CN116099005A - EZH2抑制剂在提高维甲酸受体γ的表达水平中的应用 - Google Patents

EZH2抑制剂在提高维甲酸受体γ的表达水平中的应用 Download PDF

Info

Publication number
CN116099005A
CN116099005A CN202310256438.5A CN202310256438A CN116099005A CN 116099005 A CN116099005 A CN 116099005A CN 202310256438 A CN202310256438 A CN 202310256438A CN 116099005 A CN116099005 A CN 116099005A
Authority
CN
China
Prior art keywords
atra
ezh2 inhibitor
group
retinoic acid
gsk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310256438.5A
Other languages
English (en)
Inventor
郑永霞
刘志丹
程树群
王金丽
肖思嘉
阮群超
潘巍巍
王晓敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing University
Original Assignee
Jiaxing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing University filed Critical Jiaxing University
Priority to CN202310256438.5A priority Critical patent/CN116099005A/zh
Publication of CN116099005A publication Critical patent/CN116099005A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/203Retinoic acids ; Salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4545Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了EZH2抑制剂在提高维甲酸受体γ的表达水平中的应用。本发明发现RARγ是介导ATRA发挥抑癌作用的主要受体,且EZH2抑制剂能够通过减少H3K27me3的修饰促进RARγ的表达,进一步开发EZH2抑制剂联合ATRA使用策略,发现EZH2抑制剂联合ATRA具有协同抑制肿瘤增殖的作用,提高了肿瘤对ATRA的敏感性,能够促进肿瘤细胞凋亡并且阻滞细胞在G1期,且能够抑制肿瘤细胞迁移,为两药协同抗肿瘤效应提供了实验基础和理论基础,对于肿瘤治疗领域具有重要意义。

Description

EZH2抑制剂在提高维甲酸受体γ的表达水平中的应用
技术领域
本发明属于生物医药技术领域,涉及EZH2抑制剂在提高维甲酸受体γ的表达水平中的应用。
背景技术
原发性肝癌是世界范围内常见的恶性肿瘤之一,对于中晚期失去手术机会的肝癌患者,药物治疗仍是治疗的重要手段。然而,由于肝癌的高度异质性,使得肝癌病人对用药方案的敏感性差异较大。
全反式维甲酸(All-trans-retinoic acid,ATRA)是维生素A的天然代谢产物,ATRA有着广泛的生理学和药理学活性,ATRA作为第一代可用于口服的维甲酸类物质,对携带染色体易位RAR/PML重排导致的早幼粒细胞白血病有较强的诱导分化作用,使之形成成熟的粒细胞,是治疗急性早幼粒细胞白血病的临床首选药物,初治的单药完全缓解率可达90%。其机制是通过与作为核受体的维甲酸受体结合从而激活维甲酸受体的转录因子活性并激活下游靶基因的表达水平。维甲酸受体包括两类类固醇受体家族即RARs和RXRs,其中,RARs和RXRs又分别包括3种亚型:RARα、RARβ和RARγ;RXRα、RXRβ和RXRγ。然而ATRA治疗其他白血病和实体瘤的临床效用的证据有限,一个主要原因是实体瘤的遗传和病理机制不像早幼粒细胞白血病那么清晰,实体瘤单药应用的效果并不理想。但是,ATRA因其对细胞增殖、分化和凋亡的作用及其低毒性等优势是药物联合疗法的理想药物。例如:ATRA与紫杉醇、激酶抑制剂、天然化合物、类视黄醇、ER或者HER2抑制剂、化疗药物、蛋白酶体抑制剂和维甲酸纳米制剂的组合在抗癌活性中表现出协同作用。
组蛋白甲基化等表观遗传修饰在药理上是可逆的。EZH2是PRC2复合物的催化亚基,他通过其C端SET结构域催化组蛋白H3K27me3以促进染色质压缩并沉默其靶基因,EZH2的过度表达和突变被证实与肿瘤进展高度相关,被普遍认为是增殖标志物和真正的致癌基因。目前有5个EZH2的抑制剂包括tazemetostat(Tazverik,美国);GSK-126(葛兰素史克,英国);CPI-1205(星座,美国);SHR2554(中国恒瑞医药有限公司);和PF-06821497(Pfizer,美国)已进入临床试验。EZH2抑制剂与其他疗法的组合显示出更强大的互补或者协同抗肿瘤作用,如CN111420059A公开了一种克服肝癌和肾癌肿瘤耐药性的药物组合及其应用,将乙酰化酶抑制剂Anacardic Acid(AA)与EZH2抑制剂GSK-126联合使用,这一药物组合从降低EZH2自身稳定性和抑制EZH2活性的两个方面来联合增强EZH2抑制剂的肿瘤敏感度,效果显著。
然而,目前在临床给药治疗(如治疗肝癌)的过程中,仍有部分患者对ATRA参与的联合用药或者EZH2抑制剂参与的联合用药方案并不敏感,治疗效果较差,综上所述,研究影响肿瘤对ATRA敏感性的关键分子机制对于肿瘤的个体化治疗至关重要。
发明内容
针对现有技术的不足和实际需求,本发明提EZH2抑制剂在提高维甲酸受体γ的表达水平中的应用,研究影响肿瘤对全反式维甲酸敏感性的关键分子机制,为开发有效的新型药物联用策略提供基础。
为达上述目的,本发明采用以下技术方案:
第一方面,本发明提供EZH2抑制剂在提高维甲酸受体γ的表达水平中的应用。
本发明中,在临床工作的基础上选取了10例全反式维甲酸(ATRA)联合FOLFOX4化疗方案的肝癌合并PVTT患者(5例为使用联合化疗方案效果较好的患者,5例为疗效较差的患者)的肝癌组织进行转录组学分析,发现少数肝癌患者对ATRA产生耐药的主要原因是RARγ受体的低表达,即ATRA抗癌作用的发挥受制于RARG(RARγ受体的编码基因)的表达,CHIP-seq分析发现:RARG启动子上游富集H3K27me3,EZH2抑制剂能够减少RARG启动子区域H3K27me3的富集程度并激活RARG的表达,提高RARγ受体的表达水平,从而提高肿瘤细胞对ATRA的敏感性。
优选地,所述EZH2抑制剂包括GSK-126、tazemetostat、CPI-1205、SHR2554或PF-06821497中任意一种或至少两种的组合。
第二方面,本发明提供一种以非疾病诊断和/或治疗为目的的提高维甲酸受体γ的表达水平的方法,所述方法包括:
对目标对象施用EZH2抑制剂,提高其维甲酸受体γ的表达水平。
本发明中,可利用EZH2抑制剂作为促进剂,提高其维甲酸受体γ的表达水平,应用于维甲酸受体γ相关行为的基础研究中,如构维甲酸受体γ高表达模型等。
优选地,所述目标对象包括体外细胞、体外器官或实验动物等。
可以理解,所述实验动物指本领域用于药物实验的动物,包括大鼠、小鼠或兔等等。
优选地,所述EZH2抑制剂包括GSK-126、tazemetostat、CPI-1205、SHR2554或PF-06821497中任意一种或至少两种的组合。
第三方面,本发明提供EZH2抑制剂在制备提高维甲酸受体γ的表达水平的制剂中的应用。
优选地,所述制剂还包括辅料。
优选地,所述辅料包括药学上可接受的载体、润湿剂、崩解剂、乳化剂、增溶剂、渗透压调节剂、表面活性剂、包衣材料、着色剂、pH调节剂、抗氧化剂、抑菌剂或缓冲剂中的任意一种或至少两种的组合。
第四方面,本发明提供以非治疗为目的的EZH2抑制剂在制备提高维甲酸受体γ的表达水平的制剂中的应用。
本发明中,发现EZH2抑制剂能够减少RARG启动子区域H3K27me3的富集程度并激活RARG的表达,提高RARγ受体的表达水平,可作为RARγ受体表达促进剂,应用于维甲酸受体γ相关行为的基础研究中。
第五方面,本发明提供一种药物组合物,所述药物组合物包括EZH2抑制剂和全反式维甲酸。
本发明发现RARγ是介导ATRA发挥抑癌作用的主要受体,且EZH2抑制剂能够通过减少H3K27me3的修饰促进RARγ的表达,进一步开发EZH2抑制剂联合ATRA使用策略,发现EZH2抑制剂联合ATRA具有协同抑制肿瘤增殖的作用,能够促进肿瘤细胞凋亡并且阻滞细胞在G1期,且能够抑制肿瘤细胞迁移,对于肿瘤治疗领域具有重要意义。
可以理解,所述药物组合物中EZH2抑制剂和全反式维甲酸可以以独立的形式存在,使用时同时施用给目标对象即可。
优选地,所述药物组合物中EZH2抑制剂的施用浓度为5μM~10μM,包括但不限于6μM、7μM、8μM或9μM全反式维甲酸的施用浓度为20μM~50μM,包括但不限于21μM、22μM、23μM、24μM、25μM、26μM、27μM、28μM、29μM、35μM、40μM、45μM、46μM、47μM、48μM或49μM。
优选地,所述所述EZH2抑制剂包括GSK-126、tazemetostat、CPI-1205、SHR2554或PF-06821497中任意一种或至少两种的组合。
第六方面,本发明提供第五方面所述的药物组合物在制备治疗肿瘤药物中的应用。
优选地,所述肿瘤包括肝癌。
与现有技术相比,本发明具有以下有益效果:
本发明创造性发现RARγ是介导ATRA发挥抑癌作用的主要受体,且EZH2抑制剂能够通过减少H3K27me3的修饰促进RARγ的表达,进一步开发EZH2抑制剂联合ATRA使用策略,发现EZH2抑制剂联合ATRA具有协同抑制肿瘤增殖的作用,提高了肿瘤对ATRA的敏感性,能够促进肿瘤细胞凋亡并且阻滞细胞在G1期,且能够抑制肿瘤细胞迁移,为两药协同抗肿瘤效应提供了实验基础和理论基础,对于肿瘤治疗领域具有重要意义。
附图说明
图1为临床肝癌病人RNA-seq火山图;
图2为Hep3B细胞siRNARARα、siRNARARβ和siRNARARγ干扰效率检测图;
图3为Hep3B细胞siRNARARα、siRNARARβ和siRNARARγ干扰后MTT增殖实验图;
图4A为Hep3B细胞siRNA RARα、siRNA RARβ和siRNA RARγ干扰后ATRA用药对细胞增殖的影响结果图;
图4B为Hep3B细胞siRNARARα、siRNARARβ和siRNARARγ干扰后对ATRA的敏感性结果图;
图5A为GSK126处理Hep3B促进RARγ的基因表达图;
图5B为GSK126处理Hep3B促进RARγ的蛋白表达;
图6A为RARG启动子区域H3K27me3的富集分析;
图6B为针对RARG启动子区域进行ChIP-PCR的引物设计位点的示意图;
图7A为ChIP实验验证GSK126作用后H3K27me3富集的RARG染色质情况的琼脂糖凝胶电泳图;
图7B为ChIP实验验证GSK126作用后H3K27me3富集的RARG染色质情况统计图;
图8A为MTT检验Hep3B细胞中ATRA和GSK126联合用药协同作用图;
图8B为MTT检验HepG2细胞中ATRA和GSK126联合用药协同作用图;
图8C为MTT检验SMMC-7721细胞中ATRA和GSK126联合用药协同作用图;
图9A为克隆形成实验检验Hep3B细胞中ATRA和GSK126联合用药协同作用图;
图9B为克隆形成实验检验HepG2细胞中ATRA和GSK126联合用药协同作用图;
图9C为克隆形成实验检验SMMC-7721细胞中ATRA和GSK126联合用药协同作用图;
图10A为Hep3B、HepG2、SMMC-7721细胞系中RARG的mRNA水平表达量图;
图10B为Hep3B、HepG2、SMMC-7721细胞系中RARγ蛋白水平表达量图;
图11A为流式细胞实验检验Hep3B细胞中ATRA和GSK126联合用药促进细胞凋亡作用;
图11B为流式细胞实验检验HepG2细胞中ATRA和GSK126联合用药促进细胞凋亡作用结果图;
图11C为流式细胞实验检验SMMC-7721细胞中ATRA和GSK126联合用药促进细胞凋亡作用结果图;
图12A细胞周期实验检验Hep3B细胞中ATRA和GSK126联合用药协同作用图;
图12B为细胞周期实验检验HepG2细胞中ATRA和GSK126联合用药协同作用图;
图12C为细胞周期实验检验SMMC-7721细胞中ATRA和GSK126联合用药协同作用图;
图13为Western Blotting检测Hep3B、HepG2和SMMC-7721细胞中ATRA和GSK126联合用药后细胞凋亡和细胞周期分子标志物的蛋白表达图;
图14A为划痕实验检验ATRA和GSK126联合用药抑制HepG2细胞迁移作用图;
图14B为划痕实验检验ATRA和GSK126联合用药抑制Hep3B细胞迁移作用图;
图14C为划痕实验检验ATRA和GSK126联合用药抑制SMMC-7721细胞迁移作用图。
具体实施方式
为进一步阐述本发明所采取的技术手段及其效果,以下结合实施例和附图对本发明作进一步地说明。可以理解的是,此处所描述的具体实施方式仅仅用于解释本发明,而非对本发明的限定。
实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件,或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可通过正规渠道购买获得的常规产品。
实施例1
本实施例分析维甲酸受体γ(RARγ)在肝癌细胞中的低表达与肝癌病人对ATRA的敏感性的关系。
为了研究导致肝癌患者对ATRA敏感性差异的分子机制,本实施例收集了10例肝癌晚期患者的肝癌组织,根据ATRA联合FOLFOX4化疗方案在肝癌患者中的疗效分为2组,一组为疗效良好(partial response,PR)的肝癌患者(5例),一组为疗效较差的肝癌患者(stable disesase,SD)(5例),对以上两组患者的肝癌组织标本进行转录组测序,按照Q30标准进行质控,用DESEQ进行差异性分析,结果如图1所示,RARγ在SD组的表达显著低于PR组。
为了明确RARγ是否是介导ATRA发挥抑癌作用的主要受体,我们检测了维甲酸受体(RARα、RARβ和RARγ)对细胞增殖的影响,我们用RARαsiRNA(核酸序列为:Forward:CCCUCAGUUAGAAGAGCUAUTT;Reverse:AUGAGCUCUUCUAACUGAGGGTT)、RARβsiRNA(核酸序列为:Forward:GCTAGCGCCACCATGAAGCTGAGTAGAAT;Reverse:GGATCCTTATTGCACGAGTGGTGACTGAC)、RARγsiRNA(核酸序列为:Forward:UUCUCCGAACGUGUCACGUTT;Reverse:ACGUGACACGUUCGGAGAATT)在3株肝癌细胞系(Hep3B、HepG2、SMMC-7721)中进行了RNA干扰(RNAi)实验,并通过qPCR检测其干扰效率,具体实验过程包括:Hep3B肝癌细胞系分别以50万/孔接种于6孔板(分组:NC组(阴性对照组,即不进行RNA干扰),siRNA RARα组、siRNARARβ组和siRNA RARγ组),细胞贴壁后弃去培养基,换入新鲜培养基。将LipofectamineTMRNAiMAX转染试剂(13778150,invitrogen,Carlsbad,CA)和siRNA 50nM(生工,上海,中国)在opti-MEM孵育形成复合体,并将其加入已更换新鲜培养基的6孔板中进行干扰,干扰时间为48h,干扰后收集各组细胞进行qPCR检验。
qPCR检测结果如图2所示,RARα、RARβ和RARγ的表达量分别降低了50%、60%和70%。同时通过MTT实验测定维甲酸受体(RARα、RARβ和RARγ)对肝癌细胞系增殖的影响,具体实验过程包括:干扰过程同上,干扰后收集各组细胞,进行细胞计数,以2000/孔重新铺入96孔板。24h、48h、72h,分别用MTT溶液(ST316,碧云天,南京,中国)37℃孵育60min后弃上清,加入100μL的DMSO溶解甲瓒,用酶标仪测定其在490nm的光吸收值,即OD490值。
结果如图3所示:RARγsiRNA组与NC组相比,RARγsiRNA组3天增值率为(83.6±18)%,NC组3天增值率为(37.5±10)%,且存在统计学差异(p<0.0001);RARαsiRNA组三天增值率为(25.7±5.9)%,RARβsiRNA组三天增值率为(56±20)%;说明降低RARγ和RARβ的表达,细胞增值率提高,降低RARα的表达,细胞增值率降低,表明RARγ和RARβ能够抑制细胞的增殖,而RARα促进细胞增殖,其中RARγ的抑癌作用最强。
为了检验RARγ是介导ATRA发挥抑癌作用的主要受体,我们将RARα、RARβ、RARγ干扰后的细胞再用DMSO和ATRA(25μmol/L(μM),>98%纯度,2207091,泽业生物,上海,中国)处理,检测细胞增殖情况并比较了三组对ATRA半抑制率(IC50)的影响,具体实验过程包括:干扰过程与分组与上述相同,干扰后收集各组细胞,进行细胞计数,以2000/孔重新铺入96孔板。待细胞贴壁后,弃上清,加入含有25μMATRA的新鲜培养基。加药24h、48h、72、96h后,分别用MTT溶液(ST316,碧云天,南京,中国)37℃孵育60min后弃上清,加入100μL的DMSO溶解甲瓒,用酶标仪测定其在490nm的光吸收值,即OD490值。以10000/孔重新铺入96孔板,每一组铺一块96孔板。
ATRA IC50值测定方法:待细胞贴壁后,弃上清,加入含ATRA的培养基(ATRA浓度梯度为:20μM、40μM、80μM、160μM、320μM)。药物孵育48后,移除药物。加入含有MTT溶液的培养基(ST316,碧云天,南京,中国)37℃孵育60min后弃上清,加入100μL的DMSO溶解甲瓒,用酶标仪测定其在490nm的光吸收值,即OD490值。用GraphpadPrism 7.0软件计算IC50,以药物浓度的对数值为横坐标,细胞存活率为纵坐标,细胞存活率为50%时对应的药物浓度为IC50值。
结果如图4A所示,在ATRA作用下,RARγsiRNA组3天OD490nm增值率为269%,NC组三天增值率为236%,RARγsiRNA组明显快于NC组,且存在统计学差异(P<0.0001);RARαsiRNA组三天增值率为264%,RARγsiRNA组明显快于RARαsiRNA组,且存在统计学差异(P=0.0055);RARβsiRNA组三天增值率为254%,RARγsiRNA组明显快于RARβsiRNA组,且存在统计学差异(P<0.0001),上述结果说明:RARα、RARβ以及RARγ协同增加了ATRA对肝癌的抑制作用,其中,RARγ协同ATRA抑制细胞增殖的能力更强。
RARαsiRNA组、RARβsiRNA组和RARγsiRNA组对ATRAIC50的检测结果如图4B所示,我们发现RARγ被干扰后肝癌细胞对ATRA的IC50为68.55±5.50μM,RARα被干扰后肝癌细胞对ATRA的IC50为50.73±4.71μM(P=0.037),RARβ被干扰后肝癌细胞IC50为49.59±6.70μM(P=0.0038),RARγsiRNA组的肝癌细胞对ATRA的敏感性最低,该结果说明:与RARα和RARβ相比,RARγ是介导ATRA抑制肝癌细胞增殖的主要受体。
实施例2
本实施例验证EZH2抑制剂(以GSK-126为例)通过减少H3K27me3的修饰促进了RARγ的表达。
根据实施例1中分析可知,如何提高RARγ的表达是解决肝癌对ATRA耐药的关键。EZH2催化形成转录抑制性表观遗传修饰H3K27me3,如图5A所示,通过对H3K27me3 CHIP-seq分析发现:RARγ的编码基因RARG的启动子上游富集H3K27me3,因此,我们推测EZH2的抑制剂(GSK-126)会减少细胞内整个H327me3的水平,进而RARγ启动子区域H3K27me3的水平也随之减少,从而促进RARγ的编码基因RARG的转录。
为了检测GSK-126对RARγ表达的影响,我们对Hep3B、HepG2、SMMC-7721细胞分别进行GSK-126(>98%纯度,C22M11L113783,源叶生物,上海,中国)和DMSO处理,具体包括:将Hep3B细胞以50万/孔接种于6孔板,待细胞贴壁后,换入新鲜的含有GSK126的培养基,分组为正常组、DMSO组、GSK1265μM组。待药物处理48h后,收集细胞,使用TRIzol(爱德兰,北京,中国)试剂提取细胞总RNA,将获取的mRNA使用RNA反转录试剂盒(Perfect Real Time,Takara,日本)反转录成cDNA。反转录程序为:37℃逆转录15min;85℃逆转录酶灭活5s;4℃保存。然后使用SYBRPremix Ex Taq II(Takara)进行real time PCR,PCR程序是95℃变性5s,60℃退火延伸30s,共40个循环,首次循环前95℃预变性30s。使用2-ΔΔCt方法对比β-actin表达进行数据分析。本研究使用的引物购自上海生工公司,引物序列如表1。
表1
基因 序列(5'-3')
hRARγ:Forward GCTAGCGCCACCATGGTGTACACGTGTC
hRARγ:Reverse GGATCCTCAGGCTGGGGACTTCAGGCCC
hRARβ:Forward GCTAGCGCCACCATGAAGCTGAGTAGAAT
hRARβ:Reverse GGATCCTTATTGCACGAGTGGTGACTGAC
hRARα:Forward GCTAGCGCCACCATGGCCAGCAACAGCA
hRARα:Reverse GGATCCTCACGGGGAGTGGGTGGCC
β-actin:Forward TTGTGATGGACTCCGGAGAC
β-actin:Reverse TGATGTCACGCACGATTTCC
(Chip)RARγ:Forward GCGATACAGCGGGGTAGAG
(Chip)RARγ:Reverse ATCCACTACTGTGTTGGCTCC
Western Blotting实验过程为药物作用48h后收集细胞,加入60μL RIPA提取总蛋白。BCA蛋白质测定试剂盒(P0012,碧云天,南京,中国)测定总蛋白浓度。使用SDS-PAGE分离煮沸的样品蛋白质(20μg),转移到PVDF膜上。随后PVDF膜用5%脱脂牛奶封闭1h,1×TBST洗涤3次,每次5min。接下来PVDF膜在4℃孵育一抗过夜,一抗包括β-Actin RabbitMonoclonal Antibody(AF5003,碧云天,南京,中国)、RARγMouse Polyclonal Antibody(sc-7387,Santa Cruz Biotechnology,USA)。第二天回收一抗,洗膜后,用辣根过氧化物酶标记山羊抗小鼠二抗(1:1000)(A0286,碧云天,南京,中国)孵育2h,洗膜后显影得到条带。β-actin作为内参,使用ImageJ进行灰度值定量。
根据ChIPAssay Kit(P2078,碧云天,南京,中国)说明书进行实验操作。实验分组分为3组,对照组(control):不做任何处理、DMSO处理组:DMSO终浓度5μm/L、GSK126处理组:GSK126总浓度为0.1μm/L。每组取1×107个细胞接种于10cm培养皿中,药物处理72h后以1%甲醛固定,以细胞收集液(100mmol/L Tris-Cl,pH 9.4,10mmol/L DTT)收集细胞,冰冷PBS洗涤3次,然后加入含有1mM PMSF的细胞裂解液裂解细胞,以超声破碎仪按照30%功率超声10s,暂停10s,循环10次的条件进行超声从而获得300-1000bp的染色质片段。收集上清,用H3K27me3 Mouse Monoclonal Antibody或IgG(阴性对照)抗体进行染色质免疫沉淀。以沉淀下来的DNA为底物,使用RARγ启动子特异性引物进行qPCR扩增,qPCR产物用3%琼脂糖凝胶电泳进行分离,以确认被抗H3K27me3抗体沉淀的DNA中RARG基因启动子区域DNA序列的含量。引物序列如表1。
然后通过RT-PCR和Western Blotting检测检测RARγ的表达水平(图5A和图5B),qPCR结果显示:与DMSO组相比,Hep3B中GSK-126组RARG mRNA的相对表达量为2.3±0.3倍(P=0.096),Western blot结果显示:GSK126降低了H3K27me3的水平,且RARγ蛋白表达量明显升高,上述结果表明:GSK-126在Hep3B细胞中能够促进RARγ的表达水平。
为了明确GSK-126是否影响了RARG启动子区域H3K27me3的富集程度,我们在RARG启动子区域(图6A-图6B)设计了引物,利用CHIP-PCR检测了RARG上游启动子区域H3K27me3的富集程度。结果如图7A和图7B所示,图中Input是断裂后的基因组DNA,H3K27me3组是使用H3K27me3抗体进行染色质免疫功沉淀组,negetive control组为阴性对照组,即没有使用抗体进行染色质免疫共沉淀,但是实验操作与进行有抗体染色质免疫共沉淀相同。我们通过计算PCR产物的量计算了3组细胞中RARG启动子区域H3K27me3的富集程度,结果显示:与DMSO组相比,抗H3K27me3 IP的PCR产物的相对量为0.32,该结果表明:GSK-126可通过降低RARG的启动子区域H3K27me3的富集程度进而提高RARγ的表达水平。
实施例3
本实施例验证GSK-126联合ATRA具有协同抑制肿瘤增殖的作用。
RARγ是介导ATRA抑制肝癌细胞增殖的主要受体,GSK126具有促进RARγ表达的作用,可推测ATRA与GSK-126的联合使用可以提高肝癌患者对ATRA的响应率从而具有更好的抗癌效果,为此本实施例以Hep3B、HepG2和SMMC-7721为模型,通过ATRA单用、GSK-126单用、以及两者的联用进行处理,分别通过MTT实验和克隆形成实验探究了ATRA与GSK-126的联合使用对肝癌细胞增值的影响,具体实验过程包括:Hep3B、HepG2、SMMC-7721三株肝癌细胞系分别以10000/孔接种于96孔板,贴壁后采用药物处理。实验分为5组:正常组;DMSO组:DMSO终浓度为5μm/L;ATRA组:ATRA浓度梯度为20μM、40μM、80μM、160μM和320μM;GSK-126组:GSK126的浓度梯度为4μM、8μM、16μM、32μM、64μM;联合用药组:ATRA与GSK-126以5:1的比例按照上述浓度梯度混合而成的溶液。各组加药后孵育48h,用MTT溶液(ST316,碧云天,南京,中国)37℃孵育60min后弃上清,加入100μL的DMSO溶解甲瓒,用酶标仪测定其在490nm的光吸收值,即OD 490值。用Graphpad Prism 7.0软件计算IC50,以药物浓度的对数值为横坐标,细胞存活率为纵坐标,细胞存活率为50%时对应的药物浓度为IC50值。利用CompuSyn软件计算不同浓度ATRA和GSK-126以固定比列组合的协同指数(CI)并绘制Fa-CI图,若CI<1,认为两药有协同作用,CI=1为相加作用,CI>1为拮抗作用。Fa-CI图可根据观测比较试剂测量点落入图中所在区域的位置,可直观判断联用药物在剂量、效应二者之间的关系以及变化趋势。Hep3B、HepG2、SMMC-7721三株肝癌细胞系按照1000/孔分别接种于12孔板中,按照以上分组,贴壁后采用药物处理,每3天更换一次含有药物的培养液,处理7天后,用4%多聚甲醛固定20min,PBS缓冲液洗脱3次,0.1%结晶紫(C8470,Solarbio,南京,中国)染色30min,PBS缓冲液洗脱3次,拍照。
MTT结果如图8A-图8C所示,GSK-126和ATRA以及两药以固定比例联用对肝癌细胞Hep3B、HepG2、SMMC-7721细胞的增殖均具显著的抑制作用,在SMMC-7721细胞中两者联用的抑制率(49.47±0.81%)明显高于ATRA组(14±1.09%)和GSK126组(6±0.70%)单独用药(P<0.0001),在HepG2细胞中两者联用抑制率(42.47±2.46%)明显高于ATRA(24.14±2.70%)和GSK126(11.88±0.91%)单独用药(P<0.0001),在Hep3B细胞系中两者联用抑制率(27.33±2.99%)明显高于ATRA(7.62±1.21%)和GSK126(2.10±0.46%)单独用药(P<0.0001)。
克隆形成实验结果如图9A-图9C所示,不同浓度的联合用药抑制HepG2、SMMC-7721和Hep3B细胞克隆形成效果优于单独用药。我们根据3组处理获得ATRA、GSK-126IC50值及联合用药CI值,结果如表2所示,两药联用的协同效果在Hep3B中最显著。
表2
Hep3B HepG2 SMMC-7721
<![CDATA[ATRA IC<sub>50</sub>(uM)]]> 48.37±13.74 60.993±1.35 65.88±10.49
<![CDATA[GSK126 IC<sub>50</sub>(uM)]]> 16.88±2.16 15.313±1.01 15.47±0.53
<![CDATA[联合用药IC<sub>50</sub>(uM)]]> 13.58±7.10 23.0823±2.56 27.65±2.70
CI 0.39±0.18 0.522 0.65±0.025
为探究Hep3B、HepG2、SMMC-7721三株细胞对ATRA敏感性的关系的差异的机制,利用qPCR、Westernblot法检测RARγ在Hep3B、HepG2、SMMC-7721细胞中的表达量。结果显示:在Hep3B、HepG2、SMMC-7721三株细胞中,Hep3B中RARγ的mRNA表达量(图10A)和蛋白表达量(如图10B)都是最低的,且存在显著性差异。因此,ATRA与GSK-126在Hep3B细胞中协同效果最好可能与RARγ在Hep3B中表达最低有关。
GSK126联合ATRA促进细胞凋亡并且阻滞肝癌细胞在G1期。
为此本实施例以Hep3B、HepG2和SMMC-7721为模型,通过ATRA单用、GSK-126单用、以及两者的联用进行处理,分别通过流氏细胞凋亡实验和细胞周期实验探究了ATRA与GSK-126的联合使用对肝癌细胞增值的影响,具体实验过程:Hep3B、HepG2、SMMC-7721三株肝癌细胞系分别按照5×105/孔接种于6孔板中。实验分为5组:Control组:正常组、DMSO组:DMSO终浓度为5μM/L、ATRA组:ATRA终浓度为25μM/L、GSK-126组:GSK-126终浓度为5μM/L、联合用药组处:加入25μM/L的ATRA和5μM/L的GSK-126。药物处理24h后收集细胞,分别使用膜联蛋白AnnexinV-FITC细胞凋亡检测试剂盒(C1062M,Beyotime Biotechnology,南京,中国)和细胞周期检测试剂盒(C1052,Beyotime Biotechnology,南京,中国)按照说明书对细胞进行染色,采用流式细胞仪检测其细胞的凋亡率及细胞周期。采用FlowJo 7.6软件进行数据分析,细胞凋亡率=(早期凋亡细胞数+晚期凋亡细胞数)/细胞总数×100%。细胞周期分析肝癌细胞Hep3B、HepG2、SMMC-7721在各细胞周期(G1、S、G2/M)所占比例。实验重复3次。
我们检测了SMMC-7721、Hep3B和HepG2细胞的凋亡和细胞周期。如图11A所示,Hep3B细胞系中,联用组的凋亡率(67.9±0.95)%高于ATRA单独组的凋亡率(37.7±0.72)%和GSK-126单独组的凋亡率(12±0.36)%(P<0.0001)。在HepG2细胞中(图11B),联用组的凋亡率(51.3±2.1)%高于单独GSK-126组(13.8±0.07)%和ATRA单独组(32.35±2.59)%(P<0.0001)。在SMMC-7721细胞系中(图11C),联用组的凋亡率(69.2±1.0)%高于GSK126单独组(13.1±0.3)%和ATRA单独组(15.2±0.4%)(P<0.0001)。这些结果表明ATRA和GSK-126联合应用比单独应用更能诱导细胞凋亡。
细胞周期结果显示,Hep3B细胞中(如图12A),ATRA和GSK-126联用组S期细胞比例(11.97±4.61%)显著低于ATRA单独组(35.23±1.01)%和GSK-126单独组(34.41±0.47%)(P<0.0001)。在SMMC-7721细胞中(如图12C),联用组S期细胞比例(0%)显著低于ATRA单独组(29.48±1.09%)和GSK-126单独组(32.05±5.63%)(P<0.0001)。在HepG2细胞系中(如图12B),联用组S期细胞比例(0%)显著低于ATRA单独组(28.38±1.29%)和GSK-126单独组(29.27±1.38%)(P<0.0001)。三种肝癌细胞系中约50%的细胞都聚集在G1期,表明肝癌细胞周期阻滞于G1期。提示GSK-126可显著增强ATRA诱导细胞凋亡的作用,这可能是ATRA联合GSK126抗HCC的主要机制。
我们进一步通过Westernblot检测ATRA和GSK-126联合应用对细胞周期相关蛋白和凋亡相关蛋白的影响。结果显示(如图13),联用组HepG2、SMMC-7721、Hep3B细胞中细胞周期相关蛋白CDK4、CDK6、CyclinD1在G1期的表达低于ATRA单独组和GSK-126单独组,说明肝癌细胞周期被阻滞在G1期。此外,HepG2、SMMC-7721和Hep3B细胞中凋亡相关蛋白Caspase3和p53的表达在联用组高于ATRA单独组和GSK-126单独组,说明ATRA联合GSK-126促进了细胞凋亡。
验证GSK-126联合ATRA抑制肝癌细胞迁移。
对正常组、DMSO组、GSK-126组、ATRA组和ATRA+GSK126联合用药组共5组细胞进行划痕试验,具体过程包括:肝癌细胞系Hep3B、HepG2、SMMC-7721细胞系按照5×105/孔接种于12孔板中。实验分为5组:分组方法如2.7。细胞贴壁且细胞融合度达到90%后用200μL无菌枪头划痕并加药处理,加药0h、24h后于倒置显微镜下观察、拍照,采用Image J软件对划痕距离进行分析,并用Graphpad Prism 7.0软件计算细胞迁移率。细胞迁移率=(0h划痕间距-24h划痕间距)/0h划痕间距×100%。实验重复3次。
结果显示(如图14A-图14C),0小时时,5组划痕宽度基本相同,划痕处未见细胞迁移。处理24小时后,划痕宽度减小,细胞向划痕区域迁移。联用组SMMC-7721细胞迁移率(19.6±4.6%)显著低于对照组(37.4±3.8%)、DMSO组(37.9±5%)、GSK-126组(36.8±2.8%)、ATRA组(34.7±2.6%)(P&lt;0.0001)。ATRA和GSK126联合处理的Hep3B细胞迁移率(11.8±3.5%)显著低于对照组(31.9±4)%、DMSO组(34.6±4%)、GSK-126组(28.6±3%)和ATRA组(15±3.7%)(P=0.0003)。ATRA+GSK126组HepG2细胞迁移率(26.5±4.8%)显著低于对照组(51.0±2.6%)、DMSO组(59.2±5.7%)、GSK-126组(41.1±3.3%)、ATRA组(39.5±3.9%)(P=0.0004)。因此,ATRA与GSK-126联合使用可以有效抑制肝癌细胞的迁移。
综上所述,本发明创造性发现RARγ是介导ATRA发挥抑癌作用的主要受体,且EZH2抑制剂能够通过减少H3K27me3的修饰促进RARγ的表达,进一步开发EZH2抑制剂联合ATRA使用策略,发现EZH2抑制剂联合ATRA具有协同抑制肿瘤增殖的作用,能够促进肿瘤细胞凋亡并且阻滞细胞在G1期,且能够抑制肿瘤细胞迁移,对于肿瘤治疗领域具有重要意义。
申请人声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

1.EZH2抑制剂在提高维甲酸受体γ的表达水平中的应用。
2.根据权利要求1所述应用,其特征在于,所述EZH2抑制剂包括GSK-126、tazemetostat、CPI-1205、SHR2554或PF-06821497中任意一种或至少两种的组合。
3.一种以非疾病诊断和/或治疗为目的的提高维甲酸受体γ的表达水平的方法,其特征在于,所述方法包括:
对目标对象施用EZH2抑制剂,提高其维甲酸受体γ的表达水平。
4.根据权利要求3所述的以非疾病诊断和/或治疗为目的的提高维甲酸受体γ的表达水平的方法,其特征在于,所述目标对象包括体外细胞、体外器官或实验动物;
优选地,所述EZH2抑制剂包括GSK-126、tazemetostat、CPI-1205、SHR2554或PF-06821497中任意一种或至少两种的组合。
5.EZH2抑制剂在制备提高维甲酸受体γ的表达水平的制剂中的应用。
6.根据权利要求5所述的应用,其特征在于,所述制剂还包括辅料。
7.根据权利要求6所述的应用,其特征在于,所述辅料包括药学上可接受的载体、润湿剂、崩解剂、乳化剂、增溶剂、渗透压调节剂、表面活性剂、包衣材料、着色剂、pH调节剂、抗氧化剂、抑菌剂或缓冲剂中的任意一种或至少两种的组合。
8.一种药物组合物,其特征在于,所述药物组合物包括EZH2抑制剂和全反式维甲酸。
9.根据权利要求8所述的药物组合物,其特征在于,所述所述EZH2抑制剂包括GSK-126、tazemetostat、CPI-1205、SHR2554或PF-06821497中任意一种或至少两种的组合。
10.权利要求8所述的药物组合物在制备治疗肿瘤药物中的应用;
优选地,所述肿瘤包括肝癌。
CN202310256438.5A 2023-03-16 2023-03-16 EZH2抑制剂在提高维甲酸受体γ的表达水平中的应用 Pending CN116099005A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310256438.5A CN116099005A (zh) 2023-03-16 2023-03-16 EZH2抑制剂在提高维甲酸受体γ的表达水平中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310256438.5A CN116099005A (zh) 2023-03-16 2023-03-16 EZH2抑制剂在提高维甲酸受体γ的表达水平中的应用

Publications (1)

Publication Number Publication Date
CN116099005A true CN116099005A (zh) 2023-05-12

Family

ID=86259979

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310256438.5A Pending CN116099005A (zh) 2023-03-16 2023-03-16 EZH2抑制剂在提高维甲酸受体γ的表达水平中的应用

Country Status (1)

Country Link
CN (1) CN116099005A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111093660A (zh) * 2017-09-05 2020-05-01 Epizyme股份有限公司 用于治疗癌症的组合疗法
CN111420059A (zh) * 2020-01-10 2020-07-17 中山大学 一种克服肝癌和肾癌肿瘤耐药性的药物组合及其应用
CN114177299A (zh) * 2021-12-16 2022-03-15 北京大学第三医院(北京大学第三临床医学院) 包含ezh2抑制剂和scd1抑制剂的抗肿瘤药物组合物及其用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111093660A (zh) * 2017-09-05 2020-05-01 Epizyme股份有限公司 用于治疗癌症的组合疗法
CN111420059A (zh) * 2020-01-10 2020-07-17 中山大学 一种克服肝癌和肾癌肿瘤耐药性的药物组合及其应用
CN114177299A (zh) * 2021-12-16 2022-03-15 北京大学第三医院(北京大学第三临床医学院) 包含ezh2抑制剂和scd1抑制剂的抗肿瘤药物组合物及其用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NICOLETTA COCCARO PHD ET AL.: "RARA and RARG gene downregulation associated with EZH2 mutation in acute promyelocytic-like morphology leukemia", HUMAN PATHOLOGY, vol. 80, 31 October 2018 (2018-10-31), pages 82 - 86 *
RONAN T. SWORDS ET AL.: "In Acute Myeloid Leukemia (AML), Targeting the Histone Methyltransferase EZH2 Promotes Differentiation, Impairs Clonogenic Survival and Augments the Anti-Leukemic Effects of the Retinoid, All-Trans-Retinoic Acid (ATRA)", BLOOD, vol. 126, no. 23, 3 December 2015 (2015-12-03), pages 1 - 3, XP086641447, DOI: 10.1182/blood.V126.23.3786.3786 *

Similar Documents

Publication Publication Date Title
Pei et al. LncRNA SNHG1 regulates the differentiation of Treg cells and affects the immune escape of breast cancer via regulating miR-448/IDO
Chen et al. Long non‐coding RNA MALAT1 regulates ZEB1 expression by sponging miR‐143‐3p and promotes hepatocellular carcinoma progression
Zhang et al. SIRT6 regulates the proliferation and apoptosis of hepatocellular carcinoma via the ERK1/2 signaling pathway
Li et al. Long non-coding RNA NEAT1 promotes malignant progression of thyroid carcinoma by regulating miRNA-214
Li et al. HIF‑1α‑induced upregulation of lncRNA UCA1 promotes cell growth in osteosarcoma by inactivating the PTEN/AKT signaling pathway
Shen et al. LncRNA HEIH confers cell sorafenib resistance in hepatocellular carcinoma by regulating miR-98-5p/PI3K/AKT pathway
Fang et al. MEK/ERK dependent activation of STAT1 mediates dasatinib-induced differentiation of acute myeloid leukemia
Zhang et al. STAT3 regulates the migration and invasion of a stem‑like subpopulation through microRNA‑21 and multiple targets in hepatocellular carcinoma
Hu et al. Tripartite motif-containing protein 7 regulates hepatocellular carcinoma cell proliferation via the DUSP6/p38 pathway
Xu et al. Propofol prevents IL‐13‐induced epithelial–mesenchymal transition in human colorectal cancer cells
Zhao et al. Loss of insulin-like growth factor II imprinting is a hallmark associated with enhanced chemo/radiotherapy resistance in cancer stem cells
Qin et al. Cucurbitacin B induces inhibitory effects via CIP2A/PP2A/Akt pathway in glioblastoma multiforme
Wang et al. Overexpression of serine/threonine‑protein kinase-1 in pancreatic cancer tissue: Serine/threonine-protein kinase-1 knockdown increases the chemosensitivity of pancreatic cancer cells
Lee et al. microRNAs mediate oleic acid-induced acute lung injury in rats using an alternative injury mechanism
Li et al. Long non‑coding RNA MALAT1 correlates with cell viability and mobility by targeting miR‑22‑3p in renal cell carcinoma via the PI3K/Akt pathway
Jin et al. Norcantharidin reverses cisplatin resistance and inhibits the epithelial mesenchymal transition of human non‑small lung cancer cells by regulating the YAP pathway Retraction in/10.3892/or. 2020.7830
Wang et al. MicroRNA‑592 targets IGF‑1R to suppress cellular proliferation, migration and invasion in hepatocellular carcinoma
Zhu et al. MicroRNA‑103a‑3p potentiates chemoresistance to cisplatin in non‑small cell lung carcinoma by targeting neurofibromatosis 1
Jiang et al. miR‑150 promotes the proliferation and migration of non‑small cell lung cancer cells by regulating the SIRT2/JMJD2A signaling pathway
Alamdari-Palangi et al. MiRNA-7 replacement effect on proliferation and tarceva-sensitivity in U373-MG cell line
Tang et al. Gambogic acid inhibits the growth of ovarian cancer tumors by regulating p65 activity
Li et al. MicroRNA‑30a‑5p suppresses tumor cell proliferation of human renal cancer via the MTDH/PTEN/AKT pathway
Yang et al. Huaier aqueous extract inhibits proliferation and metastasis of tuberous sclerosis complex cell models through downregulation of JAK2/STAT3 and MAPK signaling pathways
Gao et al. KIF2C promotes the proliferation of hepatocellular carcinoma cells in vitro and in vivo Retraction in/10.3892/etm. 2023.12095
Song et al. MicroRNA‑601 serves as a potential tumor suppressor in hepatocellular carcinoma by directly targeting PIK3R3 Retraction in/10.3892/mmr. 2022.12923

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination