CN1161002C - Organic electroluminescent device - Google Patents

Organic electroluminescent device Download PDF

Info

Publication number
CN1161002C
CN1161002C CNB031210635A CN03121063A CN1161002C CN 1161002 C CN1161002 C CN 1161002C CN B031210635 A CNB031210635 A CN B031210635A CN 03121063 A CN03121063 A CN 03121063A CN 1161002 C CN1161002 C CN 1161002C
Authority
CN
China
Prior art keywords
layer
organic
material
device
transport layer
Prior art date
Application number
CNB031210635A
Other languages
Chinese (zh)
Other versions
CN1457105A (en
Inventor
勇 邱
邱勇
高裕弟
魏鹏
张德强
王立铎
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN02116537A priority Critical patent/CN1409412A/en
Priority to CN 02125484 priority patent/CN1398146A/en
Application filed by 清华大学 filed Critical 清华大学
Priority to CNB031210635A priority patent/CN1161002C/en
Publication of CN1457105A publication Critical patent/CN1457105A/en
Application granted granted Critical
Publication of CN1161002C publication Critical patent/CN1161002C/en

Links

Abstract

本发明涉及一种有机电致发光器件。 The present invention relates to an organic electroluminescent device. 该器件的空穴传输层(4)采用有机量子阱结构,这种量子阱传输结构由宽能带的有机材料A和窄能带的有机材料B两种材料层交替重叠组成,两种有机材料的能级互相匹配(即材料A的能带能实现对材料B的能带的包裹),在量子阱界面处形成空穴的势垒。 A hole transport layer of the device (4) organic quantum well structure, the two materials of an organic material layer of an organic material such transport quantum well structure composed of A wide band and narrow band of composition B are alternately superimposed, two organic materials energy levels match each other (i.e., to achieve a band of wrapping material a material B energy band), a potential barrier in the hole at the quantum well interface. 本发明在空穴传输层采用的有机量子阱结构能够显著控制空穴载流子在空穴传输层中的迁移,实现了发光区域电子和空穴的注入平衡,从而提高了器件的发光效率和发光亮度。 In the present invention, the organic hole transport layer, a quantum well structure can be used to control significant hole carrier mobility in the hole transport layer, light-emitting region to achieve a balanced injection of electrons and holes, thereby improving the light emitting efficiency of the device and emission luminance. 如果组成有机量子阱结构的有机材料B为染料C,器件随空穴传输层中的有机量子阱周期数不同而具有不同发光中心,即可以通过控制空穴传输层中的有机量子肼周期数来改变器件中电子和空穴的复合发光区域,进而调整器件的发光中心。 If the composition of the organic material of the quantum well structure of an organic dye B is C, the device with the number of quantum wells periodic organic hole transport layer varies with different luminescent center, which can be controlled by the number of the organic hole transport layer quantum hydrazine period of changing device composite light-emitting region of electrons and holes, thereby adjusting the light emitting device of the center.

Description

一种有机电致发光器件 An organic electroluminescent device

技术领域 FIELD

本发明涉及一种有机电致发光器件,更具体的说,本发明涉及一种发光效率高、发光亮度大的有机电致发光器件,还涉及一种可调整发光中心的有机电致发光器件。 The present invention relates to an organic electroluminescent device, and more particularly, the present invention relates to a high emission efficiency, high brightness light emitting organic electroluminescent device further relates to an adjustable center luminescent organic electroluminescent device.

背景技术 Background technique

当今,随着多媒体技术的发展和信息社会的来临,对平板显示器性能的要求越来越高。 Today, with the advent of multimedia technology and the development of information society, the demand for higher and higher performance flat panel displays. 近年新出现的三种显示技术:等离子显示器、场发射显示器和有机电致发光显示器,均在一定程度上弥补了阴极射线管和液晶显示器的不足。 In recent years, three kinds of emerging display technologies: plasma displays, field emission displays and organic electroluminescent displays are cathode ray tubes up for the lack of a liquid crystal display and to a certain extent. 其中,有机电致发光显示器具有自主发光、低电压直流驱动、全固化、视角宽、颜色丰富等一系列的优点,与液晶显示器相比,有机电致发光显示器不需要背光源,视角大,功率低,其响应速度可达液晶显示器的1000倍,其制造成本却低于同等分辨率的液晶显示器,因此,有机电致发光显示器具有广阔的应用前景。 Wherein the organic electroluminescent display having a light emission independent, low voltage DC drive, fully cured, wide viewing angle, color and rich series of advantages, compared with liquid crystal displays, organic electroluminescence displays do not require a backlight, a large viewing angle, power is low, the response speed of the liquid crystal display up to 1000 times, its manufacturing costs are lower than the same resolution liquid crystal display, therefore, an organic electroluminescent display has a wide application prospect.

1987年,美国Kodak公司的CWTANG等人(CWTang,SASlyke,Appl.Phys.Lett.51,913(1987))首次采用双层结构,以芳香二胺类衍生物作为空穴传输材料,以一种荧光效率很高且能用真空镀膜法制成均匀致密的高质量薄膜的有机小分子材料——Alq3作为发光层材料,制备出较高量子效率(1%)、高发光效率(>1.51m/W)、高亮度(>1000cd/m2)和低驱动电压(<10V)的有机电致发光器件(Organic ElectroluminescentDevices,以下简称OLEDs),使得该领域的研究工作进入一个崭新的时代。 In 1987, the US Kodak Company CWTANG et al (CWTang, SASlyke, Appl.Phys.Lett.51,913 (1987)) for the first time using double structure to an aromatic diamine derivative as a hole transporting material, in a capable of high efficiency fluorescent organic small molecule material into a uniform dense SYSTEM vacuum coating film --Alq3 quality light-emitting layer materials to prepare a high quantum efficiency (1%), high luminous efficiency (> 1.51m / W ), high brightness (> 1000cd / m2) and low driving voltages (<10V) of the organic electroluminescent device (organic ElectroluminescentDevices, hereinafter referred to as the OLEDs), such that the field of research into a new era. 1990年,英国Cambridge大学卡文迪许实验室的Burroughes和他的同事发现聚合物材料也具有良好的电致发光性能,这个重要的发现将有机电致发光材料的研究推广到聚合物领域。 In 1990, the Cavendish Laboratory of Cambridge University, UK Burroughes and his colleagues found that the polymer materials also have good electroluminescent properties, this important discovery research will have a light-emitting organic electroluminescent material extended to the field of polymers. 十余年来,人们不断地提高有机电致发光器件的制备工艺,其相关技术发展迅速。 More than ten years, people continue to have a manufacturing process to improve the organic electroluminescent device, the rapid development of the relevant technology.

OLEDs的内量子效率主要取决于载流子的注入、传输、复合效率,同时器件的发光效率也受到电子和空穴注入平衡的强烈影响。 OLEDs internal quantum efficiency depends injection, transmission, the carrier recombination efficiency, while the efficiency of the light emitting device is also strongly affected the balance of electron and hole injection. 在传统的NPB/Alq3双层器件中,NPB的空穴传输能力远远大于Alq3对电子的传输能力,因此导致了在器件中载流子传输的严重不平衡,从而降低了器件的发光效率。 In conventional NPB / Alq3 bilayer devices, of NPB hole transport ability is much greater than the transmission capacity of Alq3 electrons, thus resulting in a serious imbalance in carrier transport in the device, thereby reducing the emission efficiency of the device. 人们发现,通过使用合适的空穴传输材料或者使用合适的器件结构来匹配器件中的电子传输材料(如Alq3等)是提高器件性能的有效办法。 It was found to match the electron transport material in the device (e.g., such as Alq3) is an effective way to improve device performance by using a suitable hole transporting material using a suitable device or structure. 第一种方案是使用搀杂的办法在空穴传输层中添加rubrene材料,Y.Hamada和MSJang等人(Y.Hamada,T.Sano,K.Shibata,and K.Kuroki,Jpn.J.Appl.Phys.,Part 234,L824(1995);MSJang,SYSong,HKShim,T.Zyung,SDJung,LMDo,Synth.Met.91,317(1997))都进行了类似的研究工作。 The first solution is added rubrene material used in the hole transporting layer doped approach, Y.Hamada and MSJang et al (Y.Hamada, T.Sano, K.Shibata, and K.Kuroki, Jpn.J.Appl. phys, Part 234, L824 (1995);. MSJang, SYSong, HKShim, T.Zyung, SDJung, LMDo, Synth.Met.91,317 (1997)) have carried out similar research. Aziz等人(H.Aziz,Z.Popovic,NXHu,AMHor,and G.Xu,Science 283,1900(1999);H.Azizand ZDPopovic,Appl.Phys.Lett.80,2180(2002))认为其作用的机理在于通过搀杂rubrene材料,使得搀杂的rubrene分子担当空穴陷阱的作用,从而使得器件的性能得以提高。 Aziz et al. (H.Aziz, Z.Popovic, NXHu, AMHor, and G.Xu, Science 283,1900 (1999); H.Azizand ZDPopovic, Appl.Phys.Lett.80,2180 (2002)) that its role the mechanism by doping rubrene in that material, such that the rubrene doped molecules play the role of hole trap, so that the device performance is improved. 另外一种方法就是使用量子阱结构来提高器件效率。 Another method is to use a quantum well structure to improve device efficiency. 有机量子阱结构在帮助降低OLEDs发光光谱宽度,提高器件发光效率,转换器件发光颜色等方面取得了一些成功。 The organic quantum well structures have had some success in helping to reduce the width of the emission spectrum of OLEDs, aspects of the device to improve light emission efficiency, light emission color conversion device. 但目前的研究中有机量子阱结构普遍用来提高发光层的电子和空穴的浓度,进而提高载流子的复合效率。 However, the current study organic quantum well structures are commonly used to increase the concentration of electrons and holes in the light emitting layer, and thus increase recombination efficiency of carriers. 比如,N.Tada等人(N.Tada,S.Tatsuhara,A.Fujii,Y.Ohmori and K.Yoshino,Jpn.J.Appl.Phys.36,421(1997))在OLEDs的发光层使用Alq3和TPD交替多层量子阱结构,器件的发光效率较传统结构(发光层仅使用Alq3)有所提高。 For example, N.Tada et al (N.Tada, S.Tatsuhara, A.Fujii, Y.Ohmori and K.Yoshino, Jpn.J.Appl.Phys.36,421 (1997)) using Alq3 in the light-emitting layer OLEDs and TPD alternating multilayer quantum well structure, the light emitting efficiency of the device than the conventional structure (the light emitting layer is formed using only Alq3) increased. 类似的实验进一步证实,这种性能的改善,主要归功于发光层载流子浓度的提高。 Similar experiments further demonstrated that this improvement in performance, mainly due to increase of the carrier concentration of the light emitting layer. 但在发光层采用有机量子阱结构,只是提高了发光层载流子的浓度,在发光区域仍不能使得电子和空穴达到注入平衡,过量的空穴仍会导致发光效率的下降。 But the use of the organic light emitting layer quantum well structure, but increases the concentration of the carrier light emitting layer, the light emitting region such that electrons and holes can not reach equilibrium injection, the excess holes will lead to a decline in luminous efficiency. 因此发光层采用这种结构提高载流子复合效率的能力还比较有限。 Thus the light emitting layer to improve the ability of this structure the carrier recombination efficiency is still relatively limited.

发明内容 SUMMARY

本发明的目的是提供一种发光效率高、发光亮度大的有机电致发光器件。 Object of the present invention is to provide a high emission efficiency, emission luminance is large organic electroluminescent device.

本发明的另一目的是提供一种可调整发光中心的有机电致发光器件。 Another object of the present invention is to provide an adjustable center luminescent organic electroluminescent device.

为实现上述目的,本发明的技术方案是提供一种有机电致发光器件,该器件包括透明基片、第一电极层和第二电极层,以及夹在所述第一电极层、第二电极层之间的空穴传输层和电子传输层,其特征在于:空穴传输层采用有机量子阱结构,这种量子阱传输结构由宽能带的有机材料A和窄能带的有机材料B两种材料层以一定的周期数交替重叠组成,这两种有机材料的能级满足下列关系:(I)有机材料A的最高占有轨道能级低于有机材料B的最高占有轨道能级(以下简称HOMO能级),(II)有机材料A的最低空轨道能级高于有机材料B的最低空轨道能级(以下简称LUMO能级),其中有机量子阱结构的周期数为1~10的整数。 To achieve the above object, the technical solution of the present invention is to provide an organic electroluminescent device, the device comprising a transparent substrate, a first electrode layer and the second electrode layer, and sandwiched between the first electrode layer, a second electrode a hole transport layer and an electron transporting layer between the layers, wherein: the hole transport layer using an organic quantum well structure, materials of organic origin such quantum well structures of a wide transmission band a and B two narrow energy band seed material layer overlaps certain number of cycles of alternating composition, the level of both organic material satisfies the following relationship: highest occupied molecular orbital level (I) a is an organic material below the highest occupied molecular orbital energy level of the organic material B (hereinafter referred to as HOMO level), (II) the lowest unoccupied molecular orbital level of the organic material a is higher than the lowest unoccupied molecular orbital level of the organic material B (hereinafter referred to as LUMO level), the number of cycles in which the organic quantum well structure is an integer of 1 to 10 .

上述技术方案中的空穴传输层采用的两种有机材料的能级互相匹配(同时满足上述关系式(I)和(II)),即在有机量子阱结构中,材料A的能带能实现对材料B的能带的包裹。 Each energy level matching two organic material of the hole transport layer in the above technical solution employed (satisfy the above relation (I) and (II)), i.e. the organic quantum well structure, band material A can be achieved wrapping of material B energy band. 由于界面处载流子倾向于向能量较低位置移动,因此在材料A层和B层的界面处,空穴和电子都倾向于向材料B层移动,即材料A层对材料B层的能级势垒作用,使得电子和空穴的势阱都在材料B层中。 Since the carriers at the interface tends to move to a lower energy position, the material A layer and B layer at the interface, holes and electrons tend to move the material layer B, i.e., A layer of material of the material layer B can be grade barrier effect, so that electrons and holes in the potential well layer B material. 当空穴经由有机量子阱结构传输时,空穴载流子大量分布在材料B层中,而在材料A层中分布的几率很小,在材料A层中只能通过隧穿方式传输,同时由于材料B层和材料A层界面处存在空穴的势垒,空穴隧穿A层需要克服势垒而损耗能量。 When the hole transport via organic quantum well structure, the distribution of a large number of hole carriers in the material layer B, and the probability distribution of the material in the layer A is small, the material in the layer A through only by way of a transmission tunnel, and because the presence of the hole material a and the material B layers at the interface of the barrier layer, the hole tunneling barrier layer a and to overcome the energy losses. 从而可以得出:(1)界面的能级势垒越大,空穴载流子穿越界面需要消耗更多的能量,从而有更多的载流子因能量不够而被束缚在材料B层中,不能通过整个量子阱结构;(2)随着量子阱周期数的提高,载流子通过量子阱传输需要经过的界面随之增多,也会使得通过整个量子阱结构的空穴数量减少,起到阻挡空穴的作用。 It can be drawn: the greater the (1) barrier interface level, the interface through hole carriers need to consume more energy, so there are more carriers to be bound due to insufficient energy in the material layer B , pass through the entire quantum well structure; (2) with the increase of the number of quantum wells period, the carrier transmitted by the quantum well to go through the interface increase, so will the number of holes through the entire quantum well structure is reduced, from to effect blocking holes. 因此,选择组成量子阱结构的材料及其周期数可以很好的控制空穴载流子在空穴传输层中的迁移,实现了发光区域电子和空穴的注入平衡,从而提高了器件的发光效率和发光亮度。 Accordingly, material selection and number of cycles of the quantum well structure can be well controlled hole carrier mobility in the hole transport layer, light-emitting region to achieve a balanced injection of electrons and holes, thereby improving the light emitting device efficiency and emission luminance.

在本发明的技术方案中所述的有机材料B可以是一种染料C。 In the aspect of the present invention, the organic material may be a dye B C.

研究表明:在量子阱传输层结构中,(1)界面的能级势垒越大,载流子穿越界面需要消耗更多的能量,从而有更多的载流子因能量不够而被束缚在材料C层中,不能通过整个量子阱结构;(2)随着周期数的提高,载流子通过量子阱传输需要经过的界面随之增多,也会使得通过量子阱结构的载流子数量减少,起到阻挡载流子的作用。 Studies show that: the transport layer in the quantum well structure, (1) the greater the level of the interface potential barrier, the carriers through the interface need to consume more energy, so there are more carriers to be bound due to insufficient energy in material layer C, pass through the entire quantum well structure; (2) with the increase of the number of cycles, the carrier transmitted by the quantum well to go through the interface increase, so will the number of quantum well structure is reduced by the carrier , acts as a barrier carriers. 因此,当量子阱界面处电子和空穴势垒很小时(<0.4eV),就可以使得大部分空穴被束缚在量子阱结构中,小部分空穴可以越过量子阱进一步传输。 Thus, when the quantum well of electrons and holes at the interface barrier is small (<0.4eV), such that most of the holes can be trapped in the quantum well structure, a small part of the holes may be further transmitted over the quantum well. 同时,电子在电子传输层中与传输到此的小部分空穴复合之后,剩余的电子也可以越过小的量子阱势垒,而传输进入量子阱结构的空穴传输层中,同束缚在量子阱中的空穴进一步复合,从而实现两个发光中心同时发光。 Meanwhile, after the electron transporting layer in the electron-hole recombination and a small part of this transport, the remaining electrons can cross the barrier of small quantum well, the quantum well structure are transmitted into the hole transport layer, the same quantum bound further hole trap compound in order to achieve two light emitting centers simultaneously. 通过调节有机量子阱结构的周期数,可以使得发光中心存在于电子传输层(此时周期数少,大部分空穴通过量子阱结构,发出电子传输层材料的EL光谱)或者空穴传输层(此时周期数多,空穴完全束缚在量子阱结构中,电子传输层电子传入量子阱结构和空穴复合,发出有机染料C的EL光谱),或者同时存在于电子传输层和空穴传输层中。 By adjusting the number of cycles of organic quantum well structure, so that the light emission center may be present in the electron transporting layer (a small number of cycles at this time, most of the holes by a quantum well structure, the EL spectra emitted electron transport layer material) or a hole transport layer ( at this time, the number of multiple cycles, a hole completely bound quantum well structure, electron transport layer and a quantum well structure incoming electron hole recombination emitted spectrum of the organic EL dye of C), or both present in the electron transport layer and the hole transport layer. 那么,器件随空穴传输层中的有机量子阱周期数不同而具有不同的发光中心,也就是说可以通过控制空穴传输层中的有机量子阱周期数来改变器件中电子和空穴的复合发光区域,进而调整器件的发光中心。 Then, a quantum well device with the number of cycles the organic hole transport layer varies with different emission center, that is a composite device can be varied by controlling the electron and hole quantum wells the number of cycles the organic hole transport layer light emitting region, thereby adjusting the light emitting device of the center.

在本发明的技术方案中所述的第一电极层和空穴传输层之间可夹有一层缓冲层,所述的空穴传输层和电子传输层之间可夹有一层过渡层。 A buffer layer may be sandwiched between the aspect of the present invention, the first electrode layer and a hole transport layer, a transition layer is sandwiched between the hole transport layer and an electron transporting layer.

本发明提出的有机电致发光器件,具有以下优点:①在空穴传输层采用的有机量子阱结构能够显著控制空穴载流子在空穴传输层中的迁移,从而实现了发光区域电子和空穴的注入平衡,进而提高了器件的发光效率和发光亮度;②如果组成有机量子阱结构的窄能带的有机材料B为染料C,器件随空穴传输层中的有机量子阱周期数不同而具有不同发光中心,也就是说可以通过控制空穴传输层中的有机量子阱周期数来改变器件中电子和空穴的复合发光区域,进而调整器件的发光中心。 The present invention provides an organic electroluminescent device has the following advantages: ① organic quantum well structures used in the hole transport layer can be controlled significantly hole carrier mobility in the hole transport layer, thereby realizing a light emitting region and the electron injection balance of holes, thus improving the luminescent efficiency and luminance of the device; ② If the composition of the quantum well structure of an organic narrow band of the organic material B is a dye C, the device with the number of quantum wells periodic organic hole transport layer different having different luminescent center, i.e. may be a composite light emitting region of the device to change the electron and hole by controlling the number of quantum wells periodic organic hole transport layer, thereby adjusting the light emitting device of the center.

附图说明 BRIEF DESCRIPTION

下面结合附图通过具体实施方式、实施例加以说明,本发明会变得更加清楚。 DRAWINGS DETAILED be described by way of embodiments, embodiments, the present invention will become more apparent.

图1是本发明提出的有机电致发光器件的结构示意图(示意图的器件结构中包括可有可无的缓冲层和过渡层),其中1是透明基片,2是第一电极层(阳极层),3是缓冲层,4是空穴传输层(具有有机量子阱结构),5是过渡层,6是电子传输层,7是第二电极层(阴极层),8是电源。 FIG 1 is a first electrode layer (anode layer has proposed structural diagram of an organic electroluminescent device (the device comprising a structural diagram of the buffer layer and the optional transition), where 1 is the transparent substrate 2 of the present invention is ), a buffer layer 3, a hole transport layer 4 (having an organic quantum well structure), a transition layer 5, electron transporting layer 6, 7 is a second electrode layer (cathode layer), 8 is a power supply.

图2、图3是本发明提出的器件结构如结构式(1)所示的OLEDs的能级示意图,图3还表现出载流子在有机量子阱结构中的分布。 2, FIG. 3 is a proposed structure of the device structure of the present invention of formula (1) a band diagram of OLEDs shown in FIG. 3 also exhibited an organic carrier distribution in the quantum well structure.

图4是本发明提出的具有不同周期数n的OLEDs的亮度—电流密度曲线(器件结构如结构式(1)所示)。 FIG 4 is a luminance having different periods n of the OLEDs of the present invention is proposed - current density curve (device structure of formula (1)).

图5是本发明提出的具有不同周期数n的OLEDs的发光效率—电流密度曲线(器件结构如结构式(1)所示)。 FIG 5 is made of the present invention having different numbers of emission efficiency of the OLEDs period n - current density curve (device structure of formula (1)).

图6是本发明提出的器件结构如结构式(2)所示的OLEDs的能级示意图。 FIG 6 is a band diagram of the proposed device structure of the present invention as shown in OLEDs (2) structural formula.

图7是本发明提出的具有不同周期数n的OLEDs的亮度—电流密度曲线(器件结构如结构式(2)所示)。 FIG 7 is a luminance having different number of cycles n of OLEDs made according to the invention - current density curve (device structure of formula (2)).

图8是本发明提出的具有不同周期数n的OLEDs的发光效率—电流密度曲线(器件结构如结构式(2)所示)。 FIG 8 is made of the present invention having different numbers of emission efficiency of the OLEDs period n - current density curve (device structure of formula (2)).

图9是本发明提出的具有不同周期数n的OLEDs的EL光谱图(器件结构如结构式(2)所示)和具有结构式(5)的器件的EL光谱图(已归一化),其中曲线(a)的n=0,曲线(b)的n=2,曲线(c)的n=4,曲线(d)的n=6,曲线(e)对应的器件结构如结构式(5)。 FIG 9 is an EL spectrum of the EL spectrum (device structure of formula (2)) have different cycle number n of the OLEDs made according to the present invention and the device having the structure of formula (5) is (are normalized), wherein the curve (a), n = 0, curve (b) of n = 2, the curve (c), n = 4, the curve (d), n = 6, curve (e) corresponding to the device structure of the formula (5).

下面结合附图和具体实施方式详细阐述本发明的内容,应该理解本发明并不局限于下述优选实施方式,优选实施方式仅仅作为本发明的说明性实施方案。 The present invention is explained in detail below in conjunction with the accompanying drawings and specific embodiments, it should be understood that the present invention is not limited to the following preferred embodiments, as preferred embodiments are merely illustrative embodiments of the present invention.

具体实施方式 Detailed ways

为参考起见,把本说明书中涉及的有机材料的缩写及全称对照表列示如下:表1 For reference, the abbreviations of the organic material present specification relates to the full name and the table are as follows: Table 1

为更清楚的阐述本发明的具体实施方式、实施例,现说明以下几点: Is more clearly set forth specific embodiments of the present invention, embodiments will now be described following:

①本发明提出的OLEDs的发光区域位于电子传输层或/和空穴传输层;②本发明提出的OLEDs的空穴传输层、电子传输层以及可包含的缓冲层、过渡层都是OLEDs的有机功能层。 ① of the present invention proposed a light emitting region located OLEDs electron transport layer or / and a hole transport layer; the organic hole transporting layer OLEDs ② proposed invention, the electron transporting layer and the buffer layer may include the transition layer are of OLEDs functional layer.

本发明提出的有机电致发光器件的第一种结构如图1所示,其中:1为透明基片,可以是玻璃或是柔性基片,柔性基片采用聚酯类、聚酰亚胺类化合物中的一种材料;2为第一电极层(阳极层),可以采用无机材料或有机导电聚合物,无机材料一般为氧化铟锡(以下简称ITO)、氧化锌、氧化锡锌等金属氧化物或金、铜、银等功函数较高的金属,最优化的选择为ITO,有机导电聚合物优选为PEDOT、PANI中的一种材料;3为缓冲层,一般采用酞菁类、聚丙烯酸酯类、聚酰亚胺类、含氟聚合物、无机氟化盐、无机氧化物或金刚石中的一种材料,本发明优选为CuPc;4为空穴传输层,采用有机量子阱结构,这种量子阱传输结构由宽能带的有机材料A和窄能带的有机材料B两种材料层交替重叠组成,这两种材料的能级互相匹配(即同时满足上述关系式(I)和(II),材料A的能带能实现对 According to the present invention there is proposed a structure in a first organic electroluminescent device shown in Figure 1, wherein: a transparent substrate, may be glass or a flexible substrate, the flexible substrate is a polyester type, polyimide material compounds; 2 is a first electrode layer (anode layer), may be employed an inorganic material or an organic conducting polymer, an inorganic material is generally indium tin oxide (hereinafter referred to as ITO), zinc oxide, tin oxide, zinc oxide and other metal or gold, copper, silver, other high work function metal choices for the optimization of ITO, an organic conducting polymer is preferably of PEDOT, PANI of one material; buffer layer 3, the general phthalocyanine, polyacrylic acid esters, polyimides, fluoropolymers, inorganic fluoride, or inorganic oxide material in the diamond, the present invention is preferably CuPc; 4 a hole transport layer, organic quantum well structure, which a layer of organic material, the two materials of the quantum well types of transmission structures of a wide band and a narrow band of the organic material B composed of alternately stacked, each energy level matching of the two materials (i.e., satisfies the above relation (I) and ( II), the energy band of the material a can be achieved 料B的能带的包裹),并且由于材料A层对材料B层的能级势垒作用,使得电子和空穴的势阱在材料B层中,材料A是三苯胺类(如NPB、TPD、MTDATA)、咔唑类(如PVK、BCP、Bphen)、吡咯啉类或噁二唑类(如TPBi、PBD)化合物中的一种材料,材料B是酞菁类(如CuPc、H2Pc、VOPc)化合物中的一种材料,第一种结构优选为(NPB/CuPc)n的多层量子阱结构,NPB和CuPc的HOMO能级分别为-5.5eV、-4.8eV,LUMO分别为-2.5eV、-2.7eV,从该优选(NPB/CuPc)n作空穴传输层的器件的能级示意图(见图2、图3)可以看出,由于NPB层对CuPc层的势垒作用,在CuPc层中形成了电子和空穴的势阱;5为过渡层,采用与电子传输层材料能级相匹配的材料,如果空穴传输层的多层量子阱结构优选为(NPB/CuPc)n,过渡层优选为NPB;6为电子传输层,一般采用金属有机配合物或噁二唑类化合物中的一种材料,经过优选为Alq3、Al(Saph-q)、Ga(Saph Wrapper can belt B), and since the action level of the barrier layer material A material B layer, such that the electrons and holes in the potential well layer of material B, the material A is a triphenyl amine (e.g., NPB, TPD , MTDATA), carbazoles (e.g., PVK, BCP, Bphen), pyrroline type or oxadiazole-based (such as TPBi, PBD) of a material compound, B is a phthalocyanine-based material (e.g. CuPc, H2Pc, VOPc ) compound material, preferably from a first configuration (NPB / CuPc) n of a multilayer quantum well structure, NPB, and the HOMO level of CuPc were -5.5eV, -4.8eV, LUMO were -2.5eV , -2.7 eV, respectively, as a hole transport layer of the device from the preferred (NPB / CuPc) n band diagram (see FIG. 2, FIG. 3) can be seen that, since the effect of the barrier layer of CuPc NPB layer, CuPc a layer formed of a potential well of electrons and holes; transition layer 5, using a material with the electron transporting layer material level matches, if a multilayer quantum well structure, the hole transport layer is preferably (NPB / CuPc) n, transition layer preferably NPB; 6 electron-transporting layer, one material commonly used metal organic complexes or a oxadiazole-based compound, preferably through Alq3, Al (Saph-q), Ga (Saph -q)、Zn(Ac)2中的一种材料;7为第二电极层(阴极层、金属层),一般采用锂、镁、钙、锶、铝、铟等功函数较低的金属或它们与铜、金、银的合金,本发明优选为依次的Mg∶Ag合金层、Ag层;8为电源。 -q), Zn (Ac) 2 material; 7 second electrode layer (cathode layer, a metal layer), generally with a lower lithium, magnesium, calcium, strontium, aluminum, indium or a metal work function thereof with copper, gold, silver alloy, preferably an alloy layer of the present invention is a successive Mg:Ag, Ag layer; the power supply 8.

上述第一种结构优选的OLEDs具有以下结构式(1):Glass/ITO/CuPc/(NPB/CuPc)n/NPB/Alq3/Mg∶Ag/Ag (1)其中n为NPB/CuPc量子阱的周期数,n值可为1~10的整数。 Periodic Glass / ITO / CuPc / (NPB / CuPc) n / NPB / Alq3 / Mg:Ag / Ag (1) wherein n is NPB / CuPc quantum wells: a first preferred configuration of the OLEDs having the following structural formula (1) number, n may be an integer value of 1 to 10. 根据上述结构式(1),结合器件的制备步骤详细实施方式阐述如下:①利用煮沸的洗涤剂超声和去离子水超声的方法对透明导电基片ITO玻璃进行清洗,并放置在红外灯下烘干,其中导电基片上面的ITO膜作为器件的阳极层,ITO膜的方块电阻为5Ω~100Ω,膜厚为80.0~280.0nm;②把上述清洗烘干后的ITO玻璃置于压力为1×10-5~5×10-3Pa的真空腔内,在上述ITO膜上蒸镀一层CuPc作为器件的缓冲层,薄膜的蒸镀速率为0.02~0.4nm/s,膜厚为0.5~20.0nm;③在上述CuPc缓冲层之上继续蒸镀空穴传输层,该空穴传输层采用交替n周期的NPB/CuPc有机多量子阱结构,其中CuPc膜的蒸镀速率为0.02~0.4nm/s,量子阱结构中每一层CuPc的膜厚为0.5~10.0nm,NPB膜的蒸镀速率为0.1~0.6nm/s,量子阱结构中每一层NPB的膜厚为0.5~30.0nm;④在上述空穴传输层上继续蒸镀一层NPB作为器件的过渡层,薄膜的蒸 According to the above formula (1), prepared in the step of bonding device described in detailed embodiments as follows: ① a transparent conductive ITO glass substrate was washed using detergent and ultrasonic methods ultrasound boiled deionized water and dried under infrared lamp wherein the electrically conductive substrate above the ITO film as an anode layer of the device, the sheet resistance of the ITO film was 5Ω ~ 100Ω, a thickness of 80.0 ~ 280.0nm; ② the washing and drying after the ITO glass was placed a pressure of 1 × 10 a vacuum chamber -5 ~ 5 × 10-3Pa in the above-described ITO film as a buffer layer deposited CuPc layer of the device, the film deposition rate is 0.02 ~ 0.4nm / s, a thickness of 0.5 ~ 20.0nm; ③ continued CuPc was deposited on said buffer layer a hole transport layer, the hole transporting layer using NPB / CuPc organic multiple quantum well structure of alternating n periods, wherein the vapor deposition rate CuPc film is 0.02 ~ 0.4nm / s, quantum well structure CuPc film thickness of each layer is 0.5 ~ 10.0nm, the vapor deposition rate of NPB film is 0.1 ~ 0.6nm / s, film thickness of the quantum well structure each layer of NPB is 0.5 ~ 30.0nm; ④ in continue NPB layer deposited on a transition device as the hole transporting layer, a thin film of steam 速率为0.1~0.6nm/s,膜厚为10.0~45.0nm;⑤在上述NPB过渡层之上继续蒸镀Alq3作为器件的电子传输层和电致发光层,薄膜的蒸镀速率为0.1~0.6nm/s,膜厚为40.0~100.0nm;⑥最后,在上述Alq3薄膜之上依次蒸镀Mg∶Ag合金层、Ag层作为器件的阴极层,其中合金层中Mg、Ag蒸镀速率比为10∶1,蒸镀总速率为0.6~2.0nm/s,蒸镀总厚度为50.0~200.0nm,Ag层的蒸镀速率为0.3~0.8nm/s,厚度为40.0~200.0nm。 Rate of 0.1 ~ 0.6nm / s, a thickness of 10.0 ~ 45.0nm; ⑤ continued deposition on the above-described NPB Alq3 as an electron transport layer and the buffer layer electroluminescent layer of the device, the film deposition rate of 0.1 to 0.6 nm / s, a thickness of 40.0 ~ 100.0nm; ⑥ Finally, the Alq3 film are sequentially deposited on said Mg:Ag alloy layer, Ag layer as a cathode layer of the device, wherein the alloy layer, Mg, Ag deposition rate ratio 10:1, the total deposition rate of 0.6 ~ 2.0nm / s, the total deposition thickness of 50.0 ~ 200.0nm, deposition rate of Ag layer is 0.3 ~ 0.8nm / s, a thickness of 40.0 ~ 200.0nm.

本发明提出的有机电致发光器件的第二种结构如图1所示(无缓冲层3),其中:1、2同上述第一种结构;4为空穴传输层,采用有机量子阱结构,这种量子阱传输结构由宽能带的有机材料A和窄能带的有机染料C两种材料层交替重叠组成,这两种材料的能级互相匹配(即同时满足上述关系式(I)和(II),材料A的能带能实现对材料C的能带的包裹),并且由于材料A层对材料C层的能级势垒作用,使得电子和空穴的势阱在材料C层中,材料A是三苯胺类(如NPB、TPD、MTDATA)、咔唑类(如PVK、BCP、Bphen)、吡咯啉类或噁二唑类(如TPBi、PBD)化合物中的一种材料,材料C是聚苯类(如rubrene、pentacene)、香豆素类(如C545T)或双吡喃类(如DCJTB、DCM)化合物中的一种材料,第二种结构优选为(NPB/rubrene)n的多层量子阱结构,NPB和rubrene的HOMO能级分别为-5.5eV、-5.4eV,LUMO能级分别为-2.5eV、-3.2eV,从该优选(N The present invention has proposed a second structure of the organic electroluminescent device shown in Figure 1 (without the buffer layer 3), wherein: the first configuration described above with 1,2; 4 a hole transport layer, a quantum well structure using an organic the organic material a of such a quantum well structure by the wide band transmission of the two materials and organic dye layer C of the narrow band consisting of alternately stacked, each energy level matching of the two materials (i.e., satisfies the above relation (I) and (II), material a band of wrapping material to achieve energy band C), and since the level of the barrier effect of the material layer a layer of material C, so that the electrons and holes in the potential well layer of material C , the material a is a triphenyl amine (e.g., NPB, TPD, MTDATA), carbazoles (e.g., PVK, BCP, Bphen), pyrroline type or oxadiazole-based (such as TPBi, PBD) of a material compound, C is a polyphenylene-based materials (such as rubrene, pentacene), coumarin-based material (e.g., C545T) or di-pyran (such as DCJTB, DCM) compound, preferably a second configuration (NPB / rubrene) n multilayer quantum well structure, NPB, and the HOMO level of rubrene were -5.5eV, -5.4eV, LUMO energy level were -2.5eV, -3.2eV, preferably from the (N PB/rubrene)n作空穴传输层的器件的能级示意图(见图6)可以看出,由于NPB层和rubrene层界面处的能级势垒,在器件中空穴载流子就可以在rubrene层中被富集和束缚;5为过渡层,采用与电子传输层的能级相匹配的材料,如果空穴传输层的多层量子阱结构优选为(NPB/rubrene)n,过渡层优选为NPB;6、7同上述第一种结构。 PB / rubrene) n for a device hole transport layer band diagram (see FIG. 6) can be seen that, since the level layer of NPB and rubrene layer at the interface barrier in a device hole carriers can be in rubrene bound and enriched layer; transition layer 5, using a material with the energy level of the electron transport layer matches, if a multilayer quantum well structure, the hole transport layer is preferably (NPB / rubrene) n, preferably transition layer NPB; 6,7 with the first configuration described above.

上述第二种结构优选的OLEDs具有以下结构式(2): A second preferred configuration described above OLEDs having the following structural formula (2):

Glass/ITO/(NPB/rubrene)n/NPB/Alq3/Mg∶Ag/Ag (2)其中n为NPB/rubrene量子阱的周期数,n值可为1~10的整数。 Cycles Glass / ITO / (NPB / rubrene) n / NPB / Alq3 / Mg:Ag / Ag (2) wherein n is NPB / rubrene quantum wells, n is an integer value may be 1 to 10. 根据上述结构式(2),结合器件的制备步骤详细实施方式阐述如下:①利用煮沸的洗涤剂超声和去离子水超声的方法对透明导电基片ITO玻璃进行清洗,并放置在红外灯下烘干,其中导电基片上面的ITO膜作为器件的阳极层,ITO膜的方块电阻为5Ω~100Ω,膜厚为80.0~280.0nm;②把上述清洗烘干后的ITO玻璃置于压力为1×10-5~5×10-3Pa的真空腔内,在上述ITO膜上蒸镀空穴传输层,该空穴传输层采用交替n周期的NPB/rubrene有机多量子阱结构,其中rubrene膜的蒸镀速率为0.02~0.4nm/s,量子阱结构中每一层rubrene的膜厚为0.5~10.0nm,NPB膜的蒸镀速率为0.1~0.6nm/s,量子阱结构中每一层NPB的膜厚为0.5~30.0nm;③在上述空穴传输层上继续蒸镀一层NPB作为器件的过渡层,薄膜的蒸镀速率为0.1~0.6nm/s,膜厚为10.0~45.0nm;④在上述NPB过渡层之上继续蒸镀Alq3作为器件的电子传输层和电致 According to the above-described formula (2), in conjunction with device preparation step in the embodiment described in detail as follows: ① a transparent conductive ITO glass substrate was washed using detergent and ultrasonic methods ultrasound boiled deionized water and dried under infrared lamp wherein the electrically conductive substrate above the ITO film as an anode layer of the device, the sheet resistance of the ITO film was 5Ω ~ 100Ω, a thickness of 80.0 ~ 280.0nm; ② the washing and drying after the ITO glass was placed a pressure of 1 × 10 a vacuum chamber -5 ~ 5 × 10-3Pa, the ITO film deposited in the above-described hole transport layer, the hole transporting layer using alternating n periods NPB / rubrene organic multiple quantum well structure, wherein the film deposition rubrene rate is 0.02 ~ 0.4nm / s, the film thickness of each layer of the quantum well structure rubrene is 0.5 ~ 10.0nm, the vapor deposition rate of NPB film is 0.1 ~ 0.6nm / s, a quantum well structure each layer of the film of NPB a thickness of 0.5 30.0nm ~; ③ continued transition deposition layer of NPB as the device on the hole transport layer, a film deposition rate is 0.1 ~ 0.6nm / s, a thickness of 10.0 ~ 45.0nm; ④ in NPB deposited on said buffer layer continues Alq3 as an electron transporting layer and the electroluminescent device electrically 发光层,薄膜的蒸镀速率为0.1~0.6nm/s,膜厚为40.0~100.0nm;⑤最后,在上述Alq3薄膜之上依次蒸镀Mg∶Ag合金层、Ag层作为器件的阴极层,其中合金层中Mg、Ag蒸镀速率比为10∶1,蒸镀总速率为0.6~2.0nm/s,蒸镀总厚度为50.0~200.0nm,Ag层的蒸镀速率为0.3~0.8nm/s,厚度为40.0~200.0nm。 A light emitting layer, the film deposition rate is 0.1 ~ 0.6nm / s, a thickness of 40.0 ~ 100.0nm; ⑤ Finally, the Alq3 film are sequentially deposited on said Mg:Ag alloy layer, Ag layer as a cathode layer device, wherein the alloy layer is Mg, Ag deposition rate ratio of 10, a total deposition rate of 0.6 ~ 2.0nm / s, the total deposition thickness of 50.0 ~ 200.0nm, deposition rate of Ag layer is 0.3 ~ 0.8nm / s, a thickness of 40.0 ~ 200.0nm.

实施例1-3用和上述制备结构式(1)所示器件相同的方法制备三个OLEDs。 1-3 and described above was prepared by structural formula (1) shown three methods of making the same device in Example OLEDs. 而且为了便于器件性能的对比,三个OLEDs的ITO层的厚度均为200.0nm,CuPc缓冲层的膜厚均为6.0nm,NPB过渡层的膜厚均为15.0nm,Alq3电子传输层的膜厚均为60.0nm,Mg∶Ag合金层和Ag层的厚度分别为100.0nm,三个OLEDs中交替的NPB/CuPc膜的每一层薄膜的膜厚随的周期数n不同而变化,n周期的NPB、CuPc薄膜的总膜厚分别为15.0nm、6.0nm。 For comparison and device performance, thickness of the ITO layer 200.0 are three OLEDs, the film thickness of the buffer layer are 6.0nm CuPc, NPB thickness of the buffer layer are 15.0 nm, the film thickness of the electron transport layer, Alq3 It is 60.0nm, and the layer thickness of the Ag alloy layer Mg:Ag 100.0nm, alternating three OLEDs were NPB / CuPc film thickness of each layer of film with a different cycle number n is changed, period n NPB, CuPc total thickness of the film are 15.0nm, 6.0nm. 三个OLEDs的结构如下表2、3所示,器件的亮度—电流密度曲线、发光效率—电流密度曲线分别见图4、图5。 OLEDs following three structures shown in Table 2 and 3, the luminance of the device - current density curve, the luminous efficiency - current density curves are shown in Figure 4, 5 in FIG.

对比例1 Comparative Example 1

用和实施例1-3同样的方法制备一个传统的OLED,但该传统器件中没有制备交替的NPB/CuPc薄膜(n=0),下表3所示CuPc、NPB层的膜厚分别为12.0nm、30.0nm。 And using a conventional OLED prepared in the same manner as in Example 1-3 embodiment, but the conventional device NPB prepared without alternating / CuPc film (n = 0), the film thickness shown in Table 3 of CuPc, NPB layer were 12.0 nm, 30.0nm. 该器件具有以下结构式(3):Glass/ITO/CuPc/NPB/Alq3/Mg∶Ag/Ag (3)空穴传输层采用NPB/CuPc有机量子阱结构的OLEDs中,周期数n对器件性能的影响如下表3所示。 The device has the following structural formula (3): Glass / ITO / CuPc / NPB / Alq3 / Mg:Ag / Ag (3) hole transporting layer using OLEDs NPB / CuPc organic quantum well structure, the number n of the cycle performance of the device Effects shown in table 3 below.

表2 Table 2

表3 table 3

由表3可以看出,在本发明的实验条件下,量子阱周期数为4时,器件性能最好。 As can be seen from Table 3, under the experimental conditions of the present invention, the number of quantum wells is 4 cycles, the best performance of the device. 电流密度为34mA/cm2时,对应器件最高效率可达10.8cd/A,这是至今所见工作中Alq3不搀杂染料本体发光的效率的最高报道。 When the current density is 34mA / cm2, corresponding to the highest efficiency up device 10.8cd / A, which is now seen not work Alq3 doped with the highest emission efficiency of the dye body coverage. 同传统器件(n=0)相比,器件性能提高了近3倍。 With the conventional device (n = 0) as compared to the device performance is improved by nearly 3-fold.

量子阱周期数为6时,由于量子阱中各层材料厚度太薄,成膜质量变差,从而降低了器件性能。 Number of cycles is six quantum wells, quantum well layers due to the material thickness is too thin, film quality deteriorates, thus reducing the device performance. 从普遍意义上讲,随着周期数提高,而且如果量子阱中各层厚度不太低的话(成膜质量有保证的厚度),器件性能会有所增加。 From the general sense, as the number of cycles increase, and if the thickness of the quantum well layers is not too low (the thickness of film quality guaranteed), device performance will increase.

实施例4利用煮沸的洗涤剂超声和去离子水超声的方法对方块电阻为15Ω的ITO玻璃进行清洗,并放置在红外灯下烘干,其中ITO的膜厚为180.0nm。 Using ultrasound boiling detergent and deionized water in an ultrasonic method of Example 4 the sheet resistance of 15Ω ITO glass was washed, and dried under infrared lamp, wherein the ITO film thickness is 180.0nm. 把烘干后的ITO玻璃置于压力为1×10-3Pa的真空腔内,利用热蒸发方法向ITO膜上蒸镀CuPc缓冲薄膜,蒸镀速率为0.04nm/s,膜厚为6.0nm。 After drying the ITO glass was placed in a vacuum chamber pressure of 1 × 10-3Pa, deposition by thermal evaporation method CuPc buffer film to the ITO film, the vapor deposition rate of 0.04nm / s, a thickness of 6.0nm. 在CuPc缓冲薄膜上继续蒸镀交替多层空穴传输层(NPB/CuPc)6,其中NPB薄膜的蒸镀速率为0.2nm/s,膜厚为3.8nm,CuPc薄膜的蒸镀速率为0.04nm/s,膜厚为1.5nm。 Continuing alternately deposited on the CuPc buffer multilayer film hole transport layer (NPB / CuPc) 6, wherein the film deposition rate of NPB is 0.2nm / s, a thickness of 3.8nm, CuPc film deposition rate of 0.04nm / s, a thickness of 1.5nm. 在该空穴传输层之上继续蒸镀15.0nm的NPB层作为过渡层,蒸镀速率为0.4nm/s,之上继续蒸镀有机功能层Alq3,蒸镀速率为0.2nm/s,膜厚为60.0nm。 On continuing deposition of the hole transport layer of NPB layer as a transition layer 15.0nm, the deposition rate is 0.4nm / s, on continuing deposition of Alq3 organic functional layer, the vapor deposition rate is 0.2nm / s, film thickness It was 60.0nm. 在Alq3层之上继续蒸镀金属层,金属层依次由Mg∶Ag合金层和Ag层组成,合金层中Mg、Ag蒸镀速率比为10∶1,蒸镀总速率为1.5nm/s,膜厚为100.0nm;Ag的蒸镀速率为0.5nm/s,蒸镀厚度为100.0nm。 Alq3 layer was deposited over the metal layer to continue, the metal layer are made Mg:Ag Ag alloy layer and the layer, the alloy layer Mg, Ag deposition rate ratio of 10, a total deposition rate of 1.5nm / s, thickness of 100.0 nm; Ag deposition rate is 0.5nm / s, the deposition thickness of 100.0nm. 器件启亮电压为2.5V,最大发光亮度为16000cd/m2,电流密度为36mA/cm2时,对应最大发光效率为10.8cd/A。 Qiliang device voltage of 2.5V, the maximum luminance was 16000cd / m2, a current density of 36mA / cm2, the corresponding maximum light emission efficiency was 10.8cd / A.

实施例5利用煮沸的洗涤剂超声和去离子水超声的方法对方块电阻为60Ω的ITO玻璃进行清洗,并放置在红外灯下烘干,其中ITO的膜厚为100.0nm。 Using ultrasound boiling detergent and deionized water in an ultrasonic method of Example 5 A sheet resistance of 60Ω ITO glass was washed, and dried under infrared lamp, wherein the ITO film thickness is 100.0nm. 把烘干后的ITO玻璃置于压力为2×10-3Pa的真空腔内,利用热蒸发方法向ITO膜上蒸镀CuPc缓冲薄膜,蒸镀速率为0.06nm/s,薄膜厚度为8.0nm。 After drying the ITO glass was placed in a vacuum chamber pressure of 2 × 10-3Pa, deposition by thermal evaporation method CuPc buffer film to the ITO film, the vapor deposition rate of 0.06nm / s, film thickness of 8.0nm. 在CuPc缓冲薄膜上继续蒸镀交替多层空穴传输层(NPB/CuPc)2,其中NPB薄膜的蒸镀速率为0.2nm/s,膜厚为7.5nm,CuPc薄膜的蒸镀速率为0.06nm/s,膜厚为3.0nm。 Continuing alternately deposited on the CuPc buffer multilayer film hole transport layer (NPB / CuPc) 2, wherein the film deposition rate of NPB is 0.2nm / s, a thickness of 7.5nm, CuPc film deposition rate of 0.06nm / s, a thickness of 3.0nm. 在该空穴传输层之上继续蒸镀20.0nm的NPB层作为过渡层,蒸镀速率为0.2nm/s,之上继续蒸镀有机功能层Al(Saph-q),蒸镀速率为0.2nm/s,膜厚为60.0nm。 20.0nm continued evaporation layer of NPB as a transition layer, the vapor deposition rate on the hole transport layer is 0.2nm / s, continued deposition on the organic functional layer Al (Saph-q), the vapor deposition rate is 0.2nm / s, a thickness of 60.0nm. 在Al(Saph-q)层之上继续蒸镀金属层,金属层依次由Mg∶Ag合金层和Ag层组成,合金层中Mg、Ag蒸镀速率比为10∶1,蒸镀总速率为1.5nm/s,膜厚为150.0nm;Ag的蒸镀速率为0.4nm/s,蒸镀厚度为50.0nm。 On Al (Saph-q) continuing the deposition layer a metal layer, a metal layer sequentially Mg:Ag Ag alloy layer and the layer, the alloy layer Mg, Ag deposition rate ratio of 10, a total deposition rate of 1.5nm / s, a thickness of 150.0 nm; Ag deposition rate is 0.4nm / s, the deposition thickness of 50.0nm. 器件启亮电压为2.8V,最大发光亮度为13000cd/m2。 Qiliang device voltage of 2.8V, the maximum luminance was 13000cd / m2.

实施例6利用煮沸的洗涤剂超声和去离子水超声的方法对方块电阻为30Ω的ITO玻璃进行清洗,并放置在红外灯下烘干,其中ITO的膜厚为140.0nm。 Using ultrasound boiling detergent and deionized water in an ultrasonic method of Example 6 the sheet resistance of 30Ω ITO glass was washed, and dried under infrared lamp, wherein the ITO film thickness is 140.0nm. 把烘干后的ITO玻璃置于压力为1.5×10-3Pa的真空腔内,利用热蒸发方法向ITO膜上蒸镀CuPc缓冲薄膜,蒸镀速率为0.03nm/s,薄膜厚度为4.0nm。 After drying the ITO glass was placed in a vacuum chamber pressure of 1.5 × 10-3Pa, deposition by thermal evaporation method CuPc buffer film to the ITO film, the vapor deposition rate of 0.03nm / s, film thickness of 4.0nm. 在CuPc缓冲薄膜上继续蒸镀交替多层空穴传输层(NPB/CuPc)8,其中NPB薄膜的蒸镀速率为0.2nm/s,膜厚为2.0nm,CuPc薄膜的蒸镀速率为0.02nm/s,膜厚为0.75nm。 Continuing alternately deposited on the CuPc buffer multilayer film hole transport layer (NPB / CuPc) 8, wherein the film deposition rate of NPB is 0.2nm / s, a thickness of 2.0nm, CuPc film deposition rate of 0.02nm / s, a thickness of 0.75nm. 在该传输层之上继续蒸镀20.0nm的NPB层作为过渡层结构,蒸镀速率为0.2nm/s,之上继续蒸镀有机功能层Zn(Ac)2,蒸镀速率为0.2nm/s,膜厚为60.0nm。 20.0nm continued evaporation of NPB layer over the transport layer as a transition layer structure, the deposition rate is 0.2nm / s, continued deposition on the organic functional layer Zn (Ac) 2, the vapor deposition rate is 0.2nm / s a film thickness of 60.0nm. 在Zn(Ac)2层之上继续蒸镀金属层,金属层依次由Mg∶Ag合金层和Ag层组成,合金层中Mg、Ag蒸镀速率比为10∶1,蒸镀总速率为1.5nm/s,膜厚为180.0nm;Ag的蒸镀速率为0.5nm/s,蒸镀厚度为50.0nm。 The Zn (Ac) 2 layer on the metal layer deposition continues, the metal layer are made Mg:Ag Ag alloy layer and the layer, the alloy layer Mg, Ag deposition rate ratio of 10, a total deposition rate of 1.5 nm / s, a thickness of 180.0nm; Ag deposition rate is 0.5nm / s, the deposition thickness of 50.0nm. 器件启亮电压为2.9V,最大发光亮度为12000cd/m2。 Qiliang device voltage was 2.9V, the maximum luminance was 12000cd / m2.

实施例7-9用和上述制备结构式(2)所示器件相同的方法制备三个OLEDs。 7-9 prepared by the above structural formula and (2) a process for preparing the same device in Example three OLEDs. 而且为了便于器件性能的对比,三个OLEDs的ITO层的厚度均为240.0nm,NPB薄膜(包括过渡层)的总膜厚均为40.0nm,n周期的rubrene薄膜的总膜厚均为8.0nm,Alq3电子传输层的膜厚均为60.0nm,Mg∶Ag合金层和Ag层的厚度分别为100.0nm,只是三个OLEDs中交替的NPB/rubrene膜的每一层rubrene薄膜的膜厚随周期数n的不同而变化,每一层NPB薄膜的膜厚均为5.0nm。 For comparison and device performance, thickness of the ITO layer three OLEDs are 240.0nm, NPB total thickness of the film (including the buffer layer) are 40.0 nm, the total film thickness of the n-cycles rubrene are 8.0nm thickness of Alq3 electron transporting layer are 60.0 nm, and the layer thickness of the Ag alloy layer Mg:Ag 100.0 nm, respectively, except the film thickness of each layer of rubrene in alternating three OLEDs NPB / rubrene film over period n number of different changes, the film thickness of each layer of NPB are 5.0nm. 三个OLEDs的结构如下表4、5所示,器件的亮度—电流密度曲线、发光效率—电流密度曲线分别见图7、图8。 Three OLEDs structure shown below in Table 4 and 5, the luminance of the device - current density curve, the luminous efficiency - current density curves are shown in Figure 7, FIG. 8.

对比例2用和实施例7-9同样的方法制备一个传统的OLED,该传统器件中没有制备交替的NPB/rubrene薄膜(n=0),下表4所示NPB层的膜厚为40.0nm。 Comparative Example 2 and prepared in the same manner as in Example 7-9 a conventional OLED, the conventional device is not prepared alternating NPB / rubrene film (n = 0), the film thickness shown in Table 4 NPB layer is 40.0nm . 该器件具有以下结构式(4):Glass/ITO/NPB/Alq3/Mg∶Ag/Ag (4)表4 The device has the following structural formula (4): Glass / ITO / NPB / Alq3 / Mg:Ag / Ag (4) Table 4

对比例3用和实施例7-9相同的方法制备一个传统的OLED,该传统器件中没有制备交替的NPB/rubrene薄膜(n=0),但电子传输层为60.0nm厚的搀杂了2wt%rubrene的Alq层,器件结构如下表5中所示,该器件具有以下结构式(5):Glass/ITO/NPB/Alq3:rubrene(2wt%)/Mg∶Ag/Ag (5)图9所示为上述OLEDs的EL光谱图,曲线(a)、(b)、(c)、(d)分别对应具有量子阱周期数为0、2、4、6的有机电致发光器件,曲线(e)对应具有上述结构式(5)的器件(从rubrene发出黄色的光)。 Preparation of a conventional OLED of Comparative Example 3 and with the same method as in Example 7-9, the devices prepared without conventional alternating NPB / rubrene film (n = 0), but the electron transport layer is doped with a thickness of 60.0nm 2wt% the layer of Alq rubrene, a device structure as shown in table 5, the device has the following structural formula (5): Glass / ITO / NPB / Alq3: rubrene (2wt%) / Mg:Ag / Ag (5) is shown in FIG. 9 EL spectra of OLEDs above, the curve (a), (b), (c), (d) respectively having a number of quantum wells period 0,2,4,6 organic electroluminescent device, curve (e) corresponds to device having the above-described formula (5) (rubrene emitted from light yellow). 我们观察到随着周期数n的增加,本发明具有NPB/rubrene有机量子阱结构的器件的EL光谱有明显移动。 We observed that the EL spectra with increasing cycle number n, the present invention is an organic device having a quantum well structure NPB / rubrene have significant movement. n=0的器件(曲线a)发出520nm的Alq3的绿色发光,然而从n=2的器件(曲线b)和n=4的器件(曲线c)的EL光谱图上看到已经呈现了rubrene的发光,同时在520nm附近伴有Alq3材料的肩峰。 means n = 0 (curve a) of Alq3 emits green light emission of 520nm, however, from n = device (curve b) 2 and n = 4 on the EL spectrum of the device (curve c) it has been presented to see the rubrene emission, Alq3 material is accompanied by a shoulder in the vicinity of 520nm. 值得指出的是,n=6的器件(曲线d)的发光已经基本上全部为rubrene的发光,几乎看不到Alq3的发光,和没有量子阱结构的传统器件(曲线e)的光谱峰基本吻合,这表示载流子只被限制在rubrene层中进行复合。 It is worth noting, n = 6, the light emitting device (curve d) has substantially all of the light emitting rubrene, Alq3 almost do not see the light emission, and the quantum well structure without conventional device (curve e) of the spectrum peak substantially coincide , which represents the carrier in the composite is limited only rubrene layer.

上述工作证实,有机量子阱结构不仅能够调控空穴的传输,同时也可以通过改变有机量子阱周期数来控制器件的发光中心。 Work has demonstrated above, only the organic quantum well structure capable of modulating transporting holes, and the light emission center may be controlled by changing the number of the organic device quantum-well period.

在有机电致发光器件中引入有机量子阱空穴传输结构,能够有效的控制器件中空穴的传输,从而有助于获得电子和空穴的注入平衡,进而提高器件的发光效率。 In the organic electroluminescent device introduced into the organic hole-transport quantum well structure, the control device can effectively transport holes to help achieve the balanced injection of electrons and holes, thereby improving the light emitting efficiency of the device. 同时,由于有机量子阱结构中使用染料单独成层,EL光谱的研究表明,通过改变量子阱周期数能够有效的控制器件的发光中心,这为实现不同颜色的发光提供了有益的借鉴。 Meanwhile, since the organic quantum well structure into a dye layer alone, the EL spectra studies indicate that, by changing the number of quantum wells can effectively control cycle emission center of the device, which provide a useful reference for the realization of different colors of light.

空穴传输层采用NPB/rubrene有机量子阱结构的OLEDs中,周期数n对器件性能的影响如下表5所示。 OLEDs using organic hole transport layer quantum well structure NPB / rubrene, the influence of n number of cycles on the device performance as shown in Table 5.

表5 table 5

由表5可以看出,在本发明的实验条件下,量子阱周期数n为4时,器件的亮度和发光效率最好。 As can be seen from Table 5, under the experimental conditions of the present invention, the number of quantum wells is preferably n is 4 cycles, the luminance and luminous efficiency of the device. 而当量子阱周期数为6时,由于量子阱内各层膜厚度太薄,不能形成高质量的连续薄膜,从而破坏了量子阱的结构,器件效率反而下降。 When the number of quantum wells is 6 cycles, since the quantum well layers within the film thickness is too thin, continuous film of high quality can not be formed, thereby destroying the quantum well structure, but decreased the efficiency of the device. 因此,在不破坏量子阱结构的前提下,提高器件的周期数,可以进一步提高器件的效率。 Thus, without destroying the quantum well structure, increasing the number of cycles the device can be further improved efficiency of the device. 同时,我们还可以发现,随着周期数n的提高,rubrene发光在器件发光中占据的比例越来越高,从而EL光谱颜色红移,这充分证明器件的发光中心随着周期数的提高向rubrene层转移。 At the same time, we also found that, with the increase of the cycle number n, the ratio of the light emitting rubrene emitting device occupies in the higher and higher, so color EL spectra of red shift, the center of the light emitting device proved that with increasing number of cycles of the rubrene layer transfer. 而且,有机量子阱周期数n越高,越有利于向rubrene层发光转移。 Further, the higher the quantum well organic cycle number n, the more conducive to the transfer layer to the light emitting rubrene.

实施例10-13用和实施例7-9同样的方法制备实施例10-13的器件,各器件的周期数均为4,器件的结构如下表6所示。 Examples 10-13 of the device in the same manner used in Example 7-9 and Examples 10-13 prepared embodiment, the number of cycles of each device are 4, structure of the device as shown in Table 6. 空穴传输层采用NPB/rubrene有机量子阱结构的OLEDs中,NPB膜厚对器件性能的影响也如下表6所示。 OLEDs using organic hole transport layer quantum well structure NPB / rubrene, the thickness of NPB impact on device performance are also shown below in Table 6.

表6 Table 6

由表6可以看出,当NPB层厚度为3.0nm时候,器件性能最好。 As it can be seen from Table 6, when the time NPB layer thickness is 3.0nm, the best device performance. 而当厚度为1.0nm时,器件因为量子阱结构被破坏导致器件性能下降。 Whereas when the thickness is 1.0nm, the quantum well device as the device structure is destroyed resulting in performance degradation. 因此,NPB层厚度越薄,越有利于提高器件性能。 Accordingly, the thinner the thickness of the layer of NPB, help to improve the device performance.

实施例14-17用和实施例7-9同样的方法制备实施例14-17的器件,各器件的周期数均为4,器件的结构如下表7所示。 Examples 14-17 of the device in the same manner used in Example 7-9 and Examples 14-17 prepared embodiment, the number of cycles of each device are 4, structure of the device shown in Table 7 below. 空穴传输层采用NPB/rubrene有机量子阱结构的OLEDs中,rubrene膜厚对器件性能的影响也如下表7所示。 OLEDs using organic hole transport layer quantum well structure NPB / rubrene, the thickness of rubrene impact on device performance is also shown in Table 7 below.

表7 Table 7

由表7可以看出,改变rubrene层厚度对器件性能影响较小。 As it can be seen from Table 7, the layer thickness change rubrene less impact on device performance. 除1.0nm破坏量子阱结构外,可以根据工艺的条件,选择比较薄的厚度。 In addition 1.0nm destroy the quantum well structure, the process conditions can choose a relatively thin thickness. 本发明优选为2.0nm。 The present invention is preferably 2.0nm.

实施例18-21用和实施例7-9相同的方法制备实施例18-21的器件,各器件的周期数均为4,器件的结构如下表8所示。 Examples 18-21 with 18-21 and the embodiment of the device according to the same method of Preparation Example 7-9, the number of cycles of each device are 4, structure of the device shown in Table 8 below. 空穴传输层采用有机量子阱结构的OLEDs中,电子传输层材料和量子阱结构中材料变化对器件性能的影响也如下表8中所示。 OLEDs using organic hole transport layer of the quantum well structure, the influence of changes in the electron transport layer material and the quantum well structure of the material properties of the device are also shown in Table 8 below.

表8 Table 8

实施例22-24 Examples 22-24

用和实施例7-9相同的方法制备实施例22-24的器件,器件的结构如下表9所示。 Examples 22-24 and structures of the device, the device prepared in the same manner as in Example 7-9 of the embodiment shown in Table 9 below.

对比例4用和实施例22-24相同的方法制备一个OLED,该器件中没有制备交替的NPB/rubrene薄膜(n=0),器件结构如下表9中所示,空穴传输层采用NPB/rubrene有机量子阱结构的OLEDs中,周期数n对器件寿命的影响如下表9所示。 Preparing an OLED the same method of Comparative Example 4 and Examples 22-24 with the device prepared without alternating NPB / rubrene film (n = 0), the device structure is shown below, a hole transport layer employed in Table 9 NPB / OLEDs rubrene organic quantum well structure, the influence of the number n of the cycle lifetime of the device as shown in table 9.

表9 Table 9

实施例25利用煮沸的洗涤剂超声和去离子水超声的方法对方块电阻为60Ω的ITO玻璃进行清洗,并放置在红外灯下烘干,其中ITO的膜厚为100.0nm。 Example 25 utilizing ultrasound boiling detergent and deionized water in an ultrasonic method for the sheet resistance 60Ω ITO glass was washed, and dried under infrared lamp, wherein the ITO film thickness is 100.0nm. 把烘干后的ITO玻璃置于压力为2×10-3Pa的真空腔内,利用热蒸发方法向ITO膜上蒸镀交替多层空穴传输层(NPB/rubrene)4,其中NPB薄膜的蒸镀速率为0.2nm/s,膜厚为5.0nm,rubrene薄膜的蒸镀速率为0.1nm/s,膜厚为2.0nm。 After drying the ITO glass was placed in a pressure of 2 × 10-3Pa vacuum chamber, a thermal evaporation method using the multilayer film to the ITO hole transport layer (NPB / rubrene) 4 alternately deposited, wherein the thin film of NPB was evaporated plating rate is 0.2nm / s, a thickness of 5.0nm, rubrene vapor deposition rate of film is 0.1nm / s, a thickness of 2.0nm. 在该空穴传输层之上继续蒸镀20.0nm的NPB层作为过渡层,蒸镀速率为0.2nm/s,之上继续蒸镀有机功能层Al(Saph-q),蒸镀速率为0.2nm/s,膜厚为60.0nm。 20.0nm continued evaporation layer of NPB as a transition layer, the vapor deposition rate on the hole transport layer is 0.2nm / s, continued deposition on the organic functional layer Al (Saph-q), the vapor deposition rate is 0.2nm / s, a thickness of 60.0nm. 在Al(Saph-q)层之上继续蒸镀金属层,金属层依次由Mg∶Ag合金层和Ag层组成,合金层中Mg、Ag蒸镀速率比为10∶1,蒸镀总速率为1.5nm/s,膜厚为150.0nm,Ag的蒸镀速率为0.4nm/s,蒸镀厚度为50.0nm。 On Al (Saph-q) continuing the deposition layer a metal layer, a metal layer sequentially Mg:Ag Ag alloy layer and the layer, the alloy layer Mg, Ag deposition rate ratio of 10, a total deposition rate of 1.5nm / s, a thickness of 150.0nm, Ag deposition rate was 0.4nm / s, the deposition thickness of 50.0nm. 器件启亮电压为2.8V,最大发光亮度为16000cd/m2。 Qiliang device voltage of 2.8V, the maximum luminance was 16000cd / m2.

实施例26利用煮沸的洗涤剂超声和去离子水超声的方法对方块电阻为15Ω的ITO玻璃进行清洗,并放置在红外灯下烘干,其中ITO的膜厚为260.0nm。 Using ultrasound boiling detergent and deionized water in an ultrasonic method of Example 26 pairs of sheet resistance 15Ω ITO glass was washed, and dried under infrared lamp, wherein the ITO film thickness is 260.0nm. 把烘干后的ITO玻璃置于压力为1×10-3Pa的真空腔内,利用热蒸发方法向ITO膜上蒸镀10.0nm的CuPc缓冲层,蒸镀速率为0.02nm/s。 After drying the ITO glass was placed in a vacuum chamber pressure of 1 × 10-3Pa, deposition by thermal evaporation method of 10.0nm CuPc buffer layer to the ITO film, the deposition rate of 0.02nm / s. 其后,在上面蒸镀交替多层空穴传输层(NPB/rubrene)3,其中NPB薄膜的蒸镀速率为0.2nm/s,膜厚为5.0nm,rubrene薄膜的蒸镀速率为0.1nm/s,膜厚为2.0nm。 Thereafter, in the above hole transporting layer deposited alternately multilayer (NPB / rubrene) 3, wherein the film deposition rate of NPB is 0.2nm / s, a thickness of 5.0 nm, a film deposition rate of rubrene was 0.1nm / s, a thickness of 2.0nm. 在该空穴传输层之上继续蒸镀20.0nm的NPB层作为过渡层,蒸镀速率为0.2nm/s,之上继续蒸镀有机功能层Al(Saph-q),蒸镀速率为0.2nm/s,膜厚为60.0nm。 20.0nm continued evaporation layer of NPB as a transition layer, the vapor deposition rate on the hole transport layer is 0.2nm / s, continued deposition on the organic functional layer Al (Saph-q), the vapor deposition rate is 0.2nm / s, a thickness of 60.0nm. 在Al(Saph-q)层之上继续蒸镀金属层,金属层依次由Mg∶Ag合金层和Ag层组成,合金层中Mg、Ag蒸镀速率比为10∶1,蒸镀总速率为1.5nm/s,膜厚为150.0nm;Ag的蒸镀速率为0.4nm/s,蒸镀厚度为50.0nm。 On Al (Saph-q) continuing the deposition layer a metal layer, a metal layer sequentially Mg:Ag Ag alloy layer and the layer, the alloy layer Mg, Ag deposition rate ratio of 10, a total deposition rate of 1.5nm / s, a thickness of 150.0 nm; Ag deposition rate is 0.4nm / s, the deposition thickness of 50.0nm. 器件启亮电压为2.5V,最大发光亮度为26000cd/m2。 Qiliang device voltage of 2.5V, the maximum luminance was 26000cd / m2.

实施例27利用煮沸的洗涤剂超声和去离子水超声的方法对方块电阻为100Ω的ITO玻璃进行清洗,并放置在红外灯下烘干,其中ITO的膜厚为60.0nm。 Example 27 using boiling de-ionized water and detergent ultrasound ultrasound methods sheet resistance of 100Ω ITO glass was washed, and dried under infrared lamp, wherein the film thickness of ITO is 60.0nm. 把烘干后的ITO玻璃置于压力为2×10-3Pa的真空腔内,利用热蒸发方法向ITO膜上蒸镀交替多层空穴传输层(MTDATA/rubrene)10,其中MTDATA薄膜的蒸镀速率为0.2nm/s,膜厚为5.0nm,rubrene薄膜的蒸镀速率为0.1nm/s,膜厚为2.0nm。 After drying the ITO glass was placed in a pressure of 2 × 10-3Pa vacuum chamber, a thermal evaporation method using the multilayer film to the ITO hole transport layer (MTDATA / rubrene) 10 are alternately deposited, wherein the thin film of MTDATA was evaporated plating rate is 0.2nm / s, a thickness of 5.0nm, rubrene vapor deposition rate of film is 0.1nm / s, a thickness of 2.0nm. 在该空穴传输层之上继续蒸镀5.0nm的NPB层作为过渡层,蒸镀速率为0.2nm/s,之上继续蒸镀有机功能层Alq3,蒸镀速率为0.2nm/s,膜厚为60.0nm。 On continuing deposition of the hole transport layer as a transition layer of NPB 5.0nm, the vapor deposition rate is 0.2nm / s, on continuing deposition of Alq3 organic functional layer, the vapor deposition rate is 0.2nm / s, film thickness It was 60.0nm. 在Alq3层之上继续蒸镀金属层,金属层依次由Mg∶Ag合金层和Ag层组成,合金层中Mg、Ag蒸镀速率比为10∶1,蒸镀总速率为1.5nm/s,膜厚为150.0nm;Ag的蒸镀速率为0.4nm/s,蒸镀厚度为50.0nm。 Alq3 layer was deposited over the metal layer to continue, the metal layer are made Mg:Ag Ag alloy layer and the layer, the alloy layer Mg, Ag deposition rate ratio of 10, a total deposition rate of 1.5nm / s, thickness of 150.0 nm; Ag deposition rate is 0.4nm / s, the deposition thickness of 50.0nm. 器件启亮电压为2.8V,最大发光亮度为14000cd/m2。 Qiliang device voltage of 2.8V, the maximum luminance was 14000cd / m2.

实施例28利用煮沸的洗涤剂超声和去离子水超声的方法对方块电阻为60Ω的ITO玻璃进行清洗,并放置在红外灯下烘干,其中ITO的膜厚为100.0nm。 Example 28 utilizing ultrasound boiling detergent and deionized water in an ultrasonic method for the sheet resistance 60Ω ITO glass was washed, and dried under infrared lamp, wherein the thickness of the ITO is 100.0nm. 把烘干后的ITO玻璃置于压力为2×10-3Pa的真空腔内,利用热蒸发方法向ITO膜上蒸镀交替多层空穴传输层(TPD/DCJTB)4,其中TPD薄膜的蒸镀速率为0.2nm/s,膜厚为5.0nm,DCJTB薄膜的蒸镀速率为0.1nm/s,膜厚为2.0nm。 After drying the ITO glass was placed in a vacuum chamber pressure of 2 × 10-3Pa, deposition by thermal evaporation method to ITO multilayer film alternately hole transport layer (TPD / DCJTB) 4, wherein the thin film of evaporated TPD plating rate is 0.2nm / s, a thickness of 5.0nm, a film deposition rate of DCJTB is 0.1nm / s, a thickness of 2.0nm. 在该空穴传输层之上继续蒸镀20.0nm的TPD层作为过渡层,蒸镀速率为0.2nm/s,之上继续蒸镀有机功能层Alq3,蒸镀速率为0.2nm/s,膜厚为60.0nm。 On continuing deposition of the hole transport layer of TPD layer as a transition layer 20.0nm, the deposition rate is 0.2nm / s, on continuing deposition of Alq3 organic functional layer, the vapor deposition rate is 0.2nm / s, film thickness It was 60.0nm. 在Alq3层之上继续蒸镀金属层,金属层依次由Mg∶Ag合金层和Ag层组成,合金层中Mg、Ag蒸镀速率比为10∶1,蒸镀总速率为1.5nm/s,膜厚为150.0nm;Ag的蒸镀速率为0.4nm/s,蒸镀厚度为50.0nm。 Alq3 layer was deposited over the metal layer to continue, the metal layer are made Mg:Ag Ag alloy layer and the layer, the alloy layer Mg, Ag deposition rate ratio of 10, a total deposition rate of 1.5nm / s, thickness of 150.0 nm; Ag deposition rate is 0.4nm / s, the deposition thickness of 50.0nm. 器件启亮电压为2.8V,最大发光亮度为12000cd/m2。 Qiliang device voltage of 2.8V, the maximum luminance was 12000cd / m2.

实施例29利用煮沸的洗涤剂超声和去离子水超声的方法对方块电阻为40Ω的ITO玻璃进行清洗,并放置在红外灯下烘干,其中ITO的膜厚为150.0nm。 Using ultrasound boiling detergent and deionized water in an ultrasonic method of Example 29 pairs of sheet resistance 40Ω ITO glass was washed, and dried under infrared lamp, wherein the ITO film thickness is 150.0nm. 把烘干后的ITO玻璃置于压力为1×10-3Pa的真空腔内,利用热蒸发方法向ITO膜上蒸镀交替多层空穴传输层(MTDATA/rubrene)4,其中MTDATA薄膜的蒸镀速率为0.2nm/s,膜厚为5.0nm,rubrene薄膜的蒸镀速率为0.2nm/s,膜厚为2.0nm。 After drying the ITO glass was placed in a vacuum chamber pressure of 1 × 10-3Pa, deposition by thermal evaporation method to ITO multilayer film alternately hole transport layer (MTDATA / rubrene) 4, wherein the thin film of MTDATA was evaporated plating rate is 0.2nm / s, a thickness of 5.0nm, rubrene vapor deposition rate of film is 0.2nm / s, a thickness of 2.0nm. 在该空穴传输层之上继续蒸镀20.0nm的MTDATA层作为过渡层,蒸镀速率为0.2nm/s,之上继续蒸镀有机功能层Alq3,蒸镀速率为0.2nm/s,膜厚为60.0nm。 On continuing deposition of the hole transport layer of MTDATA layer as a transition layer 20.0nm, the vapor deposition rate is 0.2nm / s, on continuing deposition of Alq3 organic functional layer, the vapor deposition rate is 0.2nm / s, film thickness It was 60.0nm. 在Alq3层之上继续蒸镀金属层,金属层依次由Mg∶Ag合金层和Ag层组成,合金层中Mg、Ag蒸镀速率比为10∶1,蒸镀总速率为1.5nm/s,膜厚为150.0nm;Ag的蒸镀速率为0.4nm/s,蒸镀厚度为50.0nm。 Alq3 layer was deposited over the metal layer to continue, the metal layer are made Mg:Ag Ag alloy layer and the layer, the alloy layer Mg, Ag deposition rate ratio of 10, a total deposition rate of 1.5nm / s, thickness of 150.0 nm; Ag deposition rate is 0.4nm / s, the deposition thickness of 50.0nm. 器件启亮电压为2.8V,最大发光亮度为18000cd/m2。 Qiliang device voltage of 2.8V, the maximum luminance was 18000cd / m2.

实施例30利用煮沸的洗涤剂超声和去离子水超声的方法对方块电阻为10Ω的ITO玻璃进行清洗,并放置在红外灯下烘干,其中ITO的膜厚为280.0nm。 Example 30 using boiling de-ionized water and detergent ultrasound ultrasound methods sheet resistance of 10Ω ITO glass was washed, and dried under infrared lamp, wherein the ITO film thickness is 280.0nm. 把烘干后的ITO玻璃置于压力为4×10-3Pa的真空腔内,利用热蒸发方法向ITO膜上蒸镀交替多层空穴传输层(NPB/C545T)4,其中NPB薄膜的蒸镀速率为0.2nm/s,膜厚为5.0nm,C545T薄膜的蒸镀速率为0.1nm/s,膜厚为2.0nm。 After drying the ITO glass was placed in a vacuum chamber pressure of 4 × 10-3Pa, deposition by thermal evaporation method to ITO multilayer film alternately hole transport layer (NPB / C545T) 4, wherein the thin film of NPB was evaporated plating rate is 0.2nm / s, a thickness of 5.0nm, a film deposition rate of C545T was 0.1nm / s, a thickness of 2.0nm. 在该空穴传输层之上继续蒸镀20.0nm的NPB层作为过渡层,蒸镀速率为0.2nm/s,之上继续蒸镀有机功能层Alq3,蒸镀速率为0.2nm/s,膜厚为60.0nm。 On continuing deposition of the hole transport layer of NPB layer as a transition layer 20.0nm, the deposition rate is 0.2nm / s, on continuing deposition of Alq3 organic functional layer, the vapor deposition rate is 0.2nm / s, film thickness It was 60.0nm. 在Alq3层之上继续蒸镀金属层,金属层依次由Mg∶Ag合金层和Ag层组成,合金层中Mg、Ag蒸镀速率比为10∶1,蒸镀总速率为1.5nm/s,膜厚为150.0nm;Ag的蒸镀速率为0.4nm/s,蒸镀厚度为50.0nm。 Alq3 layer was deposited over the metal layer to continue, the metal layer are made Mg:Ag Ag alloy layer and the layer, the alloy layer Mg, Ag deposition rate ratio of 10, a total deposition rate of 1.5nm / s, thickness of 150.0 nm; Ag deposition rate is 0.4nm / s, the deposition thickness of 50.0nm. 器件启亮电压为2.5V,最大发光亮度为28000cd/m2。 Qiliang device voltage of 2.5V, the maximum luminance was 28000cd / m2.

实施例31利用煮沸的洗涤剂超声和去离子水超声的方法对方块电阻为20Ω的ITO玻璃进行清洗,并放置在红外灯下烘干,其中ITO的膜厚为220.0nm。 Using ultrasound boiling detergent and deionized water in an ultrasonic method of Example 31 pairs of sheet resistance 20Ω ITO glass was washed, and dried under infrared lamp, wherein the ITO film thickness is 220.0nm. 把烘干后的ITO玻璃置于压力为3×10-3Pa的真空腔内,利用热蒸发方法向ITO膜上蒸镀交替多层空穴传输层(MTDATA/DCM)5,其中MTDATA薄膜的蒸镀速率为0.1nm/s,膜厚为5.0nm,DCM薄膜的蒸镀速率为0.05nm/s,膜厚为2.0nm。 After drying the ITO glass was placed in a vacuum chamber pressure of 3 × 10-3Pa, deposition by thermal evaporation method to ITO multilayer film alternately hole transport layer (MTDATA / DCM) 5, wherein the thin film of MTDATA was evaporated plating rate is 0.1nm / s, a thickness of 5.0nm, a film deposition rate of DCM was 0.05nm / s, a thickness of 2.0nm. 在该空穴传输层之上继续蒸镀20.0nm的NPB层作为过渡层,蒸镀速率为0.2nm/s,之上继续蒸镀有机功能层Bphen,蒸镀速率为0.2nm/s,膜厚为60.0nm。 On continuing deposition of the hole transport layer of NPB layer as a transition layer 20.0nm, the deposition rate is 0.2nm / s, on the continued evaporation of Bphen organic functional layer, the vapor deposition rate is 0.2nm / s, film thickness It was 60.0nm. 在Bphen层之上继续蒸镀金属层,金属层依次由Mg∶Ag合金层和Ag层组成,合金层中Mg、Ag蒸镀速率比为10∶1,蒸镀总速率为1.5nm/s,膜厚为150nm;Ag的蒸镀速率为0.4nm/s,蒸镀厚度为50.0nm。 Bphen layer deposited over the metal layer to continue, the metal layer are made Mg:Ag Ag alloy layer and the layer, the alloy layer Mg, Ag deposition rate ratio of 10, a total deposition rate of 1.5nm / s, a thickness of 150 nm; Ag deposition rate is 0.4nm / s, the deposition thickness of 50.0nm. 器件启亮电压为2.5V,最大发光亮度为28000cd/m2。 Qiliang device voltage of 2.5V, the maximum luminance was 28000cd / m2.

尽管结合优选实施例对本发明进行了说明,但本发明并不局限于上述实施例和附图,应当理解,在本发明构思的引导下,本领域技术人员可进行各种修改和改进,所附权利要求概括了本发明的范围。 While various embodiments of the present invention has been described, but the present invention is not limited to the above embodiments and drawings, it should be understood that, under the guidance of the inventive concept, those skilled in the art that various modifications and improvements may be appended It summarizes the scope of the invention as claimed in claim.

Claims (13)

1.一种有机电致发光器件,该器件包括透明基片(1)、第一电极层(2)和第二电极层(7),以及夹在所述第一电极层(2)、第二电极层(7)之间的空穴传输层(4)和电子传输层(6),其特征在于:空穴传输层(4)采用有机量子阱结构,这种量子阱传输结构由宽能带的有机材料A和窄能带的有机材料B两种材料层以一定的周期数交替重叠组成,这两种有机材料的能级满足下列关系:(I)有机材料A的最高占有轨道能级低于有机材料B的最高占有轨道能级,(II)有机材料A的最低空轨道能级高于有机材料B的最低空轨道能级,其中有机量子阱结构的周期数为1~10的整数。 1. An organic electroluminescent device, the device comprising a transparent substrate (1), a first electrode layer (2) and a second electrode layer (7), and sandwiched between the first electrode layer (2), a hole transport layer (4) and an electron transport layer (6) between the second electrode layer (7), characterized in that: a hole transport layer (4) organic quantum well structure, this quantum well structure by the wide energy transmission an organic material layer of two materials a and B the organic material with a narrow band at a certain number of cycles of alternating composition overlap, the two levels of organic materials satisfy the following relationship: highest occupied molecular orbital level (I) a is an organic material the organic material B is less than the highest occupied molecular orbital energy level of the lowest unoccupied molecular orbital level (II) an organic material a is higher than the lowest unoccupied molecular orbital level of the organic material B, wherein the number of cycles of the organic quantum well structure is an integer of 1 to 10 .
2.根据权利要求1所述的有机电致发光器件,其特征在于,所述的有机材料A层的膜厚为0.5~30.0nm,所述的有机材料B层的膜厚为0.5~10.0nm。 2. The organic electroluminescent device according to claim 1, wherein A thickness of the organic material layer is 0.5 ~ 30.0nm, thickness of the organic material layer B is 0.5 ~ 10.0nm .
3.根据权利要求1所述的有机电致发光器件,其特征在于,所述的有机材料B是一种染料C。 3. The organic electroluminescent device according to claim 1, wherein the organic material B is a dye C.
4.根据权利要求1所述的有机电致发光器件,其特征在于,所述的第一电极层(2)和空穴传输层(4)之间夹有一层缓冲层(3),所述的空穴传输层(4)和电子传输层(6)之间夹有一层过渡层(5)。 4. There is according to claim 1, organic electroluminescent device, characterized in that there is interposed a buffer layer (3) between said first electrode layer (2) and a hole transport layer (4), the sandwiched transition layer (5) between the hole transport layer (4) and an electron transport layer (6).
5.根据权利要求4所述的有机电致发光器件,其特征在于,所述的缓冲层(3)由铜酞菁组成,所述的过渡层(5)由N,N'-二-(1-萘基)-N,N'-二苯基-1,1'-联苯基-4,4'-二胺组成。 5. There claim 4, wherein the organic electroluminescent device, characterized in that said buffer layer (3) consisting of copper phthalocyanine, a transition layer (5) consists of N, N'- two - ( 1-naphthyl) -N, N'- diphenyl-1,1'-biphenyl-4,4'-diamine.
6.根据权利要求1所述的有机电致发光器件,其特征在于,所述的有机材料A是三苯胺类、咔唑类、吡咯啉类或噁二唑类化合物中的一种材料,所述的有机材料B是酞菁类化合物中的一种材料。 6. There is according to claim 1, organic electroluminescent device, characterized in that said organic material A is triphenyl amine, carbazole-based material, pyrroline type or oxadiazole-based compound, the B-described organic material is a material in phthalocyanines.
7.根据权利要求6所述的有机电致发光器件,其特征在于,所述的三苯胺类化合物包括N,N'-二-(1-萘基)-N,N'-二苯基-1,1'-联苯基-4,4'-二胺、N,N'-二苯基-N,N'-双(间甲基苯基)-1,1'-联苯基-4,4'-二胺或4,4',4”-三(3-甲基苯基苯胺)三苯胺,所述的咔唑类化合物包括聚乙烯基咔唑、2,9-二甲基-4,7-二苯基-1,10-邻菲咯啉或4,7-二苯基-1,10-邻菲咯啉,所述的噁二唑类化合物包括三-[1-苯基-1H-苯并咪唑基]-(1,3,5-三取代苯)或2-(4-特丁基苯基)-5-(4-联苯基)-1,3,4-噁二唑,所述的酞菁类化合物包括铜酞菁、酞菁或钒酞菁。 According to claim 6 in which the organic electroluminescent device, characterized in that said triphenylamine compounds include N, N'- two - (1-naphthyl) -N, N'- diphenyl - 1,1'-biphenyl-4,4'-diamine, N, N'- diphenyl -N, N'- bis (m-methylphenyl) -1,1'-phenyl-4 , 4'-diamine or 4,4 ', 4 "- tris (3-methylphenyl) triphenylamine, carbazole-based compounds of the group comprising polyvinyl carbazole, 2,9-dimethyl - 4,7-diphenyl-1,10-phenanthroline or 4,7-diphenyl-1,10-phenanthroline, the oxadiazole-based compound include tris - [1-phenyl -1H- benzimidazol-yl] - (1,3,5-substituted benzene) or 2- (4-tert-butylphenyl) -5- (4-biphenylyl) -1,3,4 oxadiazole, said phthalocyanines including copper phthalocyanine, phthalocyanine or vanadium phthalocyanine.
8.根据权利要求7所述的有机电致发光器件,其特征在于,所述的有机材料A是N,N'-二-(1-萘基)-N,N'-二苯基-1,1'-联苯基-4,4'-二胺,所述的有机材料B是铜酞菁。 8. The organic electroluminescent device according to claim 7, wherein said organic material A is N, N'- two - (1-naphthyl) -N, N'- diphenyl -1 , 1'-biphenyl-4,4'-diamine, the organic material B is copper phthalocyanine.
9.根据权利要求1所述的有机电致发光器件,其特征在于,所述的电子传输层(6)采用金属有机配合物或噁二唑类化合物中的一种材料。 9. The organic electroluminescent device according to claim 1, wherein said electron transport layer (6) use a metal-organic complex material or oxadiazole-based compounds.
10.根据权利要求9所述的有机电致发光器件,其特征在于,所述的电子传输层(6)采用三(8-羟基喹啉)铝、(水杨醛缩邻胺苯酚)-(8-羟基喹啉)合铝(III)、(水杨醛缩邻胺苯酚)-(8-羟基喹啉)合镓(III)或4-羟基吖啶锌中的一种材料。 10. The organic electroluminescent device according to claim 9, wherein said electron transport layer (6) using tris (8-quinolinol) aluminum, (salicylaldehyde-o-aminophenol) - ( 8-hydroxyquinoline) aluminum (III), (salicylaldehyde-o-aminophenol) - (8-hydroxyquinoline) gallium (III) or one material 4-hydroxy-acridine zinc.
11.根据权利要求3所述的有机电致发光器件,其特征在于,所述的有机材料A是三苯胺类、咔唑类、吡咯啉类或噁二唑类化合物中的一种材料,所述的有机染料C是聚苯类、香豆素类或双吡喃类化合物中的一种材料。 11. The organic electroluminescent device according to claim 3, wherein said organic material A is triphenyl amine, carbazole-based material, pyrroline type or oxadiazole-based compound, the said organic dye is a polyphenylene type C, or bis coumarin material pyran compounds.
12.根据权利要求11所述的有机电致发光器件,其特征在于,所述的聚苯类化合物包括5,6,11,12-四苯基并四苯或并五苯,所述的香豆素类染料包括10-(2-苯并噻唑)-1,1,7,7-四甲基-2,3,6,7-四氢-1H,5H,11H-苯并[1]吡喃[6,7,8-ij]喹啉嗪,所述的双吡喃类化合物包括4-二氰基亚甲基-2-叔丁基-6-(1,1,7,7-四甲基-久洛尼定-9-乙烯基)-4H-吡喃或4-二氰亚甲基-2-甲基-6-(p-二甲氨基苯乙烯基)-4H-吡喃。 12. The organic electroluminescent device according to claim 11, wherein said polyphenylene-based compound include 5,6,11,12-tetraphenyl tetracene or pentacene, the incense coumarin dyes include 10- (2-benzothiazolyl) -1,1,7,7-tetramethyl-2,3,6,7-tetrahydro -1H, 5H, 11H- benzo [a] pyridine Nan [6,7,8-ij] quinoline-triazine, the compound comprises a double-pyran 4-dicyanomethylene-2-t-butyl-6- (1,1,7,7-four methyl - julolidine-9-vinyl) -4H- pyran or 4-dicyanomethylene-2-methyl-6- (p-dimethylamino styryl) -4H- pyran.
13.根据权利要求12所述的有机电致发光器件,其特征在于,所述的有机材料A是N,N'-二-(1-萘基)-N,N'-二苯基-1,1'-联苯基-4,4'-二胺,所述的有机染料C是5,6,11,12-四苯基并四苯。 13. The organic electroluminescent device according to claim 12, wherein said organic material A is N, N'- two - (1-naphthyl) -N, N'- diphenyl -1 , 1'-biphenyl-4,4'-diamine, the organic dye and C is 5,6,11,12-tetraphenyl naphthacene.
CNB031210635A 2002-04-03 2003-03-21 Organic electroluminescent device CN1161002C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN02116537A CN1409412A (en) 2002-04-03 2002-04-03 Organic electroluminescence device using organic quantum trap as hole transmission layer
CN 02125484 CN1398146A (en) 2002-08-13 2002-08-13 Electroluminescent organic device
CNB031210635A CN1161002C (en) 2002-04-03 2003-03-21 Organic electroluminescent device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB031210635A CN1161002C (en) 2002-04-03 2003-03-21 Organic electroluminescent device

Publications (2)

Publication Number Publication Date
CN1457105A CN1457105A (en) 2003-11-19
CN1161002C true CN1161002C (en) 2004-08-04

Family

ID=29423935

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031210635A CN1161002C (en) 2002-04-03 2003-03-21 Organic electroluminescent device

Country Status (1)

Country Link
CN (1) CN1161002C (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100433400C (en) 2005-01-17 2008-11-12 财团法人工业技术研究院 Organic macromolecular LED apparatus and its display utilizing the LED apparatus
US7538341B2 (en) 1999-12-31 2009-05-26 Lg Chem, Ltd. Electronic device comprising organic compound having p-type semiconducting characteristics
US7560175B2 (en) 1999-12-31 2009-07-14 Lg Chem, Ltd. Electroluminescent devices with low work function anode
US7763882B2 (en) 1999-12-31 2010-07-27 Lg Chem, Ltd. Organic light-emitting device comprising buffer layer and method for fabricating the same
US8253126B2 (en) 1999-12-31 2012-08-28 Lg Chem. Ltd. Organic electronic device
US8680693B2 (en) 2006-01-18 2014-03-25 Lg Chem. Ltd. OLED having stacked organic light-emitting units

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4086817B2 (en) 2004-07-20 2008-05-14 キヤノン株式会社 Organic EL device
CN101079471B (en) 2006-05-25 2010-06-09 清华大学;昆山维信诺显示技术有限公司 An organic EL part
TWI638583B (en) 2007-09-27 2018-10-11 半導體能源研究所股份有限公司 Light-emitting element, light-emitting device, and electronic appliance
EP2354135B1 (en) * 2009-12-23 2013-09-18 Semiconductor Energy Laboratory Co., Ltd. Benzimidazol-2-yl-phenyl compound, light-emitting element, light-emitting device, electronic device, and lighting device
CN103427045A (en) * 2012-05-14 2013-12-04 海洋王照明科技股份有限公司 Organic light-emitting device and preparation method thereof
CN103824939A (en) * 2012-11-19 2014-05-28 海洋王照明科技股份有限公司 Polymer solar cell and preparation method thereof
WO2014082307A1 (en) * 2012-11-30 2014-06-05 海洋王照明科技股份有限公司 Organic light-emitting device and preparing method thereof
CN108666432A (en) * 2018-04-02 2018-10-16 华南理工大学 A kind of Organic Light Emitting Diode containing multistage organic semiconductor heterojunction

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8253126B2 (en) 1999-12-31 2012-08-28 Lg Chem. Ltd. Organic electronic device
US7538341B2 (en) 1999-12-31 2009-05-26 Lg Chem, Ltd. Electronic device comprising organic compound having p-type semiconducting characteristics
US7560175B2 (en) 1999-12-31 2009-07-14 Lg Chem, Ltd. Electroluminescent devices with low work function anode
US7648780B2 (en) 1999-12-31 2010-01-19 Lg Chem, Ltd. Electroluminescent devices with low work function anode
US7648779B2 (en) 1999-12-31 2010-01-19 Lg Chem, Ltd. Electroluminescent devices with low work function anode
US7763882B2 (en) 1999-12-31 2010-07-27 Lg Chem, Ltd. Organic light-emitting device comprising buffer layer and method for fabricating the same
CN100433400C (en) 2005-01-17 2008-11-12 财团法人工业技术研究院 Organic macromolecular LED apparatus and its display utilizing the LED apparatus
US8680693B2 (en) 2006-01-18 2014-03-25 Lg Chem. Ltd. OLED having stacked organic light-emitting units

Also Published As

Publication number Publication date
CN1457105A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
Hamada et al. Red organic light-emitting diodes using an emitting assist dopant
CN101584057B (en) Materials and architectures for efficient harvesting of singlet and triplet excitons for white light emitting OLEDs
CN100466331C (en) Organic electroluminescent device
US6627333B2 (en) White organic light-emitting devices with improved efficiency
JP3529543B2 (en) The organic electroluminescence element
CN1259388C (en) Composition for organic electroluminescence element and organic electroluminescence element using the same
CN100508238C (en) Organic electronic device
CN100487947C (en) Light emitting element and light emitting device
JP5576430B2 (en) High-efficiency organic light-emitting device and manufacturing method thereof
CN100585906C (en) Tandem OLED having stable intermediate connectors
KR100733750B1 (en) Organic el device
KR100911555B1 (en) An organic electroluminescent device having stacked electroluminescent units
CN100524887C (en) Organic light emitting device
CN101371619B (en) OLED having stacked organic light-emitting units
KR100884436B1 (en) Organic light-emitting device having a color-neutral dopant in a hole-transport layer and/or in an electron-transport layer
JP3841695B2 (en) Organic EL element and organic EL display
US20030197465A1 (en) Organic light-emitting devices
CN100502086C (en) Cascaded organic electroluminescent device having connecting units with n-type and p-type organic layers
KR100527194B1 (en) organic electroluminescence device employing doped hole transfer layer and/or hole injection layer
CN1293785C (en) Luminescent device
KR101528490B1 (en) Organic electroluminescent device
CN1905236B (en) Organic electroluminescence device and method for fabricating the same
CN102113414B (en) Organic electroluminescence element and production method of same
US20100117063A9 (en) Organic electronic device
US7604873B2 (en) Organic light emitting device

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
C41 Transfer of patent application or patent right or utility model