的整个频谱,不仅影响某些特定频带,或者根据观察到的参数,至少这些频带不完全相同。因此,表示与道路的气象状况有关的振动声学特征矩阵的数据不同于轮胎的磨损状态的数据。从而,可以通过将频率信号划分成特定频带并评估每个频带上的特定表示数据,通过特定的机器学习来识别与对应于轮胎的振动声学测量结果的道路的气象状况相关的类别。该频率划分及其表示数据本质上不同于与轮胎的磨损状态的识别矩阵和行驶速度的矩阵相关的频率划分及表示数据。然而,先前已经识别了行驶速度类别,可以考虑该参数,以便减小该第三机器学习的学习数据库,这使得该方法更加有效。当然,该第三振动声学测量可以不同于磨损状态的振动声学测量以及行驶速度类别的振动声学测量。然而,没有什么能够阻止使用与分别与其他两个机器学习步骤相关的测量结果的任何一个相同的振动声学测量结果,这减少了要实施的步骤的数量。
在该特定的实施方案中,在确定轮胎的磨损状态之前,需要识别表面路面状态类别,这需要一定顺序的后处理。然而,与地面状态类别相关的振动声学测量的后处理必须在行驶速度类别的振动声学测量的后处理之后实施,以便在第三机器学习中考虑该参数。
优选地,该方法包括以下附加步骤:
-确定地面性质类别;并且其中,如果地面性质类别是特定地面性质类别,则地面性质类别是机器学习的模态或用于预测轮胎的磨损状态的条件。
在这种情况下,地面性质类别成为与轮胎的磨损状态有关的机器学习数据库的模态或实施预测轮胎的磨损状态的步骤的条件。在第一种情况下,地面性质类别被添加为模态。这具有这样的优点:通过减少为了向有用信息收敛而要实施的测量次数,在统计上加速了轮胎的磨损状态的预测。然而,由于这些新的模式增加了模态之间的组合数量,学习数据库变得更大。因此,学习数据库的大小增加,并且与轮胎的磨损状态相关的数学模型变得更加复杂。在第二种情况下,发明人已经发现,当地面性质类别是特定地面性质类别时,确定轮胎的磨损状态不需要涉及知晓地面性质类别,以便快速收敛于解决方案。因此,地面性质类别成为启动轮胎的磨损状态预测的简单指标。第二种情况使得学习数据库的大小和轮胎的磨损状态的数学模型的大小能够受到限制。然而,符合预测的测量结果的数量减少到仅为满足与特定地面性质类别有关的条件的那些测量结果。这在轮胎的磨损状态的情况下不是不利的,轮胎的磨损状态是随时间缓慢变化的参数。当然,在确定轮胎的磨损状态的步骤之前,必须确定地面性质状态类别。将地面性质类别的使用与行驶速度类别或地面状态类别的使用相结合以便进一步减少用于向与轮胎的磨损状态有关的信息收敛的有用的测量结果的数量是很有可能的,但不是必需的。最后,该地面性质状态类别可以通过与车辆的GPS位置相关的地面的地图或通过诸如车辆上的光学和/或光和/或声音装置的任何其他装置来获得。
具体而言,地面性质类别包括在含有“开放”、“中等”和“封闭”类别的组中。
当路面呈现光滑的外观并且不粗糙时,例如在经历高温之后返潮的沥青或覆盖有一层水泥的混凝土板,路面被称为“封闭”或“宏观光滑”。当粗糙度很大时,路面将被认为“开放”或“宏观粗糙”,例如,如像磨损的路面或使用通过在沥青上喷洒砂砾产生的表面涂层快速修复的乡村道路的路面。“中等”路面描述处于前两种状态之间的中间状态的所有路面,并且更具体地说,是指新的路面。
路面的宏观纹理不仅影响道路的排水性能,而且影响轮胎的声学特性。这种纹理由“平均纹理深度”(也称为ATD)表征。该ATD通过本领域技术人员公知的真实砂层高度测量,也标识为HSv。
因此,可以将各种宏观纹理如下分类:具有封闭宏观纹理的路面的ATD范围在0至0.4毫米之间。具有中等宏观纹理的路面的ATD范围在0.4至1.1毫米之间,并且具有开放宏观纹理的路面的ATD大于1.1毫米。
优选地,特定地面性质类别包括被称为“开放”的地面性质类别。
在不将地面性质作为与轮胎的磨损状态有关的机器学习的模态的特定地面性质类别中,应注意以“开放”宏观纹理为特征的地面性质类别。实际上,发明人已经发现,对于这些地面性质,频谱是特定的,更容易突显除了与地面性质类别相关的那些频谱特征以外的各种模态的显著频谱特征。
此外,这种特定的地面性质类别使得能够选择在相当开放的宏观纹理地面上进行的振动声学测量,这使得符合预测轮胎的磨损状态的测量结果的数量受到限制,这使得该方法更加有效。
非常优选地,特定地面性质类别包括ATD大于0.7,优选地大于0.9,非常优选地大于1.0的地面。
然而,发明人已经发现,通过使用ATD小于1.1的地面,该方法也可以是有效的,这相当于“中等”地面。然而,只有被称为“中等”地面的地面内的高范围的ATD能够有效地实施该方法,如当ATD大于0.7时。当然,ATD越高,越接近“开放”地面的极限,该方法就越可靠。
根据第三实施方案,确定地面性质类别包括以下附加步骤:
-记录在给定的第四时间帧期间由轮胎在道路表面上滚动所产生的振动声学信号的第四测量结果;
-将第四时间信号转换为给定的第四频率范围内的第四频率信号;
-将第四频率范围分割成具有预定宽度的至少一个频带,并且将表示所述至少一个频带中的第四频率信号的至少一个数据与至少一个频带相关联,源自第四测量结果的至少一个表示数据形成与所述第四测量结果相关的矩阵的至少一个变量;
-通过基于由一组矩阵构成的学习数据库的数据的第四机器学习,在已知行驶条件下,根据各自表示至少一个地面性质类别的模态,确定对应于与实现的第四测量结果相关的矩阵的地面性质类别,所述一组矩阵与根据上述相同步骤记录和实现的测量结果相关。
道路表面的性质可以通过轮胎在道路表面上滚动的振动声学测量结果来确定。为此,建议使用由仅考虑地面性质类别作为模态的学习数据库构建的第四机器学习。实际上,轮胎的振动声学响应不仅取决于轮胎的磨损状态,而且取决于其他参数,例如行驶速度、地面的气象状况。然而,行驶速度影响轮胎的整个频谱,不仅影响某些特定频带,或者根据观察到的参数,至少这些频带不完全相同。因此,表示与行驶速度有关的振动声学特征矩阵的数据不同于轮胎的磨损状态的数据,或者不同于行驶速度的数据,或者不同于地面气象状况的数据。从而,可以通过将频率信号划分为特定频带并评估每个频带上的特定表示数据,通过特定机器学习来识别与轮胎的振动声学测量结果相对应的地面性质或地面性质类别。该频率划分及其表示数据本质上不同于与轮胎的磨损状态的识别矩阵相关的频率划分及表示数据、与行驶速度有关的矩阵相关的频率划分及表示数据以及与地面的气象状况有关的矩阵相关的频率划分及表示数据。然而,先前已经识别了行驶速度类别,可以考虑该参数,以便减小该第四机器学习步骤的学习数据库,这使得该方法更加有效。当然,该第四振动声学测量可以不同于磨损状态的振动声学测量、行驶速度的振动声学测量以及地面的气象状况的振动声学测量。然而,没有什么能够阻止相同的振动声学测量结果用于分别与其他三个机器学习步骤相关的其他三个振动声学测量结果的任何一个,这减少了要实施的步骤的数量。
在该特定的实施方案中,在确定轮胎的磨损状态之前,需要识别地面性质类别,这需要一定顺序的任何后处理。然而,与地面性质类别相关的振动声学测量结果的后处理可以在地面的气象状况的振动声学测量结果的后处理之前或之后实施。此外,为了在第四机器学习中考虑该参数,在对行驶速度类别的振动声学测量结果进行后处理之后,可能需要实施与地面性质类别相关的振动声学测量结果的后处理。
可选地,确定地面性质类别的步骤包括地面状态类别作为第四机器学习的模态。
发明人已经发现,将确定地面的气象状况的步骤置于确定地面性质的步骤之前,使得能够考虑将地面的气象状况作为与地面性质相关的第四机器学习的模态,这使得与该第四机器学习相关的预测能够得到改进。这使得确定地面性质的步骤通过减少为了识别地面性质而要分析的振动声学测量结果的数量而更加有效。
有利地,机器学习方法的至少一种包括在含有神经网络方法、判别分析方法、支持向量机方法、boosting方法、K-最近邻方法和逻辑回归的组中。
机器学习方法有很多种,每种方法都有优点和缺点。提供的列表并不详尽,并且该方法将不限于机器学习的这些具体的示例。
有利地,利用功率谱密度将时间信号转换成频率信号。
发明人已经发现,利用功率谱密度来转换时间信号和频率信号具有众所周知的优点,即通过消除相位的概念将频率信号的参数减少到一定量(即振幅),同时保持信号的能量。
优选地,轮胎的磨损状态包括在含有崭新和磨损状态,优选地还含有半磨损状态的组中。
为了使该方法有效,需要定义至少两种轮胎的磨损状态,这使得能够根据二元模式调整车辆的参数。因此,轮胎的寿命被分成两个时期,崭新状态和磨损状态,对于这两个时期,轮胎的表现从第一状态转变到第二状态,这支持根据这两个状态的每个状态来调整安全装置,例如ABS装置(防抱死制动系统)。当然,轮胎的寿命很有可能被分成更多数量的轮胎的状态。然后,建议这些状态都对应于相同的胎面高度变化。然而,轮胎的胎面被划分得越多,该方法就越繁琐,发明人已经发现,该方法的最佳性能/有效性折衷涉及将轮胎胎面分成三种状态:磨损、半磨损和崭新。
附图说明
通过阅读下面的描述,将更好地理解本发明,下面的描述仅通过非限制性示例的方式并参考附图提供,其中相同的附图标记在所有情况下都表示相同的部件,并且其中:
图1示出了根据本发明的用于估计轮胎的磨损状态的方法的总体概览;
图2示出了配备有能够确定轮胎的磨损状态的测量装置的车辆;
图3示出了根据本发明,沿着仅考虑轮胎的磨损状态的模态的用于估计轮胎的磨损状态的方法的两个主轴线的判别空间;
图4示出了在地面的状态和性质已知的道路上行驶的车辆上测量的噪声谱;
图5示出了根据本发明,沿着仅考虑与地面状态有关的模态的用于确定地面状态类别的方法的主轴线的判别空间;
图6示出了根据本发明,沿着考虑轮胎的磨损状态的模态和特定地面状态类别(即,“干燥”状态)的行驶速度类别的模态的用于估计轮胎的磨损状态的方法的两个主轴线的判别空间;
图7示出了根据本发明,沿着用于确定地面性质类别的方法的两个主轴线的判别空间;
图8示出了沿着通过根据特定地面状态类别和特定地面性质类别标准选择测量结果来估计轮胎的磨损状态的方法的两个主轴线的判别空间。
具体实施方式
图1示出了根据多个实施方案的利用行驶时在车辆上实现的振动声学测量结果1001来估计轮胎的磨损状态的方法的完整概览。
利用诸如快速傅立叶变换的标准计算工具将该时间测量结果1001转换成频谱1002。
然后根据选择的用途将频谱1002划分为不同的频带。在每个频带上,减少的频谱的一个或更多个物理量与频带上的频谱相关。物理量的集合形成向量,向量的长度与计算的物理量的数量成比例。这使得能够填充矩阵1003,矩阵1003的其中一个维度是由频谱的完整宽度获得的频带的数量。矩阵1003的第二维度对应于每个选择的频带评估的物理量的最大数量。通常,矩阵是向量,向量的长度是选择的频带的数量,并且第二维度是标量维度。矩阵也可以是二维矩阵,或者第二维度是向量。
在第一实施方案中,矩阵1003被引入到包括学习数据库的机器学习1004中。学习数据库是通过一系列振动声学测量结果和对时间测量结果的频率处理而在先前学习步骤期间形成的,在其中对学习数据库进行管理。在传统实施方案中,模态是轮胎的磨损状态类别,其至少包括磨损状态和崭新状态,优选地还包括半磨损状态。机器学习提供了轮胎的磨损状态的预测。
重复测量、后处理和预测能够形成一系列M个预测结果。在该组中定期重复相同的结果使得能够确认轮胎的磨损状态的变化。此外,通常,轮胎的初始磨损状态是崭新状态,其随时间变换并且因此将预测组改变到半磨损状态,然后改变到磨损状态。因此,知道磨损状态的变化通常只能在一个方向上发生的预测结果对相同的磨损状态的冗余性使得能够以磨损状态类别的形式快速确定轮胎的实际磨损状态。磨损类别的数量越多(因此确定轮胎的磨损状态的精度就越高),该方法的效率就越低,这是因为预测结果的质量将受到除轮胎的磨损状态之外的所有影响参数的影响。例如,可以列举出行驶速度、地面性质、地面的气象状况,以及车辆,轮胎在压力、施加的载荷、外部温度等方面的运行状况。
根据第二实施方案,为了使用于估计轮胎的磨损状态的方法更加可靠,机器学习1004的预测还可以考虑轮胎的行驶速度2001。实际上,该参数显著地影响了由时间振动声学测量结果1001获得的频谱1002的平均水平。以行驶速度类别的形式考虑该参数作为机器学习的模态能够减少错误的预测。
轮胎的这种行驶速度可以通过车辆的附加传感器获得,或者利用通过车辆的电子线路的信息而获得。这种确定可以以类别的形式直接发生,或者可以以机器学习期望的行驶速度类别的形式存储。然而,在变型的实施方案中,利用在车辆上获得的第二振动声学测量结果1001来确定行驶速度类别2002。有利地,该第二振动声学测量结果1001是将用于在步骤1004中预测轮胎的磨损状态的振动声学测量结果1001。
以与之前相同的方式,时间振动声学测量结果1001被转换成频谱1002。然后将该频谱划分成频带。频谱的一个或更多个物理量与每个频带相关。这使得能够完成与行驶速度类别的预测相关的矩阵1003。然而,频带的划分不需要类似于为预测轮胎的磨损状态1004而实现的划分。速度类别2002的识别对于预测轮胎的磨损状态1004绰绰有余。
可选地,还可以确定车辆行驶的地面的气象状况3001,从而使用于估计轮胎的磨损状态的方法更加可靠,机器学习1004的预测也可以根据两条不同的路线考虑这些气象状况。
第一路线涉及确定地面状态类别3002,并且考虑这些地面状态的类别作为轮胎的磨损状态的预测1004的模态。至少在类别方面了解地面气象状况使得预测更加可靠,其代价是更大的学习数据库和更复杂的数学模型。
第二路线涉及确定特定地面状态类别3003,将对于特定地面状态类别3003实现轮胎的磨损状态的预测。事实上,从所有振动声学测量结果1001中选择那些对应于有利于轮胎的磨损状态的预测1004的地面状态的振动声学测量结果。因此,与预测相关的学习数据库减小,并且数学模型更加基础,这使得能够以有限的资源实现快速的计算时间并实现可靠的预测。
地面的气象状况3001分为各种类别。在夏季或正常情况下,至少区分干燥状态、潮湿/湿润状态,并且第二组甚至根据道路上的水位进行区分。还可以包括冬季情况,例如结冰状态或下雪状态。
申请人已发现,特定地面状态类别必须包括“干燥”状态。实际上,该地面状态类别在振动声学测量结果2001中具有较高的出现率,并且对于步骤1003中的频带划分能够实现更多的可重复性。因此,关注于地面状态类别特定的振动声学测量结果就在绝大多数地区中出现的振动声学测量结果1001而言不是不利的,同时由于这些气象状况的频谱1002的相似性,在预测方面是有效的。
当然,以这种方式考虑地面状态类别可以在机器学习步骤1004中在考虑或不考虑行驶速度2001的情况下发生。然而,如果希望考虑所有因素,则确定地面状态类别3002将必然发生在确定速度类别2002之后。
最后,地面的气象状况3001可以通过车辆的附加传感器(例如,挡风玻璃上的雨量检测器、或挡风玻璃雨刮器触发器的致动器)获得,或者利用通过车辆的电子线路的信息获得。然而,在变型的实施方案中,利用在车辆上获得的第三振动声学测量结果1001来确定地面状态类别3002。有利地,该第三振动声学测量结果1001是将用于预测轮胎的磨损状态1004的振动声学测量结果1001和/或已用于行驶速度类别2002的确定2004的振动声学测量结果1001。
以与之前相同的方式,时间振动声学测量结果1001被转换成频谱1002。然后将该频谱划分成频带。频谱的一个或更多个物理量与每个频带相关。这使得能够完成与确定地面的气象状况类别3002相关的矩阵1003。然而,频带的划分不需要类似于为预测轮胎的磨损状态1004或为确定行驶速度类别2002而实现的划分。事实上,地面状态类别3002的识别对于预测轮胎的磨损状态1004绰绰有余。
可选地,还可以确定车辆行驶的地面的纹理性质4001,从而使用于估计轮胎的磨损状态的方法更加可靠,机器学习1004的预测也可以根据两条不同的路线考虑地面性质类别。
第一路线涉及确定地面性质类别4002,并且考虑这些地面性质类别作为轮胎的磨损状态的预测1004的模态。至少在类别方面了解地面性质4001使得预测1004更加可靠,其代价是更大的学习数据库和更复杂的数学模型。
第二路线涉及确定特定地面性质类别4003,对于特定地面性质类别4003将实现轮胎的磨损状态的预测1004。事实上,从所有振动声学测量结果1001中选择那些对应于有利于轮胎的磨损状态的预测1004的地面性质的振动声学测量结果。因此,与预测相关的学习数据库减小,并且数学模型更加基础,这使得能够以有限的资源实现快速的计算时间并实现可靠的预测。
根据毫米级的粗糙度,地面性质4001被分成各种类别。这种地面性质由ATD表征。
申请人已发现,特定地面性质类别必须包括被称为“开放”地面的地面。实际上,该类别对于步骤1003中的频带划分能够实现更多的可重复性。因此,关注于地面性质类别特定的振动声学测量结果由于频谱1002的某些相似性而在预测方面是有效的。然而,很有可能将特定地面性质类别扩展到ATD大于0.7的所有地面,这也涵盖称为“中等”地面的地面的ATD的上部。
当然,可以在机器学习步骤1004中在考虑或不考虑行驶速度2001或表面状态3001的情况下考虑地面性质类别。然而,如果希望考虑这两个参数,则考虑地面性质类别将必然在确定速度类别2002之后发生。
最后,地面性质4001可以通过车辆的附加传感器(例如,激光器或声音测量装置)获得,或者利用通过车辆的电子线路的信息获得。然而,在变型的实施方案中,利用在车辆上获得的第四振动声学测量结果1001来确定地面性质类别4002。有利地,该第四振动声学测量结果1001是将在步骤1004中用于预测轮胎的磨损状态的振动声学测量结果1001和/或用于确定行驶速度类别2002的振动声学测量结果1001和/或用于确定地面状态类别3002的振动声学测量结果1001。
以与之前相同的方式,时间振动声学测量结果1001被转换成频谱1002。然后将该频谱划分成频带。频谱的一个或更多个物理量与每个频带相关。这使得能够完成与地面性质类别3002的确定4002相关的矩阵1003。然而,频带的划分不需要类似于为预测轮胎的磨损状态1004或为确定行驶速度类别2002或为确定地面状态类别3002而实现的划分。事实上,地面状态类别3002的识别对于预测轮胎的磨损状态1004绰绰有余。
最后,申请人已经发现,考虑气象状况然后考虑地面性质使得轮胎的磨损状态的预测1004更加可靠。实际上,地面状态类别的区分能力比地面性质类别的区分能力更强。
总之,可选地考虑地面状态类别3002和地面性质类别4002使得预测得更加可靠。这样的组合是上述顺序中最有效的配置。效率由预测的错误率来衡量。
然而,通过采用特定类别路线,由于轮胎的磨损状态的预测1004的学习数据库的大小减小以及可以在车辆上实时实现的计算的速度和简单性,该方法变得更加有效。
在主要实施方案中,利用位于车辆中的麦克风(1)测量由轮胎(T)产生的声音信号。在图2中,麦克风放置在位于车辆(C)后部的轮罩的前部。然而,可以考虑其他位置,例如后保险杠。麦克风位置的选择取决于例如要估计的数据的类型、车辆类型以及与其安装、维护和耐久性有关的外部约束。
图2示出了在地面G上行驶的车辆C,该车辆C示意性地示出,该车辆C包括前轮罩和后轮罩,装配有轮胎T的车轮容纳在前轮罩和后轮罩中。
当车辆C移动时,轮胎T产生噪声,其振幅和频率取决于许多因素。声压实际上是来自各种来源的噪声的叠加,例如,由与地面G接触的胎面花纹元素产生的噪声、由胎面花纹元素之间的空气的运动产生的噪声、由轮胎溅起的水颗粒产生的噪声、甚至由与车辆速度相关的气流产生的噪声。对这些噪声的监听也和与车辆环境相关的噪声叠加,例如发动机噪声。所有这些噪声还取决于车辆的速度。
测量装置(例如,麦克风1)安置在车辆中。这里应注意的是,可以为测量装置考虑各种位置,图1中仅示出了一个位置,但本发明的范围不限于这种配置。因此,传感器可以定位在例如后保险杠的侧壁上,但不必定向,以便检测来源于车辆后部的声音信号。
还可以考虑车辆的前保险杠的侧壁上的位置。测量装置还可以定位在轮罩中,以便尽可能接近产生噪声的位置来监听滚动噪声。理想情况下,在每个轮罩中安装振动声学传感器可以被认为是检测轮胎产生的所有滚动噪声和振动的最佳手段。然而,为了确定地面状态(气象状况)和地面性质(路面的宏观纹理),单个麦克风就足够了。在后一种情况下,优选将该单个麦克风与空气动力学噪声和发动机噪声隔离。
当然,采用操作预防措施以保护测量装置免受外部侵害,例如水、泥或砂砾的飞溅。
车辆还包括计算机2,计算机2连接到测量装置,并且配置为实现如下文将详细描述的用于对来自测量装置的原始信息成形和分析的操作,并根据由测量装置检测到的振动声发射的测量来估计轮胎的状态。
图3是示出了车辆行驶速度范围在20至130km/h之间的三个相同大小的类别中分布的轮胎的磨损状态的示意图。第一类别是“崭新”磨损类别,其对应于轮胎胎面的有效高度的上三分之一。有效高度是由对应于轮胎相对于其自然旋转轴线的径向外端的胎面的最大高度限定的,并且最小高度是由凹槽底部处的磨损标记的径向外端限定的。第二类别(被称为“半磨损”类别)对应于轮胎胎面的有效高度的中间三分之一。最后,最后一个类别(称为“磨损”类别)对应于胎面的有效高度的下三分之一。
在此,显示了无论从标称车辆配置开始的车辆在施加载荷和充气压力方面的状况如何,在车辆上实现的一组振动声学测量结果。车辆在中间季节的几个时段内沿着包括城市路线、乡村道路上的路线和公路路线的道路环线行驶,这使得能够混合关于地面状态(特别是,“干燥”、“潮湿”和“湿润”的地面状态)以及关于各种类型的地面性质(特别是,“封闭”、“中等”和“开放”的地面性质)的所有条件。学习数据库考虑轮胎的磨损状态作为模态。在这种情况下,对具有三种类型的轮胎的磨损状态的轮胎进行测量。
相对于其条件的机器学习在数学上定义了主方向。图3示出了沿两个第一主方向(其表示图的两个表示轴线)的判别空间。机器学习在该二维表示中识别三组圆。第一组(由虚线圆表示)表示在这个二维判别空间中磨损状态为“崭新”的各种概率。这些圆是同心的。最大概率(即,大于0.9)由最小圆界定的面积定义。然后,下一个圆定义了0.1的递减概率,即值为0.8。此外,下一个圆表示了进一步降低0.1的概率,即值为0.7。由灰色实线圆表示的第二组圆表示在这个二维判别空间中磨损状态为“半磨损”的各种概率。最后,由黑色实线圆表示的第三组圆以相同的方式表示磨损状态为“磨损”的各种概率。应注意的是,三组圆通常是分离的,特别是在它们的小圆(称为主圆)附近,这使得能够根据三种磨损状态对测量结果进行分类。然而,这些圆较大,并且次级圆相互重叠。因此,对于已经做出的预测存在不确定性。有可能做出错误的预测。因此,通过在统计上乘以测量结果,在所有预测中,错误的预测被最小化,这使得能够确定轮胎的磨损状态。在这种配置中,识别相同磨损状态的一系列预测N需要在一系列M次重要预测中较多。在这种情况下,为每个测量结果分配点状符号。圆形“o”符号表示预测指示轮胎中度磨损的测量结果。加号“+”符号表示预测指示重度磨损轮胎的测量结果。最后,交叉“x”符号表示预测指示轮胎实际上处于崭新状态的测量结果。
图4是由麦克风在一段时间帧内记录的声功率的频谱表示。术语“时间帧”在此被理解为意指通常较短的时间间隔,在该时间间隔期间进行记录,在此基础上建立用作测量基础的数据。该时间帧小于或等于0.5秒,或者理想地小于或等于0.25秒。
该频谱表示呈现了在给定频率范围内(在这种情况下通常为范围在0Hz至20KHz之间的可听频率范围),根据频率变化的接收的声功率(以dB为单位)。
更具体地,图4的频谱表示是通过将频率范围分解成具有预定宽度的频带,并且通过为每个频带分配等于在该频带中测量的平均功率的特征值而获得的。在这种情况下,采用了将频率范围划分为三分之一倍频带。因此,图4的每个曲线的每个点表示在行驶条件下(其中,只有行驶速度是变化的(通常,从30km/h到110km/h),而其他的所有条件都是相同的)在时间帧期间给定和测量的频带的平均声功率。
然后可以看出,表示频谱功率的曲线相对于彼此偏移,并且耗散的总声功率根据速度而增加。尽管曲线的大致形状保持相似(这证明了参数不会系统地改变磨损状态的预测),但是频谱的某些特定特征或多或少地被标记,这在基于其频谱构建的预测中产生噪声。根据本发明的第二实施方案,考虑行驶速度,特别是在大约30km/h的速度类别方面,能够改进对轮胎的磨损状态的预测。
当其他类别的一个或更多个模态改变时,以及当仅改变速度参数来比较获得的曲线时,这些观察结果重复。
图5是无论轮胎的磨损状态如何,无论行驶在各种道路上时轮胎在车辆上的工作条件如何,在车辆上对相同的轮胎组进行的一系列测量的二维表示。然而,一些测量是在潮湿或湿润的地面上进行的,车辆挡风玻璃雨刮器的启动证明了这一点。然而,由于没有记录道路上水位的测量,这些测量结果被分类为两个独特的类别:干燥和潮湿/湿润。
图5突显了基于振动声学时间测量以类别的形式的确定地面状态的方法的第三机器学习步骤的有效性。在判别空间中,在通过单个主向量表示的情况下,测量结果容易根据前述两种模态进行分类。该图表示对于沿着图的第一轴线从1到1290标引并存储为挡风玻璃雨刮器启动标记的一组测量结果,沿着图的垂直轴线的主向量的范数。这两个地面状态类别容易区分,从而形成两组测量结果,对于这两组测量结果,主向量的范数值是显著不同的。此外,在每组的中心值周围发现了测量结果的高斯分布的概念。因此,根据第三机器学习的振动声学测量结果的判别能力在源自车辆上的振动声学测量结果的主向量上得到确认。虽然有些点是异常的,但它们有限的数量容易导致以较低的测量结果冗余度来确定车辆通行的地面气象状况。另一种解决方案涉及不考虑这些异常点(由于不确定性仍然存在),并且重新初始化用于估计轮胎的磨损状态的方法。
图6是车辆行驶速度范围在20至130km/h之间、根据分布为三个相同大小的类别(“崭新”类别、“半磨损”类别和“磨损”类别)的轮胎的磨损状态的示意图。
在这种情况下,显示了无论从标称车辆配置开始的施加载荷和充气压力方面的车辆情况如何,在车辆上实现的一组振动声学测量结果。车辆在中间季节的几个时段内沿着包括城市路线、乡村道路上的路线和公路路线的道路环线行驶,这使得能够混合关于地面状态(特别是,“干燥”、“潮湿”和“湿润”的地面状态)以及关于各种类型的地面性质(特别是,“封闭”、“中等”和“开放”的地面性质)的所有条件。学习数据库不仅考虑轮胎的磨损状态,还考虑车辆的行驶速度类别作为模态。在这种情况下,对具有三种类型的轮胎的磨损状态的轮胎进行测量。然而,通过对应于“干燥”地面状态类别的特定地面状态类别,对于地面状态设置用于实现轮胎的磨损状态预测的条件。因此,如果地面状态不对应于特定地面状态类别,则不实现机器学习对轮胎的磨损状态的预测。这排除了许多振动声学测量结果,但是相对于轮胎磨损的缓慢时间演变,车辆上的测量的发生是足够的。
相对于其情况的机器学习在数学上定义了主方向。图6示出了沿着两个第一主方向(其表示图的两个表示轴线)的判别空间。机器学习在这个二维表示中识别三组圆。第一组(由虚线圆表示)表示磨损状态为“崭新”的各种概率。在这个二维判别空间中,这些圆是相互同心的。最大概率(即,大于0.9)由最小圆界定的面积定义。然后,下一个圆定义了0.1的递减概率,即值为0.8。此外,下一个圆表示了进一步降低0.1的概率,即值为0.7。由灰色实线圆表示的第二组圆表示在这个二维判别空间中磨损状态为“半磨损”的各种概率。最后,由黑色实线圆表示的第三组圆以相同的方式表示磨损状态为“磨损”的各种概率。应注意的是,三组圆通常是分离的(比图3中分离更多),特别是在它们的小圆(称为主圆)附近,这使得根据三种磨损状态分类的测量结果更加有效。然而,这些圆较大,并且次级圆相互重叠。因此,对于做出的预测存在不确定性。有可能做出错误的预测。因此,通过在统计上乘以测量结果,在所有预测中,错误的预测被最小化,这使得能够确定轮胎的磨损状态。在这种情况下,因地面类别而排除一定数量的振动声学测量结果,使错误预测最小化,从而使所述方法更加可靠。在这种配置中,识别相同磨损状态的一系列预测N需要在一系列M次重要预测中较多。在这种情况下,为每个测量结果分配点状符号。圆形“o”符号表示预测指示轮胎中度磨损的测量结果。加号“+”符号表示预测指示重度磨损轮胎的测量结果。最后,交叉“x”符号表示预测指示轮胎实际上处于崭新状态的测量结果。
图7是无论轮胎的磨损状态如何,无论行驶在各种道路上时轮胎在车辆上的工作条件如何,且无论气象状况如何,在车辆上对相同的轮胎组进行的一系列测量的二维表示。采用的路线是车辆测试轨道,其路面纹理通过ATD类型的测量结果定期监测。通过仅考虑与三个地面自然类别“开放”、“中等”和“封闭”相关的模态,第四机器学习定义了以向量表征的主方向。在这种情况下,利用两个主向量来表示判别空间,以在维度上表示判别空间。
第四机器学习在与每个模态相关的这个二维表示中识别三组圆。第一组(由虚线圆表示)表示地面性质为“中等”的各种概率。在这个二维判别空间中,圆是相互同心的。最大概率(即,大于0.9)由最小圆界定的面积定义。然后,下一个圆定义了0.1的递减概率,即值为0.8。此外,下一个圆表示进一步降低0.1的概率,即值为0.7。由灰色实线圆表示的第二组圆表示在这个二维判别空间中地面性质为“封闭或光滑”的各种概率。最后,由黑色实线圆表示的第三组圆以相同的方式表示地面性质为“开放或宏观粗糙”的各种概率。应注意的是,三组圆通常是分离的(在“开放”和“封闭”类别之间完全分离),至少在它们的最小圆(称为主圆)处分离,这使得能够根据三种地面性质对测量结果进行分类。然而,对于已经做出的预测仍然存在不确定性。有可能做出错误的预测。因此,通过在统计上乘以测量结果,在所有预测中,错误的预测被最小化,这使得能够根据前述三种类别来确定地面性质。在这种情况下,因地面状态类别而排除一定数量的振动声学测量,使错误预测最小化,从而使所述方法更加可靠。在这种配置中,识别相同磨损状态的一系列预测N需要在一系列M次重要预测中较多。在这种情况下,为每个测量结果分配点状符号。圆形“o”符号表示预测指示地面性质将是中等类型的测量结果。加号“+”符号表示预测指示光滑或封闭类型地面的测量结果。最后,交叉“x”符号表示预测指示宏观粗糙或开放类型地面的测量结果。
图7突显了基于振动声学时间测量确定地面性质的方法的第四机器学习的有效性。在判别空间中,在这种情况下,在考虑两个主方向的表示中,测量结果容易根据前述三种模态进行分类。这三个地面性质类别通过机器学习来识别并且容易区分,从而形成三组测量结果,对于这三组测量结果,主向量的范数值是显著不同的,特别是对于第一向量。因此,根据第四机器学习的振动声学测量结果的判别能力通过源自车辆上的振动声学测量结果的二维表示得到确认。虽然有些点是异常的,但它们有限的数量容易导致以较低的测量结果冗余度来确定车辆通行的地面的纹理。
图8是车辆行驶速度范围在20至130km/h之间、根据分布为三个相同大小的类别(“崭新”类别、“半磨损”类别和“磨损”类别)的轮胎的磨损状态的示意图。
在这种情况下,显示了无论从标称车辆配置开始的施加载荷和充气压力方面的车辆情况如何,在车辆上实现的一组振动声学测量。车辆在中间季节的几个时段内沿着包括城市路线、乡村道路上的路线和公路路线的道路环线行驶,这使得能够混合关于地面状态(特别是,“干燥”、“潮湿”和“湿润”的地面状态)以及关于各种类型的地面性质(特别是,“封闭”、“中等”和“开放”的地面性质)的所有条件。学习数据库不仅考虑轮胎的磨损状态,还考虑车辆的行驶速度类别作为模态。在这种情况下,对具有三种类型的轮胎的磨损状态的轮胎进行测量。然而,在进行预测之前,需要两个条件来实现轮胎的磨损状态的预测,一个条件是关于地面状态,另一个条件是关于地面性质。因此,如果地面状态不对应于特定地面状态类别,则不实现通过机器学习步骤对轮胎的磨损状态的预测。类似地,如果地面性质不对应于ATD高于0.7的特定地面性质类别,则不实现机器学习对轮胎的磨损状态的预测。这排除了许多振动声学测量结果,但是相对于轮胎磨损的缓慢时间演变,车辆上的测量的发生是足够的。
相对于其情况的机器学习在数学上定义了主方向。图8示出了沿两个第一主方向(其表示图的两个表示轴线)的判别空间。机器学习在这个二维表示中识别三组圆。第一组(由虚线圆表示)表示磨损状态为“崭新”的各种概率。在这个二维判别空间中,圆是相互同心的。最大概率(即,大于0.9)由最小圆界定的内部面积定义。然后,下一个圆定义了0.1的递减概率,即值为0.8。此外,下一个圆表示了进一步降低0.1的概率,即值为0.7。由灰色实线圆表示的第二组圆表示在这个二维判别空间中磨损状态为“半磨损”的各种概率。最后,由黑色实线圆表示的第三组圆以相同的方式表示磨损状态为“磨损”的各种概率。应注意的是,三组圆通常是分离的(比图3和图6中分离更多),特别是在它们的小圆(称为,主圆)附近,这使得根据三种磨损状态分类的测量结果更加有效。因此,对于已经做出的预测存在较低的不确定性。有可能做出错误的预测。因此,通过统计上乘以测量结果,在所有预测中,错误的预测被最小化,这使得能够确定轮胎的磨损状态。在这种情况下,因地面类别和地面性质类别而排除一定数量的振动声学测量结果,使错误预测最小化,从而使所述方法更加可靠。在这种配置中,为了确定磨损状态,识别相同磨损状态的一系列预测N需要在一系列M次连续预测中较多。在这种情况下,为每个测量结果分配点状符号。圆形“o”符号表示预测指示轮胎中度磨损的测量结果。加号“+”符号表示预测指示重度磨损轮胎的测量结果。最后,交叉“x”符号表示预测指示轮胎实际上处于崭新状态的测量结果。在该示例中没有识别错误的分类。最后,在实现预测的条件方面选择“特定”类别使得机器学习所需的计算时间和计算资源受到限制,从而考虑所有这些类别作为机器学习的模态。这相当于将学习数据库最小化为仅由机器学习保留的那些模态。此外,这支持低成本地使用在车辆上实时估计轮胎的磨损状态的方法。
申请人已经发现,考虑特定行驶速度类别也提高了轮胎的磨损状态的预测的质量。然而,预测质量方面的获益被振动声学测量的发生所抵消,除非定义了宽泛的特定行驶速度类别。
当然,在图3中描述的方法与图8中描述的方法之间,通过在机器学习的模态之间的选择或通过定义特定类别来实现自动预测的条件两者之间交替,存在与类别的角色有关的若干种可能的变型实施方案。
Claims (11)
1.一种用于估计在道路表面上行驶的车辆的安装组件的轮胎的磨损状态的方法,包括以下步骤:
-测量在给定的时间帧期间由轮胎在道路表面上滚动所产生的振动声学信号(1001);
-将时间信号(1001)转换为给定的频率范围内的频率信号(1002);
-将频率范围分割成具有预定宽度的至少一个频带,并且将表示所述至少一个频带中的频率信号的至少一个数据与至少一个频带相关联,源自测量的至少一个表示数据形成与所述测量相关的矩阵(1003)的至少一个变量;
-通过基于由一组矩阵构成的学习数据库的数据的机器学习(1004),在已知行驶条件下,根据各自表示轮胎的磨损状态的模态,预测对应于与实现的测量相关的矩阵的轮胎的磨损状态,所述一组矩阵与根据上述相同步骤记录和实现的测量相关;
-确定地面状态类别(3002);其中,如果地面状态类别(3002)是包含“干燥”地面状态类别或“干燥”和“潮湿”地面状态类别的特定地面状态类别(3003),则地面状态类别(3002)是通过机器学习步骤(1004)预测轮胎的磨损状态的条件;
-确定地面性质类别(4002);其中,如果地面性质类别(4002)是包含称为“开放”的地面性质类别的特定地面性质类别(4003),则地面性质类别(4002)是通过机器学习(1004)预测轮胎的磨损状态的条件;以及
-在一系列M次连续预测中的N次相同预测之后,确定轮胎的磨损状态(1005)。
2.根据权利要求1所述的用于估计轮胎的磨损状态的方法,其中,所述方法包括以下步骤:
-确定轮胎的行驶速度类别(2002),其幅度是最大行驶速度的分数,优选地,最大行驶速度是300km/h;其中,行驶速度类别(2002)是机器学习(1004)的模态。
3.根据前一权利要求所述的用于估计轮胎的磨损状态的方法,其中,确定轮胎的行驶速度类别(2002)包括以下步骤:
-记录在给定的第二时间帧期间由轮胎在道路表面上滚动所产生的振动声学信号(1001)的第二测量结果;
-将第二时间信号(1001)转换为给定的第二频率范围内的第二频率信号(1002);
-将第二频率范围分割成具有预定宽度的至少一个频带,并且将表示所述至少一个频带中的第二频率信号的至少一个数据与至少一个频带相关联,源自第二测量结果的至少一个表示数据形成与所述第二测量结果相关的矩阵(1003)的至少一个变量;
-通过基于由一组矩阵构成的学习数据库的数据的第二机器学习(2004),在已知行驶条件下,根据各自表示轮胎的行驶速度类别的模态,确定对应于与实现的第二测量结果相关的矩阵的轮胎的行驶速度类别(2002),所述一组矩阵与根据上述相同步骤记录和实现的测量结果相关。
4.根据前述权利要求中任一项所述的用于估计轮胎的磨损状态的方法,其中,所述地面状态类别(3002)包括在含有干燥、潮湿、湿润、下雪和结冰类别的组中。
5.根据权利要求1至4中任一项所述的用于估计轮胎的磨损状态的方法,其中,确定地面状态类别(3002)包括以下附加步骤:
-记录在给定的第三时间帧期间由轮胎在道路表面上滚动所产生的振动声学信号(1001)的第三测量结果;
-将第三时间信号转换为给定的第三频率范围内的第三频率信号(1002);
-将第三频率范围分割成具有预定宽度的至少一个频带,并且将表示所述至少一个频带中的第三频率信号的至少一个数据与至少一个频带相关联,源自第三测量结果的至少一个表示数据形成与所述第三测量结果相关的矩阵(1003)的至少一个变量;
-通过基于由一组矩阵构成的学习数据库的数据的第三机器学习(3004),在已知行驶条件下,根据各自表示至少一个地面状态类别的模态,确定对应于与实现的第三测量结果相关的矩阵的地面状态类别(3002),所述一组矩阵与根据上述相同步骤记录和实现的测量结果相关。
6.根据前述权利要求中任一项所述的用于估计轮胎的磨损状态的方法,其中,所述地面性质类别(4002)包括在含有开放、中等和封闭类别的组中。
7.根据权利要求1至6中任一项所述的用于估计轮胎的磨损状态的方法,其中,所述特定地面性质类别(4003)包括平均纹理深度大于0.7、优选地大于0.9、非常优选地大于1.0的地面。
8.根据权利要求1至7中任一项所述的用于估计轮胎的磨损状态的方法,其中,确定地面性质类别(4002)包括以下附加步骤:
-记录在给定的第四时间帧期间由轮胎在道路表面上滚动所产生的振动声学信号(1001)的第四测量结果;
-将第四时间信号(1001)转换为给定的第四频率范围内的第四频率信号(1002);
-将第四频率范围分割成具有预定宽度的至少一个频带,并且将表示所述至少一个频带中的第四频率信号的至少一个数据与至少一个频带相关联,源自第四测量结果的至少一个表示数据形成与所述第四测量结果相关的矩阵(1003)的至少一个变量;
-通过基于由一组矩阵构成的学习数据库的数据的第四机器学习(4004),在已知行驶条件下,根据各自表示至少一个地面性质类别的模态,确定对应于与实现的第四测量结果相关的矩阵的地面性质类别(4002),所述一组矩阵与根据上述相同步骤记录和实现的测量结果相关。
9.根据前一权利要求结合权利要求1至5中任一项所述的用于估计轮胎的磨损状态的方法,其中,确定地面性质类别的步骤包括地面状态类别(3002)作为第四机器学习的模态。
10.根据前述权利要求中任一项所述的用于估计轮胎的磨损状态的方法,其中,机器学习方法(1004,2004,3004,4004)的至少一种包括在含有神经网络方法、判别分析方法、支持向量机方法、boosting方法、K-最近邻方法和逻辑回归的组中。
11.根据前述权利要求中任一项所述的用于估计轮胎的磨损状态的方法,其中,轮胎的磨损状态包括在含有崭新和磨损,优选地还含有半磨损的组中。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2008233A FR3113128B1 (fr) | 2020-08-03 | 2020-08-03 | PROCEDE d’ESTIMATION DE L’ETAT D’USURE d’un PNEUMATIQUE |
FRFR2008233 | 2020-08-03 | ||
PCT/FR2021/051408 WO2022029382A1 (fr) | 2020-08-03 | 2021-07-28 | Procede d'estimation de l'etat d'usure d'un pneumatique |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116113817A true CN116113817A (zh) | 2023-05-12 |
Family
ID=73038192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202180056890.6A Pending CN116113817A (zh) | 2020-08-03 | 2021-07-28 | 用于估计轮胎的磨损状态的方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230271458A1 (zh) |
EP (1) | EP4188722A1 (zh) |
JP (1) | JP2023537350A (zh) |
CN (1) | CN116113817A (zh) |
FR (1) | FR3113128B1 (zh) |
WO (1) | WO2022029382A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220309840A1 (en) * | 2021-03-24 | 2022-09-29 | Bridgestone Americas Tire Operations, Llc | System and method for reconstructing high frequency signals from low frequency versions thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3015036B1 (fr) * | 2013-12-18 | 2016-01-22 | Michelin & Cie | Methode de detection acoustique de l'etat de la route et du pneumatique |
FR3045815A1 (fr) | 2015-12-17 | 2017-06-23 | Michelin & Cie | Procede de representation cartographique de donnees concernant l'etat d'une route |
US10960712B2 (en) * | 2018-06-28 | 2021-03-30 | Nissan North America, Inc. | Tire wear estimation using a hybrid machine learning system and method |
KR102149458B1 (ko) * | 2018-12-31 | 2020-08-31 | 넥센타이어 주식회사 | 주행 중 타이어와 노면의 상태 모니터링 시스템 및 방법 |
-
2020
- 2020-08-03 FR FR2008233A patent/FR3113128B1/fr active Active
-
2021
- 2021-07-28 JP JP2023507766A patent/JP2023537350A/ja active Pending
- 2021-07-28 EP EP21762750.4A patent/EP4188722A1/fr active Pending
- 2021-07-28 WO PCT/FR2021/051408 patent/WO2022029382A1/fr active Application Filing
- 2021-07-28 US US18/019,376 patent/US20230271458A1/en active Pending
- 2021-07-28 CN CN202180056890.6A patent/CN116113817A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
FR3113128A1 (fr) | 2022-02-04 |
EP4188722A1 (fr) | 2023-06-07 |
WO2022029382A1 (fr) | 2022-02-10 |
FR3113128B1 (fr) | 2023-05-19 |
JP2023537350A (ja) | 2023-08-31 |
US20230271458A1 (en) | 2023-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7329068B2 (ja) | 車両タイヤ性能モデリング及びフィードバックのためのシステム及び方法 | |
CN105829883B (zh) | 用于对道路和轮胎的状态进行声波检测的方法 | |
JP5642682B2 (ja) | タイヤと路面との摩擦を見積もる方法及びプログラム並びに乗り物 | |
CN110914683B (zh) | 用于检测道路和轮胎状况的方法 | |
US10989561B2 (en) | Method for mapping data relating to road conditions | |
CN112304633B (zh) | 一种路面湿滑状态下汽车制动安全性风险识别方法 | |
CN104540717A (zh) | 路面状态判断方法和设备 | |
CN104691550A (zh) | 确定浮滑的风险 | |
JP7416833B2 (ja) | 道路区画にある車両に対して個別の摩擦係数を予測する方法および装置 | |
CN112440629B (zh) | 用于提取轮胎特性的变化的方法 | |
CN116113817A (zh) | 用于估计轮胎的磨损状态的方法 | |
KR20210040212A (ko) | 노면 상태 추정 장치 및 이를 이용한 노면 상태 추정 방법 | |
CN117485369A (zh) | 一种物流机器人运输中变形障碍物实时检测方法 | |
Tuononen et al. | Review on tire-road-friction potential estimation technologies | |
Erdogan | New sensors and estimation systems for the measurement of tire-road friction coefficient and tire slip variables | |
WO2006054976A1 (en) | Determining travel surface characteristics by analyzing sensor waveforms | |
CN114206691B (zh) | 用于在轮胎运转期间估算路面上的水位的方法 | |
JP7551934B2 (ja) | 音響フットプリント分析を使用してタイヤ摩耗を推定するためのシステム及び方法 | |
CN116189447B (zh) | 一种基于大数据的路面摩擦分析方法 | |
JP2024532318A (ja) | タイヤ膨張圧力の関数としてのタイヤに作用する垂直負荷の推定 | |
US20240118175A1 (en) | System and method for identifying a tire contact length from radial acceleration signals | |
KR20240136658A (ko) | 이상 탐지 기반의 후처리를 이용한 노면상태 탐지 장치 및 이를 이용한 방법 | |
CN117751280A (zh) | 用于确定施加至滚动时的充气轮胎的载荷的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |