CN116092552A - Controller and control method for pseudo-static random access memory - Google Patents

Controller and control method for pseudo-static random access memory Download PDF

Info

Publication number
CN116092552A
CN116092552A CN202310154805.0A CN202310154805A CN116092552A CN 116092552 A CN116092552 A CN 116092552A CN 202310154805 A CN202310154805 A CN 202310154805A CN 116092552 A CN116092552 A CN 116092552A
Authority
CN
China
Prior art keywords
psram
signal
clock
transmission
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310154805.0A
Other languages
Chinese (zh)
Inventor
王祥祥
和王峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Eswin Computing Technology Co Ltd
Guangzhou Quanshengwei Information Technology Co Ltd
Original Assignee
Beijing Eswin Computing Technology Co Ltd
Guangzhou Quanshengwei Information Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Eswin Computing Technology Co Ltd, Guangzhou Quanshengwei Information Technology Co Ltd filed Critical Beijing Eswin Computing Technology Co Ltd
Priority to CN202310154805.0A priority Critical patent/CN116092552A/en
Publication of CN116092552A publication Critical patent/CN116092552A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)

Abstract

The present disclosure provides a controller and a control method for a pseudo static random access memory. The controller includes: the digital controller is used for receiving an operation request and generating PSRAM transmission signals which are adaptive to the types of the eight paths of serial input/output interfaces based on the operation request; the input end of the physical layer interface is connected with the digital controller, and the output end is connected with the PSRAM interface and used for generating a PSRAM interface signal which is adaptive to the type of the PSRAM interface based on the PSRAM transmission signal. According to the controller provided by the embodiment of the disclosure, different PSRAM chips can be supported, and the flexibility of PSRAM chip selection is improved.

Description

用于伪静态随机存储器的控制器及控制方法Controller and control method for pseudo-static random access memory

技术领域technical field

本公开涉及集成电路技术领域,特别涉及一种用于伪静态随机存储器的控制器及控制方法。The present disclosure relates to the technical field of integrated circuits, in particular to a controller and a control method for a pseudo-static random access memory.

背景技术Background technique

伪静态随机存储器(Pseudo Static Random Access Memory,简称PSRAM)是一种采用动态随机存取存储器(Dynamic Random Access Memory,简称DRAM)的工艺和技术,实现类似于静态随机存取存储器(Static Random-Access Memory,简称SRAM)一样的随机存取存储器(Random Access Memory,简称RAM)。Pseudo Static Random Access Memory (PSRAM for short) is a process and technology that uses Dynamic Random Access Memory (DRAM for short), and realizes a process similar to Static Random Access Memory (Static Random-Access Memory). Memory, referred to as SRAM) the same random access memory (Random Access Memory, referred to as RAM).

PSRAM接口是通过修改DRAM接口,同时将刷新电路改为自刷新(self-refresh)电路,得到兼容SRAM且在存取时序等特性上与SRAM类似的SRAM接口,PSRAM接口同时具有DRAM接口的低成本、低耗电、记忆密度高和SRAM接口简洁等优点。The PSRAM interface is a SRAM interface that is compatible with SRAM and similar to SRAM in terms of access timing and other characteristics by modifying the DRAM interface and changing the refresh circuit to a self-refresh circuit at the same time. The PSRAM interface also has the low cost of the DRAM interface. , low power consumption, high memory density and simple SRAM interface.

发明内容Contents of the invention

本公开提供一种PSRAM控制器及控制方法。The disclosure provides a PSRAM controller and a control method.

第一方面,本公开提供了一种用于伪静态随机存储器的控制器,包括:数字控制器和物理层接口,所述物理层接口的输入端与所述数字控制器连接,输出端与所述伪静态随机存储器PSRAM接口连接,其中:In a first aspect, the present disclosure provides a controller for pseudo-static random access memory, including: a digital controller and a physical layer interface, the input end of the physical layer interface is connected to the digital controller, and the output end is connected to the Described pseudo-static random access memory PSRAM interface connection, wherein:

所述数字控制器,用于接收操作请求,并基于所述操作请求生成与八路串行输入输出接口的类型适配的PSRAM传输信号;The digital controller is configured to receive an operation request, and generate a PSRAM transmission signal adapted to the type of the eight-way serial input and output interface based on the operation request;

所述物理层接口,用于基于所述PSRAM传输信号生成与所述PSRAM接口的类型适配的PSRAM接口信号。The physical layer interface is configured to generate a PSRAM interface signal adapted to the type of the PSRAM interface based on the PSRAM transmission signal.

第二方面,本公开提供了一种基于本公开提供的任意一项所述的用于伪静态随机存储器的控制器的控制方法,包括:In a second aspect, the present disclosure provides a control method for a controller of a pseudo-static random access memory based on any one of the present disclosure, including:

接收操作请求;Receive operation requests;

基于所述操作请求生成与所述八路串行输入输出接口的类型适配的伪静态随机存储器PSRAM传输信号;generating a PSRAM transmission signal adapted to the type of the eight-way serial input and output interface based on the operation request;

用于基于所述PSRAM传输信号生成与所述PSRAM接口的类型适配的PSRAM接口信号。and generating a PSRAM interface signal adapted to the type of the PSRAM interface based on the PSRAM transmission signal.

本公开实施例所提供的用于伪静态随机存储器的控制器,包括数字控制器和物理层接口,其中,数字控制器基于操作请求,生成与所述八路串行输入输出接口的类型适配的伪静态随机存储器PSRAM传输信号,以使PSRAM传输信号适用不同的PSRAM接口;物理层接口基于所述PSRAM传输信号生成与PSRAM接口的类型适配的PSRAM接口信号,由于PSRAM接口信号是根据PSRAM接口的类型生成的,因此生成的PSRAM接口信号可以兼容不同类型的PSRAM接口和传输协议,使得控制器可以支持不同PSRAM芯片,提高PSRAM芯片选择的灵活性。The controller for the pseudo-static random access memory provided by the embodiment of the present disclosure includes a digital controller and a physical layer interface, wherein the digital controller generates an interface adapted to the type of the eight-way serial input and output interface based on the operation request. Pseudo-static random access memory PSRAM transmission signals, so that PSRAM transmission signals are applicable to different PSRAM interfaces; the physical layer interface generates PSRAM interface signals adapted to the type of PSRAM interface based on the PSRAM transmission signals, because the PSRAM interface signals are based on the PSRAM interface Type, so the generated PSRAM interface signal can be compatible with different types of PSRAM interface and transmission protocol, so that the controller can support different PSRAM chips, improving the flexibility of PSRAM chip selection.

应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。It should be understood that what is described in this section is not intended to identify key or important features of the embodiments of the present disclosure, nor is it intended to limit the scope of the present disclosure. Other features of the present disclosure will be readily understood through the following description.

附图说明Description of drawings

附图用来提供对本公开的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开,并不构成对本公开的限制。通过参考附图对详细示例实施例进行描述,以上和其他特征和优点对本领域技术人员将变得更加显而易见,在附图中:The accompanying drawings are used to provide a further understanding of the present disclosure, and constitute a part of the specification, and are used together with the embodiments of the present disclosure to explain the present disclosure, and do not constitute a limitation to the present disclosure. The above and other features and advantages will become more apparent to those skilled in the art by describing detailed example embodiments with reference to the accompanying drawings, in which:

图1为本公开实施例提供的PSRAM控制器的结构示意图;FIG. 1 is a schematic structural diagram of a PSRAM controller provided by an embodiment of the present disclosure;

图2为本公开实施例提供的一种数字控制器的结构示意图;FIG. 2 is a schematic structural diagram of a digital controller provided by an embodiment of the present disclosure;

图3为本公开实施例提供的一种发送传输模块的结构示意图;FIG. 3 is a schematic structural diagram of a sending transmission module provided by an embodiment of the present disclosure;

图4为本公开实施例提供的一种数据移位器中状态机的示意图;FIG. 4 is a schematic diagram of a state machine in a data shifter provided by an embodiment of the present disclosure;

图5为本公开实施例中寄存器模块在执行写操作时状态机的工作流程图;FIG. 5 is a working flow chart of a state machine when a register module performs a write operation in an embodiment of the present disclosure;

图6为本公开实施例中寄存器模块在执行读操作时状态机的工作流程图;FIG. 6 is a working flowchart of a state machine when a register module performs a read operation in an embodiment of the disclosure;

图7为本公开实施例中存储写操作时状态机的工作流程图;FIG. 7 is a work flow diagram of a state machine during a storage write operation in an embodiment of the present disclosure;

图8为本公开实施例中存储读操作时状态机的工作流程图;FIG. 8 is a working flow diagram of a state machine during a storage read operation in an embodiment of the present disclosure;

图9为本公开实施例中半睡眠操作时状态机的工作流程图;Fig. 9 is a working flow chart of the state machine during semi-sleep operation in the embodiment of the present disclosure;

图10为本公开实施例中退出半睡眠时状态机的工作流程图;Fig. 10 is a working flow chart of the state machine when exiting the semi-sleep in the embodiment of the present disclosure;

图11为本公开实施例提供的一种物理层接口的结构示意图;FIG. 11 is a schematic structural diagram of a physical layer interface provided by an embodiment of the present disclosure;

图12为本公开实施例提供的一种用于伪静态随机存储器的控制方法的流程图。FIG. 12 is a flowchart of a control method for a pseudo-static random access memory provided by an embodiment of the present disclosure.

具体实施方式Detailed ways

为使本领域的技术人员更好地理解本公开的技术方案,以下结合附图对本公开的示范性实施例做出说明,其中包括本公开实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本公开的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。In order for those skilled in the art to better understand the technical solution of the present disclosure, the exemplary embodiments of the present disclosure are described below in conjunction with the accompanying drawings, which include various details of the embodiments of the present disclosure to facilitate understanding, and they should be considered exemplary only. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the disclosure. Also, descriptions of well-known functions and constructions are omitted in the following description for clarity and conciseness.

在不冲突的情况下,本公开各实施例及实施例中的各特征可相互组合。In the case of no conflict, various embodiments of the present disclosure and various features in the embodiments can be combined with each other.

如本文所使用的,术语“和/或”包括一个或多个相关列举条目的任何和所有组合。As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.

本文所使用的术语仅用于描述特定实施例,且不意欲限制本公开。如本文所使用的,单数形式“一个”和“该”也意欲包括复数形式,除非上下文另外清楚指出。还将理解的是,当本说明书中使用术语“包括”和/或“由……制成”时,指定存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、组件和/或其群组。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。The terminology used herein is for describing particular embodiments only and is not intended to limit the present disclosure. As used herein, the singular forms "a" and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It will also be understood that when the terms "comprising" and/or "consisting of" are used in this specification, the stated features, integers, steps, operations, elements and/or components are specified to be present but not excluded to be present or Add one or more other features, integers, steps, operations, elements, components and/or groups thereof. Words such as "connected" or "connected" are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect.

除非另外限定,否则本文所用的所有术语(包括技术和科学术语)的含义与本领域普通技术人员通常理解的含义相同。还将理解,诸如那些在常用字典中限定的那些术语应当被解释为具有与其在相关技术以及本公开的背景下的含义一致的含义,且将不解释为具有理想化或过度形式上的含义,除非本文明确如此限定。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art. It will also be understood that terms such as those defined in commonly used dictionaries should be interpreted as having meanings consistent with their meanings in the context of the relevant art and the present disclosure, and will not be interpreted as having idealized or excessive formal meanings, Unless expressly so limited herein.

每个厂商有各自的PSRAM接口规范,如HyperBus Interface接口规范,APM OPI接口规范和Xccela OPI接口规范,这几个接口协议均采用OPI(Octal SPI,八路数据串行输入输出)和DDR(Double Data Rate,双倍数据速率),但在控制信号的数量和功能、读写传输协议、芯片内部寄存器模块访问以及半睡眠(HalfSleep)/深度断电(deep power down)模式的进入、退出等方面都有很大不同。但相关的PSRAM接口无法根据PSRAM芯片灵活配置,导致PSRAM接口只能支持某一种类型的接口,无法满足兼容多种PSRAM接口的实际需求。Each manufacturer has its own PSRAM interface specification, such as HyperBus Interface interface specification, APM OPI interface specification and Xccela OPI interface specification. These interface protocols all use OPI (Octal SPI, eight-way data serial input and output) and DDR (Double Data Rate, double data rate), but in terms of the number and function of control signals, read and write transmission protocols, chip internal register module access, and half sleep (Half Sleep)/deep power down (deep power down) mode entry and exit, etc. with large differences. However, the relevant PSRAM interface cannot be flexibly configured according to the PSRAM chip, so that the PSRAM interface can only support a certain type of interface, and cannot meet the actual requirements of being compatible with multiple PSRAM interfaces.

图1为本公开实施例提供的PSRAM控制器的结构示意图。参阅图1,PSRAM控制器包括数字控制器1和物理层接口2,其中,数字控制器1被配置为接收访问请求(包括但不限于读写请求),并对不同的PSRAM芯片进行兼容和控制。物理层接口2的输入端与所述数字控制器1连接,输出端与所述PSRAM接口连接,用于基于所述PSRAM传输信号生成与所述PSRAM接口的类型适配的PSRAM接口信号,从而与不同的PSRAM芯片进行信息交流。FIG. 1 is a schematic structural diagram of a PSRAM controller provided by an embodiment of the present disclosure. Referring to FIG. 1, the PSRAM controller includes a digital controller 1 and a physical layer interface 2, wherein the digital controller 1 is configured to receive access requests (including but not limited to read and write requests), and perform compatibility and control on different PSRAM chips . The input end of the physical layer interface 2 is connected to the digital controller 1, and the output end is connected to the PSRAM interface, and is used to generate a PSRAM interface signal adapted to the type of the PSRAM interface based on the PSRAM transmission signal, so as to communicate with the PSRAM interface. Different PSRAM chips exchange information.

需要说明的是,本公开实施例中,数字控制器1可以有多个输入端和多个输出端,输入端和输出端的数量可以根据需要设置,本公开实施例对此不作限定。物理层接口2可以有多个输入端和多个输出端,输入端和输出端的数量可以根据需要设置,本公开实施例对此不作限定。It should be noted that, in the embodiment of the present disclosure, the digital controller 1 may have multiple input terminals and multiple output terminals, and the number of input terminals and output terminals may be set as required, which is not limited in the embodiment of the present disclosure. The physical layer interface 2 may have multiple input ports and multiple output ports, and the number of input ports and output ports may be set as required, which is not limited in this embodiment of the present disclosure.

在一些实施例中,数字控制器1用于接收操作请求,并基于操作请求生成与八路串行输入输出接口的类型适配的伪静态随机存储器PSRAM传输信号。其中,在本公开实施例中,数字控制器1包括两个输入端,分别与APB总线和AHB总线连接。操作请求可以通过APB总线和AHB总线传输至控制器,操作请求包括但不限于读写请求和寄存器模块访问请求。PSRAM传输信号是PSRAM能够识别的信号。PSRAM传输信号包括读写命令、进入/退出半睡眠(混合睡眠)、进入/退出深度断电操作中各传输状态对应的传输信号。In some embodiments, the digital controller 1 is configured to receive an operation request, and generate a PSRAM transfer signal adapted to the type of the eight-channel serial input and output interface based on the operation request. Wherein, in the embodiment of the present disclosure, the digital controller 1 includes two input terminals, which are respectively connected to the APB bus and the AHB bus. Operation requests can be transmitted to the controller through the APB bus and the AHB bus, and the operation requests include but are not limited to read and write requests and register module access requests. The PSRAM transfer signal is a signal that the PSRAM can recognize. PSRAM transmission signals include read and write commands, entry/exit semi-sleep (hybrid sleep), entry/exit transmission signals corresponding to each transmission state in deep power-off operation.

在一些实施例中,物理层接口2的输入端与数字控制器1连接,输出端与PSRAM接口连接,用于基于PSRAM传输信号生成与PSRAM接口的类型适配的PSRAM接口信号。其中,PSRAM接口包括但不限于AP 8M《APS6408L-OBMx DDR OPI Xccela PSRAM》对应的接口、AP 4M《APS3208K-OTx OPI DDR PSRAM》对应的接口、WB 8M《W956D8MBYA》对应的接口和WB 4M《W955D8MBYA》对应的接口(为便于描述,下文分别简称为AP 8M接口、AP 4M接口、WB 8M接口和WB 4M接口)。In some embodiments, the input end of the physical layer interface 2 is connected to the digital controller 1, and the output end is connected to the PSRAM interface, for generating PSRAM interface signals adapted to the type of the PSRAM interface based on the PSRAM transmission signal. Among them, the PSRAM interface includes but is not limited to the interface corresponding to AP 8M "APS6408L-OBMx DDR OPI Xccela PSRAM", the interface corresponding to AP 4M "APS3208K-OTx OPI DDR PSRAM", the interface corresponding to WB 8M "W956D8MBYA" and the interface corresponding to WB 4M "W955D8MBYA" 》Corresponding interfaces (for ease of description, hereinafter referred to as AP 8M interface, AP 4M interface, WB 8M interface and WB 4M interface respectively).

本公开实施例中,物理层接口2的输入端与数字控制器1连接,输出端与所述PSRAM接口连接,用于基于所述PSRAM传输信号生成与所述PSRAM接口的类型适配的PSRAM接口信号,并与数字控制器1一起传输时序。本公开实施例中物理层接口2可以兼容多种PSRAM接口,如可以兼容AP 8M接口、AP 4M接口、WB 8M接口和WB 4M接口。In the embodiment of the present disclosure, the input end of the physical layer interface 2 is connected to the digital controller 1, and the output end is connected to the PSRAM interface, for generating a PSRAM interface adapted to the type of the PSRAM interface based on the PSRAM transmission signal signal, and transmit the timing together with the digital controller 1. In the embodiment of the present disclosure, the physical layer interface 2 can be compatible with various PSRAM interfaces, for example, it can be compatible with AP 8M interface, AP 4M interface, WB 8M interface and WB 4M interface.

在一些实施例中,在数字控制器1的输入端(系统侧)有两个接口,即高级外设总线(Advanced Peripheral Bus,APB)接口和高级高性能总线(Advanced High PerformanceBus,AHB-Lie)接口。APB接口用于访问数字控制器1内的控制和状态寄存器模块(Controland Status Register,CSR)。AHB-Lite接口用于基于CSR设置的PSRAM存储器设备中存储器阵列写入/读取和模式寄存器模块写入/读取。数字控制器1的输出端与物理层接口2的输入端连接。In some embodiments, there are two interfaces at the input end (system side) of the digital controller 1, namely an Advanced Peripheral Bus (Advanced Peripheral Bus, APB) interface and an Advanced High Performance Bus (Advanced High Performance Bus, AHB-Lie) interface. The APB interface is used to access the control and status register module (Control and Status Register, CSR) in the digital controller 1. The AHB-Lite interface is used for memory array write/read and mode register block write/read in PSRAM memory devices based on CSR settings. The output end of the digital controller 1 is connected with the input end of the physical layer interface 2 .

在一些实施例中,存储控制器时钟mem_clk_0和相移存储控制器时钟mem_clk_90被输入数字控制器1和物理层接口2,存储控制器时钟mem_clk_90与相移存储控制器时钟mem_clk_0的频率相同,但相位滞后90度。In some embodiments, the memory controller clock mem_clk_0 and the phase-shifted memory controller clock mem_clk_90 are input to the digital controller 1 and the physical layer interface 2, the memory controller clock mem_clk_90 has the same frequency as the phase-shifted memory controller clock mem_clk_0, but the phase Lag 90 degrees.

图2为本公开实施例提供的一种数字控制器的结构框图。如图2所示,数字控制器1包括寄存器模块11、AHB从机控制模块12、读写事务传输模块13、第一同步器14和第二同步器15,其中,寄存器模块11与AHB从机控制模块12和读写事务传输模块13信号连接,AHB从机控制模块12与寄存器模块11和读写事务传输模块13信号连接。Fig. 2 is a structural block diagram of a digital controller provided by an embodiment of the present disclosure. As shown in Figure 2, digital controller 1 comprises register module 11, AHB slave control module 12, read and write transaction transmission module 13, first synchronizer 14 and second synchronizer 15, wherein, register module 11 and AHB slave The control module 12 is connected to the read-write transaction transmission module 13 by signals, and the AHB slave control module 12 is connected to the register module 11 and the read-write transaction transmission module 13 by signals.

其中,寄存器模块11作为APB的从机,与APB接口信号连接。寄存器模块11包括控制和状态寄存器模块,接收APB写事务并将控制信号和时序参数输出到AHB从机控制模块12和读写事务传输模块13。寄存器模块11还用于接收状态信号并存储。Wherein, the register module 11 serves as a slave of the APB and is connected to the APB interface signal. The register module 11 includes a control and status register module, which receives APB write transactions and outputs control signals and timing parameters to the AHB slave control module 12 and the read-write transaction transmission module 13 . The register module 11 is also used to receive and store status signals.

在一些实施例中,寄存器模块11用于基于接收到的APB操作请求生成APB控制信号和时序参数,以及接收传输状态信号并存储。In some embodiments, the register module 11 is used for generating APB control signals and timing parameters based on the received APB operation request, and receiving and storing the transmission status signal.

其中,APB操作请求包括APB读取请求、APB写入请求中的一种或多种。传输状态信号包括但不限于PSRAM访问传输状态,如数据选通时钟(Data Strobe clock,DQS)超时信号、DPD/HALF SLEEP进入退出、GLOBAL RESET指令的完成信号。Wherein, the APB operation request includes one or more of an APB read request and an APB write request. Transmission status signals include but are not limited to PSRAM access transmission status, such as data strobe clock (Data Strobe clock, DQS) timeout signal, DPD/HALF SLEEP entry and exit, and completion signal of GLOBAL RESET instruction.

AHB从机控制模块12用于响应接收到的AHB操作请求,基于APB控制信号和时序参数获得AHB指令信息;以及,将接收到的PSRAM的传输状态信息传输到AHB主机。其中,AHB操作请求包括AHB读取请求、AHB写入请求中的一种或多种。The AHB slave control module 12 is used to respond to the received AHB operation request, obtain AHB command information based on the APB control signal and timing parameters; and transmit the received PSRAM transmission status information to the AHB master. Wherein, the AHB operation request includes one or more of an AHB read request and an AHB write request.

示例地,AHB从机控制模块12解析AHB读写事务,并输出传输参数(传输类型、读写长度、传输大小)、读写地址以及写数据。AHB从机控制模块12包含异步先进先出(FIFO)模块(图中未示出),用于AHB从机控制器时钟ahb_clk和存储控制器时钟mem_clk_0之间命令地址和数据的跨时钟域同步和缓存。AHB从机控制模块12还用于接收数据选通时钟的超时信号,用于反馈传输状态给AHB主机。Exemplarily, the AHB slave control module 12 parses AHB read and write transactions, and outputs transfer parameters (transfer type, read and write length, transfer size), read and write addresses, and write data. The AHB slave control module 12 includes an asynchronous first-in-first-out (FIFO) module (not shown in the figure), which is used for cross-clock domain synchronization and synchronization of command addresses and data between the AHB slave controller clock ahb_clk and the memory controller clock mem_clk_0 cache. The AHB slave control module 12 is also used for receiving the timeout signal of the data strobe clock, and for feeding back the transmission status to the AHB master.

读写事务传输模块13,用于基于APB控制信号和AHB指令信息,生成PSRAM传输信号,以及,接收来自物理层接口2的PSRAM读数据和时钟信号,并基于时钟信号对操作请求进行采样,并将采样结果传输至AHB从机控制模块;以及接收传输状态信号。The read and write transaction transmission module 13 is used to generate a PSRAM transmission signal based on the APB control signal and the AHB instruction information, and receive the PSRAM read data and clock signal from the physical layer interface 2, and sample the operation request based on the clock signal, and Transmitting the sampling result to the AHB slave control module; and receiving a transmission status signal.

其中,AHB指令信息包括但不限于传输参数(传输类型、读写长度、传输大小)、读写地址以及读写数据。Wherein, the AHB instruction information includes but not limited to transmission parameters (transmission type, read and write length, and transmission size), read and write addresses, and read and write data.

读写事务传输模块13用于实现PSRAM存储和寄存器模块的读写事务传输,读写事务传输模块13接收来自寄存器模块11的控制信号和AHB从机控制模块12的命令地址和写数据,生成PSRAM传输信号到物理层接口2;并且接收来自物理层接口2的读数据和时钟信号,采样后输出到AHB从机控制模块12。读写事务传输模块13还输出多个状态指示信号,多个状态包括数据选通时钟(DQS)的超时信号和传输完成信号等,DQS超时信号用于指示DQS返回是否超时,传输完成信号用于指示每个指令的完成情况。The read-write transaction transmission module 13 is used to realize the read-write transaction transmission of the PSRAM storage and the register module. The read-write transaction transmission module 13 receives the control signal from the register module 11 and the command address and the write data of the AHB slave control module 12 to generate PSRAM The signal is transmitted to the physical layer interface 2; and the read data and clock signal from the physical layer interface 2 are received and output to the AHB slave control module 12 after sampling. The read-write transaction transmission module 13 also outputs a plurality of state indication signals, and a plurality of states include the overtime signal and the transmission completion signal of the data strobe clock (DQS), etc., the DQS overtime signal is used to indicate whether the DQS returns overtime, and the transmission completion signal is used for Indicates the completion of each instruction.

在一些实施例中,读写事务传输模块13包括命令处理(INSTRN_HANDLER)模块131、发送传输(TX_PATH)模块132和接收传输(RX_PATH)模块133,其中,命令处理模块131用于处理来自寄存器模块11的各种指令,如用于对接收到的APB控制信号进行边沿检测,并输出APB控制有效信号和APB传输信号。在一些实施例中,寄存器模块11输出的指令包括但不限于读写传输、半睡眠进入/退出、深度断电进入/退出以及PSRAM复位,对指令信号进行边沿检测后输出指令有效信号到发送传输模块132。In some embodiments, the read and write transaction transmission module 13 includes a command processing (INSTRN_HANDLER) module 131, a sending transmission (TX_PATH) module 132, and a receiving transmission (RX_PATH) module 133, wherein the command processing module 131 is used to process information from the register module 11 Various instructions, such as edge detection for the received APB control signal, and output APB control valid signal and APB transmission signal. In some embodiments, the instructions output by the register module 11 include but are not limited to read and write transmission, semi-sleep entry/exit, deep power-off entry/exit, and PSRAM reset, and output the instruction valid signal to the sending transmission after performing edge detection on the instruction signal. Module 132.

发送传输模块132,用于对APB控制信号和AHB指令信息进行传输时,基于各个传输状态生成PSRAM传输信号。The transmitting and transmitting module 132 is configured to generate PSRAM transmission signals based on various transmission states when transmitting APB control signals and AHB instruction information.

接收传输模块133用于基于物理层接口返回的数据进行跨时钟域传输,并在满足预设条件时,将物理层接口的数据输出,以及根据时序参数确定数据选通信号超时时,输出超时指示信号。The receiving and transmitting module 133 is used for cross-clock domain transmission based on the data returned by the physical layer interface, and when the preset conditions are met, the data of the physical layer interface is output, and when the timeout of the data strobe signal is determined according to the timing parameters, the timeout indication is output Signal.

在一些实施例中,接收传输模块133还包括一个异步FIFO模块(图中未示出),用于接收数据从数据选通时钟DQS到存储控制器时钟mem_clk_0的跨时钟域传输。用接收的数据选通时钟DQS双边沿采样读数据后写入异步FIFO模块,在异步FIFO模块非空时读出数据并输出。接收传输模块133还用于根据时序参数检测DQS是否超时并输出指示信号。In some embodiments, the receiving and transmitting module 133 further includes an asynchronous FIFO module (not shown in the figure), which is used for cross-clock domain transmission of received data from the data strobe clock DQS to the memory controller clock mem_clk_0. Sampling and reading data with both edges of the received data strobe clock DQS is written into the asynchronous FIFO module, and the data is read and output when the asynchronous FIFO module is not empty. The receiving and transmitting module 133 is also configured to detect whether the DQS is timed out according to timing parameters and output an indication signal.

在一些实施例中,参阅图3,发送传输模块132包括数据移位器321,用于根据各种命令、地址和数据在访问寄存器模块、读写存储、半睡眠/深度断电进出操作的各状态产生PSRAM传输信号。数据移位器321为各类串行输入输出(OPI)接口设计了独立的状态机(FSM),以支持多种接口和传输协议。In some embodiments, referring to FIG. 3 , the sending and transmitting module 132 includes a data shifter 321, which is used to access register modules, read and write storage, semi-sleep/deep power-off entry and exit operations according to various commands, addresses, and data. Status generates PSRAM transfer signals. The data shifter 321 designs an independent state machine (FSM) for various serial input and output (OPI) interfaces to support multiple interfaces and transmission protocols.

在一些实施例中,数据移位器321包括多个状态机,每个状态机与一个八路串行输入输出接口的类型对应,每个状态机针对与之对应的八路串行输入输出接口的类型,基于各个传输状态产生PSRAM传输信号。In some embodiments, the data shifter 321 includes a plurality of state machines, each state machine corresponds to the type of an eight-way serial input and output interface, and each state machine is for the type of the corresponding eight-way serial input and output interface , generating a PSRAM transfer signal based on each transfer state.

示例地,参阅图4,数据移位器设置三个状态机(FSM)41a、41b、41c,每个状态机41a、41b、41c与伪静态存储器类型多路选择器42连接,伪静态存储器类型多路选择器42接收PSRAM类型(PSRAM_type)传输信号,并根据PSRAM类型选择对应的状态机41a、41b、41c,状态机41a、41b、41c产生PSRAM传输信号,并将PSRAM传输信号传输至物理层接口。Exemplarily, referring to Fig. 4, the data shifter is provided with three state machines (FSM) 41a, 41b, 41c, and each state machine 41a, 41b, 41c is connected with a pseudo-static memory type multiplexer 42, and the pseudo-static memory type The multiplexer 42 receives the PSRAM type (PSRAM_type) transmission signal, and selects the corresponding state machine 41a, 41b, 41c according to the PSRAM type, and the state machine 41a, 41b, 41c generates the PSRAM transmission signal, and transmits the PSRAM transmission signal to the physical layer interface.

本公开实施例提供的数据移位器,设置多个状态机,每个状态机可以对应一个或多个相似的八路串行输入输出接口,避免了一个状态机为兼容多个八路串行输入输出接口而导致繁琐,当某个八路串行输入输出接口出现故障时,可以通过状态机快速定位八路串行输入输出接口。而且,当增加其它八路串行输入输出接口时,只需要对应地增加状态机即可,不影响原有状态机。The data shifter provided by the embodiment of the present disclosure is provided with multiple state machines, and each state machine can correspond to one or more similar eight-way serial input and output interfaces, which avoids one state machine being compatible with multiple eight-way serial input and output interfaces. The interface is cumbersome. When an eight-channel serial input and output interface fails, the eight-channel serial input and output interface can be quickly located through the state machine. Moreover, when adding other eight-way serial input and output interfaces, it is only necessary to add a state machine correspondingly, without affecting the original state machine.

参考图3,发送传输模块132还包括时序检查模块322和写边界检查模块323,其中,时序检查模块(timing_checker)322用于基于时序参数生成第一指示信号,并将第一指示信号传送给数据移位器321。示例地,时序检查模块322根据时序参数(如cs拉低时间、半睡眠/深度断电的退出时间等)计时,在时间到达后输出指示信号到数据移位器321。Referring to FIG. 3 , the transmission transmission module 132 also includes a timing check module 322 and a write boundary check module 323, wherein the timing check module (timing_checker) 322 is used to generate a first indication signal based on a timing parameter, and transmit the first indication signal to the data shifter 321 . Exemplarily, the timing check module 322 counts according to timing parameters (such as cs pull-down time, half-sleep/deep power-off exit time, etc.), and outputs an indication signal to the data shifter 321 when the time is up.

写边界检查(wr_pg_bndry_checker)模块323用于基于存储页的参数和存储地址确定到达存储页的边界时,输出第二指示信号。示例地,写边界检查模块323根据存储页大小参数和存储写地址判断写地址是否到达边界并输出指示信号到数据移位器321。数据移位寄存器模块321响应第一指示信号和第二指示信号对APB控制信号和AHB指令信息进行传输。The write boundary checker (wr_pg_bndry_checker) module 323 is configured to output a second indication signal when it is determined based on the parameters of the storage page and the storage address that the boundary of the storage page is reached. Exemplarily, the write boundary checking module 323 judges whether the write address reaches the boundary according to the storage page size parameter and the storage write address, and outputs an indication signal to the data shifter 321 . The data shift register module 321 transmits the APB control signal and the AHB instruction information in response to the first indication signal and the second indication signal.

在一些实施例中,参阅图2,数字控制器1还包括第一同步器14和第二同步器15,第一同步器14和第二同步器15均可以采用两级同步器。In some embodiments, referring to FIG. 2 , the digital controller 1 further includes a first synchronizer 14 and a second synchronizer 15 , and both the first synchronizer 14 and the second synchronizer 15 can be two-stage synchronizers.

其中,第一同步器14用于将超时信号从数字控制器的时钟信号到AHB的时钟信号的跨时钟域传输;示例地,第一同步器14将读写事务传输模块13输出的数据选通时钟的超时信号从存储控制器时钟mem_clk_0到AHB从机控制器时钟ahb_clk的跨时钟域传输。Wherein, the first synchronizer 14 is used for cross-clock domain transmission of the timeout signal from the clock signal of the digital controller to the clock signal of the AHB; for example, the first synchronizer 14 gates the data output by the read-write transaction transmission module 13 The timeout signal of the clock is transmitted across the clock domain from the memory controller clock mem_clk_0 to the AHB slave controller clock ahb_clk.

第二同步器15用于将传输完成信号从数字控制器的时钟信号到APB的时钟信号的跨时钟域传输。示例地,第二同步器15将读写事务传输模块13输出的传输完成信号从存储控制器时钟mem_clk_0到APB时钟apb_clk(用于CSR的APB时钟)的跨时钟域传输。The second synchronizer 15 is used for cross-clock domain transmission of the transmission completion signal from the clock signal of the digital controller to the clock signal of the APB. Exemplarily, the second synchronizer 15 transmits the transmission completion signal output by the read/write transaction transmission module 13 across clock domains from the memory controller clock mem_clk_0 to the APB clock apb_clk (APB clock used for CSR).

图5为本公开实施例中寄存器模块在执行写操作时状态机的工作流程图。参阅图5,以状态机41a接收AP 8M接口的PSRAM类型传输信号为例。FIG. 5 is a working flow chart of the state machine when the register module performs a write operation in an embodiment of the present disclosure. Referring to FIG. 5 , take the state machine 41a receiving the PSRAM type transmission signal of the AP 8M interface as an example.

步骤S501,状态机处于空闲状态(IDLE)。In step S501, the state machine is in an idle state (IDLE).

步骤S502,当寄存器模块访问请求有效(reg_xfer_valid=1)后,状态机从空闲状态跳转到发送命令状态(SEND_CMD)。Step S502, when the register module access request is valid (reg_xfer_valid=1), the state machine jumps from the idle state to the sending command state (SEND_CMD).

步骤S503,在一个时钟周期(cmd_cycle_cnt=1)内,状态机由发送命令状态后跳转到发送地址状态(ADDR)。Step S503, within one clock cycle (cmd_cycle_cnt=1), the state machine jumps from the sending command state to the sending address state (ADDR).

步骤S504,在持续两个时钟周期(wr_rd=1,addr_cycle_cnt=2)后跳转到发送延迟状态(TX_LATENCY)。Step S504, jumping to the transmission delay state (TX_LATENCY) after two clock cycles (wr_rd=1, addr_cycle_cnt=2).

步骤S505,在计时器满足等待时钟周期(wait_expired)后跳转到发送数据状态(TX_DATA)。Step S505, jumping to the sending data state (TX_DATA) after the timer satisfies the waiting clock period (wait_expired).

步骤S506,寄存器模块数据发送固定为一个时钟周期,在一个时钟周期(wdata_avalid=0)后,状态机跳转到等待传输完成状态(WAIT_TR_EXPIRY),发送时钟周期完成(twc_expired=1)后返回空闲状态。Step S506, the register module data transmission is fixed at one clock cycle, after one clock cycle (wdata_valid=0), the state machine jumps to the waiting transmission completion state (WAIT_TR_EXPIRY), and returns to the idle state after the sending clock cycle is completed (twc_expired=1) .

需要说明的是,当八路串行输入输出接口为WB 8M和WB 4M接口时,不需要延迟,因此,可以从步骤S503直接跳转至步骤S505。It should be noted that when the eight-way serial input and output interfaces are WB 8M and WB 4M interfaces, no delay is required, therefore, step S503 can be directly skipped to step S505.

通过以上步骤S501至步骤S506,可以实现寄存器模块写操作。Through the above steps S501 to S506, the write operation of the register module can be realized.

图6为本公开实施例中寄存器模块在执行读操作时状态机的工作流程图。参阅图6,以状态机41a接收AP 8M接口的传输信号为例。FIG. 6 is a working flow chart of the state machine when the register module performs a read operation in an embodiment of the present disclosure. Referring to FIG. 6, take the state machine 41a receiving the transmission signal of the AP 8M interface as an example.

步骤S601,状态机处于空闲状态(IDLE)。In step S601, the state machine is in an idle state (IDLE).

步骤S602,当寄存器模块的访问请求有效(reg_xfer_valid=1)后,状态机从空闲状态跳转到发送命令状态(SEND_CMD)。Step S602, when the access request of the register module is valid (reg_xfer_valid=1), the state machine jumps from the idle state to the sending command state (SEND_CMD).

步骤S603,在一个时钟周期(cmd_cycle_cnt=1)内,状态机由发送命令状态后跳转到发送地址状态(ADDR)。Step S603, within one clock cycle (cmd_cycle_cnt=1), the state machine jumps from the sending command state to the sending address state (ADDR).

步骤S604,在持续两个时钟周期(wr_rd=0,addr_cycle_cnt=2)后跳转到读取数据状态(RD_DATA)。Step S604, jump to read data state (RD_DATA) after two clock cycles (wr_rd=0, addr_cycle_cnt=2).

步骤S605,读取所需地址长度(rd_done=1)后跳转到FIFO刷新状态(FIFO_FLUSH),刷新FIFO,以避免影响下次读取。Step S605, after reading the required address length (rd_done=1), jump to the FIFO refresh state (FIFO_FLUSH), and refresh the FIFO to avoid affecting the next reading.

步骤S606,FIFO刷新完成(fifo_flush_done=1)后跳转到等待传输完成状态(WAIT_TR_EXPIRY),读取时钟周期(trc_expired=1)完成后返回空闲状态。Step S606, jump to waiting for transmission completion state (WAIT_TR_EXPIRY) after FIFO flushing is completed (fifo_flush_done=1), and return to idle state after completion of reading clock cycle (trc_expired=1).

通过以上步骤S601至步骤S606,可以实现寄存器模块的读操作。Through the above steps S601 to S606, the read operation of the register module can be realized.

图7为本公开实施例中存储写操作时状态机的工作流程图。参阅图7,以状态机41a接收AP 8M接口的传输信号为例。FIG. 7 is a working flowchart of a state machine during a storage write operation in an embodiment of the present disclosure. Referring to FIG. 7, take the state machine 41a receiving the transmission signal of the AP 8M interface as an example.

步骤S701,状态机处于空闲状态(IDLE)。In step S701, the state machine is in an idle state (IDLE).

步骤S702,当存储访问请求有效(mem_xfer_valid=1)后,状态机从空闲状态跳转到发送命令状态(SEND_CMD)。Step S702, when the storage access request is valid (mem_xfer_valid=1), the state machine jumps from the idle state to the sending command state (SEND_CMD).

步骤S703,在一个时钟周期(cmd_cycle_cnt=1)内,状态机由发送命令状态后跳转到发送地址状态(ADDR)。Step S703, within one clock cycle (cmd_cycle_cnt=1), the state machine jumps from the sending command state to the sending address state (ADDR).

步骤S704,在持续两个时钟周期(wr_rd=1,addr_cycle_cnt=2)后跳转到发送延迟状态(TX_LATENCY)。Step S704, jumping to the transmission delay state (TX_LATENCY) after two clock cycles (wr_rd=1, addr_cycle_cnt=2).

步骤S705,在计时器满足等待时钟周期(wait_expired)后跳转到发送数据状态(TX_DATA)。Step S705, jumping to the sending data state (TX_DATA) after the timer satisfies the waiting clock period (wait_expired).

在步骤S705中,如果地址到达页边界则发送到边界处的数据为止,否则发送全部数据。In step S705, if the address reaches the page boundary, then send up to the data at the boundary, otherwise send all the data.

步骤S706,在数据发送完成后,跳转到等待传输完成状态(WAIT_TR_EXPIRY)。Step S706, after the data transmission is completed, jump to the state of waiting for transmission completion (WAIT_TR_EXPIRY).

步骤S707,判断地址是否到达边界(wr_pg_bndy=1),若是,则跳转至步骤S702,从边界后地址再启动一次写操作(步骤S702至步骤S706);若否,则表明传输完成后地址未到达边界(twc_expired=1),跳转至步骤S701,返回空闲状态。Step S707, judge whether the address reaches the boundary (wr_pg_bndy=1), if so, jump to step S702, and start a write operation from the address after the boundary (step S702 to step S706); When the boundary is reached (twc_expired=1), jump to step S701 and return to the idle state.

通过以上步骤S701至步骤S707,可以实现存储写操作。Through the above steps S701 to S707, the storage write operation can be realized.

通过以上步骤S601至步骤S606,可以实现寄存器模块的读操作。Through the above steps S601 to S606, the read operation of the register module can be realized.

图8为本公开实施例中存储读操作时状态机的工作流程图。参阅图8,以状态机41a接收AP 8M接口的传输信号为例。FIG. 8 is a working flowchart of a state machine during a storage read operation in an embodiment of the present disclosure. Referring to FIG. 8, take the state machine 41a receiving the transmission signal of the AP 8M interface as an example.

步骤S801,状态机处于空闲状态(IDLE)。In step S801, the state machine is in an idle state (IDLE).

步骤S802,在存储访问请求有效(reg_xfer_valid=1)后,从空闲状态跳转到发送命令状态(SEND_CMD)。Step S802, after the storage access request is valid (reg_xfer_valid=1), jump from the idle state to the sending command state (SEND_CMD).

步骤S803,在一个时钟周期(cmd_cycle_cnt=1)内,状态机由发送命令状态后跳转到发送地址状态(ADDR)。Step S803, within one clock cycle (cmd_cycle_cnt=1), the state machine jumps from the sending command state to the sending address state (ADDR).

步骤S804,在持续两个时钟周期(wr_rd=1,addr_cycle_cnt=2)后跳转到读取数据状态(RD_DATA)。Step S804, jump to read data state (RD_DATA) after two clock cycles (wr_rd=1, addr_cycle_cnt=2).

步骤S805,判断数据选通时钟(DQS_time_out=1)是否超时,若是,则跳转至步骤S806;若否,则跳转至步骤S808。Step S805, judging whether the data strobe clock (DQS_time_out=1) has timed out, if yes, then jump to step S806; if not, then jump to step S808.

步骤S806,状态机跳转至读错误状态(RD_ERROR)。在等待预设时间长度后,跳转至步骤S809。In step S806, the state machine jumps to the read error state (RD_ERROR). After waiting for a preset time length, jump to step S809.

步骤S807,状态机读取所需地址长度(rd_done=1)后跳转到FIFO刷新状态(FIFO_FLUSH),以避免影响下次读取。Step S807, the state machine jumps to the FIFO refresh state (FIFO_FLUSH) after reading the required address length (rd_done=1), so as to avoid affecting the next reading.

步骤S808,FIFO刷新完成(fifo_flush_done=1)后跳转到等待传输完成状态(WAIT_TR_EXPIRY),并在读取周期完成(trc_expired=1)后返回空闲状态。Step S808 , after the FIFO refresh is completed (fifo_flush_done=1), jump to the wait for transmission completion state (WAIT_TR_EXPIRY), and return to the idle state after the read cycle is completed (trc_expired=1).

通过以上步骤S801至步骤S808,可以实现存储读操作。Through the above steps S801 to S808, the storage read operation can be realized.

图9为本公开实施例中半睡眠操作时状态机的工作流程图。参阅图9,以状态机41a接收AP 8M接口的传输信号为例。FIG. 9 is a working flow chart of the state machine during semi-sleep operation in the embodiment of the present disclosure. Referring to FIG. 9, take the state machine 41a receiving the transmission signal of the AP 8M interface as an example.

步骤S901,状态机处于空闲状态(IDLE)。In step S901, the state machine is in an idle state (IDLE).

步骤S902,当半睡眠访问请求有效(hs_xfer_valid=1)后,状态机从空闲状态跳转到发送命令状态(SEND_CMD)。Step S902, when the semi-sleep access request is valid (hs_xfer_valid=1), the state machine jumps from the idle state to the sending command state (SEND_CMD).

步骤S903,在一个时钟周期(cmd_cycle_cnt=1)内,状态机由发送命令状态后跳转到发送地址状态(ADDR)。Step S903, within one clock cycle (cmd_cycle_cnt=1), the state machine jumps from the sending command state to the sending address state (ADDR).

步骤S904,在持续两个时钟周期(wr_rd=1,addr_cycle_cnt=2)后跳转到发送延迟状态(TX_LATENCY)。Step S904, jumping to the transmission delay state (TX_LATENCY) after two clock cycles (wr_rd=1, addr_cycle_cnt=2).

步骤S905,在计时器满足等待时钟周期(wait_expired)后跳转到发送数据状态(TX_DATA)。Step S905, jumping to the sending data state (TX_DATA) after the timer satisfies the waiting clock period (wait_expired).

步骤S906,半睡眠数据发送固定为一个时钟周期,在一个时钟周期(wdata_avalid=0)后,状态机跳转到等待传输完成状态(WAIT_TR_EXPIRY),发送时钟周期完成(twc_expired=1)后返回空闲状态。Step S906, the half-sleep data transmission is fixed as one clock cycle, after one clock cycle (wdata_valid=0), the state machine jumps to the waiting transmission completion state (WAIT_TR_EXPIRY), and returns to the idle state after the sending clock cycle is completed (twc_expired=1) .

通过以上步骤S901至步骤S906,可以实现半睡眠操作。Through the above steps S901 to S906, the semi-sleep operation can be realized.

图10为本公开实施例中退出半睡眠时状态机的工作流程图。参阅图10,退出半睡眠状态的步骤包括:Fig. 10 is a working flow chart of the state machine when exiting half-sleep in an embodiment of the present disclosure. Referring to Figure 10, the steps for exiting the semi-sleep state include:

步骤S1001,状态机处于空闲状态(IDLE)。Step S1001, the state machine is in an idle state (IDLE).

步骤S1002,在退出半睡眠命令有效(hs_exit_valid=1)时,从空闲状态跳转到半睡眠退出状态(HS EXIT)。Step S1002, when the exit half-sleep command is valid (hs_exit_valid=1), jump from the idle state to the half-sleep exit state (HS EXIT).

在步骤S1002中,通过拉低片选(CE)信号的方式退出半睡眠状态,在拉低时间足够且满足PSRAM退出半睡眠状态到可以接收下次命令的时间(ce_low_expired=1,txhs_expired=1)后返回空闲状态。In step S1002, exit the half-sleep state by pulling down the chip select (CE) signal, and the time for pulling down the chip select (CE) signal is sufficient and meets the time when PSRAM exits the half-sleep state and can receive the next command (ce_low_expired=1, txhs_expired=1) Then return to idle state.

需要说明的是,深度断电的进入和退出操作与半睡眠的进入和退出操作,状态机的流程类似,在此不再赘述。还需说明的是,在本公开实施例中,半睡眠和混合睡眠只是表述方式的不同,在执行进入/退出操作时,两者的命令和状态机的工作流程均相同。It should be noted that the entry and exit operations of the deep power-off are similar to the entry and exit operations of the semi-sleep, and the flow of the state machine is similar, and will not be repeated here. It should also be noted that, in the embodiments of the present disclosure, half-sleep and mixed-sleep are only different in expressions, and when performing an entry/exit operation, both commands and state machine workflows are the same.

图11为本公开实施例提供的一种物理层接口的结构示意图。参阅图11,物理层接口用于生成存储器接口信号,同时兼容不同PSRAM接口,其中,PSRAM接口包括但不限于AP8M/4M接口和WB 8M/4M接口。其中,AP 8M接口为单端时钟,AP 4M接口和WB 8M/4M接口为差分时钟。AP 8M的DQS_DM具有两种功能,包括读期间的数据选通时钟(DQ strobe clockduring reads,DQS)功能和写期间的数据掩码(Data mask during writes,DM)功能,而AP4M包括DQS和DM两个信号,并且写操作时也需要DQS信号。WB8M/4M接口的读写数据选通信号(RWDS)与AP 8M接口的DQS_DM信号类似,在串行输入输出总线的命令地址阶段WB 8M/4M接口判断是否需要额外延迟。本公开实施例提供的物理层接口可以输出多种相关信号,之后对于每种PSRAM按需连接即可。FIG. 11 is a schematic structural diagram of a physical layer interface provided by an embodiment of the present disclosure. Referring to Figure 11, the physical layer interface is used to generate memory interface signals and is compatible with different PSRAM interfaces, wherein the PSRAM interface includes but is not limited to AP8M/4M interface and WB 8M/4M interface. Among them, the AP 8M interface is a single-ended clock, and the AP 4M interface and WB 8M/4M interface are differential clocks. The DQS_DM of AP 8M has two functions, including the data strobe clock (DQ strobe clock during reads, DQS) function during reading and the data mask during writing (Data mask during writes, DM) function, while AP4M includes both DQS and DM A signal, and the DQS signal is also required for write operations. The read and write data strobe signal (RWDS) of the WB8M/4M interface is similar to the DQS_DM signal of the AP 8M interface. In the command address phase of the serial input and output bus, the WB 8M/4M interface judges whether additional delay is required. The physical layer interface provided by the embodiments of the present disclosure can output various related signals, and then each type of PSRAM can be connected as required.

时钟门控处理(SCLK_GATE_INST)模块21用于根据相移存储控制器时钟和时钟使能生成用于PSRAM的时钟信号SCLK和SCLKN。The clock gating processing (SCLK_GATE_INST) module 21 is used to generate clock signals SCLK and SCLKN for the PSRAM according to the phase shift memory controller clock and clock enable.

示例地,时钟门控处理模块21根据相移存储控制器时钟mem_clk_90和时钟使能sclk_en生成用于PSRAM的时钟信号SCLK和SCLKN。其中,SCLKN与SCLK是一组差分时钟,即完全互补,N代表与时钟信号SCLK相反。Exemplarily, the clock gating processing module 21 generates clock signals SCLK and SCLKN for the PSRAM according to the phase shift memory controller clock mem_clk_90 and the clock enable sclk_en. Among them, SCLKN and SCLK are a set of differential clocks, that is, they are completely complementary, and N represents the opposite of the clock signal SCLK.

数据输入输出选择处理(DQ_OUT_MUX_INST)模块22用于根据存储控制器时钟的高低电平将数据输入输出拆分为两部分的存储控制器时钟,如数据输入输出的低字节和高字节两部分。The data input and output selection processing (DQ_OUT_MUX_INST) module 22 is used to split the data input and output into two parts of the storage controller clock according to the high and low levels of the storage controller clock, such as the low byte and high byte of the data input and output .

示例地,数据输入输出选择处理模块22根据存储控制器时钟mem_clk_0的高低电平将数据输入输出dq_out_ip[15:0]拆分为两部分的数据输入输出dq_out[7:0]。For example, the data input and output selection processing module 22 splits the data input and output dq_out_ip[15:0] into two parts of the data input and output dq_out[7:0] according to the high and low levels of the memory controller clock mem_clk_0.

在一些实施例中,在将数据输入输出dq_out_ip[15:0]拆分后,使数据输入输出dq_out[7:0]和数据输入输出使能dq_oe_ip经过三态门进行三态处理,获得除高电平、低电平外的高阻态。In some embodiments, after splitting the data input and output dq_out_ip[15:0], the data input and output dq_out[7:0] and the data input and output enable dq_oe_ip are subjected to tri-state processing through a tri-state gate to obtain a high-removal High-impedance state other than low level and low level.

数据掩码输出选择处理(DM_OUT_MUX_INST)模块23用于根据数据掩码输出使能在存储控制器时钟的高低电平时将数据掩码拆分为两部分的数据掩码,如数据掩码的低字节和高字节。The data mask output selection processing (DM_OUT_MUX_INST) module 23 is used to enable the data mask to be split into two parts of the data mask when the high and low levels of the storage controller clock are output according to the data mask, such as the low word of the data mask section and high byte.

示例地,数据掩码输出选择处理模块23用于根据数据掩码输出使能dm_oe_ip在存储控制器时钟mem_clk_0的高低电平时将数据掩码dm_ip[1:0]拆分为两个时钟周期的数据掩码DM。Exemplarily, the data mask output selection processing module 23 is used to enable dm_oe_ip to split the data mask dm_ip[1:0] into data of two clock cycles when the memory controller clock mem_clk_0 is high or low according to the data mask output enable dm_oe_ip Mask DM.

在一些实施例中,DQS不仅需要作为DQ选通,在OPI总线的某些阶段还需要保持为0,因此,设计数据选通时钟输出使能dqs_oe_ip为2bit位宽。In some embodiments, DQS not only needs to be used as a DQ strobe, but also needs to be kept as 0 in some phases of the OPI bus. Therefore, the design data strobe clock output enable dqs_oe_ip is 2 bits wide.

数据选通时钟输出选择处理(DQS_OUT_MUX_INST)模块24用于基于时钟信号、数据掩码、PSRAM类型、数据选通时钟输出使能产生兼容不同PSRAM接口的数据选通时钟输出dqs_out。The data strobe clock output selection processing (DQS_OUT_MUX_INST) module 24 is used to generate data strobe clock output dqs_out compatible with different PSRAM interfaces based on clock signal, data mask, PSRAM type, and data strobe clock output enable.

在一些实施例中,数据选通时钟输出选择处理模块24用于基于时钟信号SCLK、数据掩码DM、PSRAM类型、数据选通时钟输出使能dqs_oe_ip产生兼容不同PSRAM接口的数据选通时钟输出dqs_out,其中,数据选通时钟输出dqs_out包括DQS_DM/RWDS信号。In some embodiments, the data strobe clock output selection processing module 24 is used to generate a data strobe clock output dqs_out compatible with different PSRAM interfaces based on the clock signal SCLK, the data mask DM, the PSRAM type, and the data strobe clock output enable dqs_oe_ip , wherein the data strobe clock output dqs_out includes the DQS_DM/RWDS signal.

示例地,当dqs_oe_ip为2时,数据选通时钟输出选择处理模块24输出的dqs_out为0;当dqs_oe_ip为1、且psram_type为AP 4M时,数据选通时钟输出选择处理模块24输出的dqs_out为SCLK;当dqs_oe_ip为1、且psram_type非AP 4M时,数据选通时钟输出选择处理模块24输出的dqs_out为DM;当dqs_oe_ip为0时,数据选通时钟输出选择处理模块24输出的dqs_out为高阻,这样保证了AP 4M接口下数据选通时钟数据掩码DQS_DM并没有DM的功能。Illustratively, when dqs_oe_ip is 2, the dqs_out that data strobe clock output selection processing module 24 outputs is 0; When dqs_oe_ip is 1 and psram_type is AP 4M, the dqs_out that data strobe clock output selection processing module 24 outputs is SCLK ; When dqs_oe_ip is 1 and psram_type non-AP 4M, the dqs_out that data strobe clock output selects processing module 24 outputs is DM; When dqs_oe_ip is 0, the dqs_out that data strobe clock output selects processing module 24 outputs is high resistance This ensures that the data strobe clock data mask DQS_DM under the AP 4M interface does not have the DM function.

数据选通时钟门控处理(DQS_GATE_INST)模块25用于基于数据选通时钟输出使能dqs_oe_ip[1:0]对输入的数据选通时钟数据掩码DQS_DM进行门控,获得数据选通时钟输入信号dqs_in。在一些实施例中,在非数据阶段时,dqs_in保持为0,避免对读数据的采样造成干扰。The data strobe clock gating processing (DQS_GATE_INST) module 25 is used to enable dqs_oe_ip[1:0] to gate the input data strobe clock data mask DQS_DM based on the data strobe clock output to obtain the data strobe clock input signal dqs_in. In some embodiments, during the non-data phase, dqs_in remains at 0 to avoid interference with the sampling of read data.

在一些实施例中,因为WB 8M/4M接口的DQS_DM在OPI总线命令地址阶段指示是否需要额外延迟,因此,物理层接口额外输出未经过数据选通时钟门控处理模块25处理的数据选通时钟初始值dqs_initial,并将dqs_initial输出到数字控制器。In some embodiments, because the DQS_DM of the WB 8M/4M interface indicates whether additional delay is required at the OPI bus command address stage, the physical layer interface additionally outputs the data strobe clock that has not been processed by the data strobe clock gating processing module 25 Initial value dqs_initial, and output dqs_initial to the digital controller.

数据选通时钟选择操作完成延迟(DQS_MUXED_DELAY)模块26用于对数据选通时钟输入信号(dqs_in)进行物理延迟,以使得PSRAM返回的数据落后于数据选通时钟,以满足采样所需的触发器建立时间。The data strobe clock selection operation completion delay (DQS_MUXED_DELAY) module 26 is used to physically delay the data strobe clock input signal (dqs_in), so that the data returned by PSRAM lags behind the data strobe clock to meet the flip-flops required for sampling build time.

在本公开实施例中,数据选通时钟选择操作完成延迟模块26对数据选通时钟输入信号(dqs_in)进行物理延迟,使得PSRAM返回的数据落后于数据选通时钟,以满足采样所需的触发器建立时间,从而确保成功采样。In the embodiment of the present disclosure, the data strobe clock selection operation completion delay module 26 physically delays the data strobe clock input signal (dqs_in), so that the data returned by PSRAM lags behind the data strobe clock, so as to meet the trigger required for sampling to ensure successful sampling.

在一些实施例中,因为PSRAM返回的数据输入输出会落后数据选通时钟(如落后零点几纳秒),考虑到在不同SCLK频率下,PSRAM返回的数据输入输出落后数据选通时钟的时间不同,数据选通时钟选择操作完成延迟模块26采用多级延迟。In some embodiments, because the data input and output returned by the PSRAM will lag behind the data strobe clock (for example, a few tenths of a nanosecond behind), considering that at different SCLK frequencies, the time of the data input and output returned by the PSRAM behind the data strobe clock is different. , the data strobe clock selection operation completion delay module 26 adopts a multi-stage delay.

在一些实施例中,数据选通时钟选择操作完成延迟模块26包括物理控制寄存器模块,物理控制寄存器模块用于选择延迟级数,每个延迟级数对应不同的延迟时间。In some embodiments, the data strobe clock selection operation completion delay module 26 includes a physical control register module, which is used to select delay stages, and each delay stage corresponds to a different delay time.

示例地,每级延迟可以通过物理控制寄存器模块phy_ctrl_reg0选择延迟级数,每一级延迟采用输入输出缓存(IOBUF)。片选低有效ce_n_ip可以直接作为CE_N输出即可。For example, each stage of delay can select the number of delay stages through the physical control register module phy_ctrl_reg0, and each stage of delay uses an input-output buffer (IOBUF). Chip select low effective ce_n_ip can be directly output as CE_N.

本公开实施例所提供的用于伪静态随机存储器的控制器,包括数字控制器和物理层接口,其中,数字控制器基于操作请求,生成与八路串行输入输出接口的类型适配的伪静态随机存储器PSRAM传输信号,以使PSRAM传输信号适用不同的PSRAM接口;物理层接口基于PSRAM传输信号生成与PSRAM接口的类型适配的PSRAM接口信号,由于PSRAM接口信号是根据PSRAM接口的类型生成的,因此生成的PSRAM接口信号可以兼容不同类型的PSRAM接口和传输协议,使得控制器可以支持不同PSRAM芯片,提高PSRAM芯片选择的灵活性。The controller for the pseudo-static random access memory provided by the embodiment of the present disclosure includes a digital controller and a physical layer interface, wherein the digital controller generates a pseudo-static random access memory adapted to the type of the eight-way serial input and output interface based on an operation request. The random access memory PSRAM transmits the signal, so that the PSRAM transmission signal is applicable to different PSRAM interfaces; the physical layer interface generates the PSRAM interface signal adapted to the type of the PSRAM interface based on the PSRAM transmission signal. Since the PSRAM interface signal is generated according to the type of the PSRAM interface, Therefore, the generated PSRAM interface signals can be compatible with different types of PSRAM interfaces and transmission protocols, so that the controller can support different PSRAM chips and improve the flexibility of PSRAM chip selection.

本公开实施例还提供一种用于伪静态随机存储器的控制方法,该控制方法基于本公开实施例提供的用于伪静态随机存储器的控制器,为节约篇幅,在此全文引用本公开实施例提供的用于伪静态随机存储器的控制器。The embodiment of the present disclosure also provides a control method for a pseudo-static random access memory, which is based on the controller for a pseudo-static random access memory provided by an embodiment of the present disclosure. Provides a controller for pseudo-static random access memory.

图12为本公开实施例提供的一种用于伪静态随机存储器的控制方法的流程图。参阅图12,控制方法包括:FIG. 12 is a flowchart of a control method for a pseudo-static random access memory provided by an embodiment of the present disclosure. Referring to Figure 12, the control methods include:

步骤S1201,接收操作请求。Step S1201, receiving an operation request.

其中,操作请求可以通过APB总线和AHB总线传输至控制器,操作请求包括但不限于存储读写请求和寄存器模块访问请求。示例地,操作请求可以是来自APB或AHB的读写请求或者读写请求。Wherein, the operation request can be transmitted to the controller through the APB bus and the AHB bus, and the operation request includes but not limited to a storage read and write request and a register module access request. Exemplarily, the operation request may be a read-write request or a read-write request from the APB or AHB.

步骤S1202,基于操作请求生成与八路串行输入输出接口的类型适配的伪静态随机存储器PSRAM传输信号。Step S1202, generating a PSRAM transmission signal adapted to the type of the eight-channel serial input and output interface based on the operation request.

在一些实施例中,PSRAM传输信号包括读写命令、进入/退出半睡眠(混合睡眠)、进入/退出深度断电操作中各状态对应的传输信号。In some embodiments, the PSRAM transmission signals include read and write commands, entering/exiting semi-sleep (hybrid sleep), entering/exiting transmission signals corresponding to each state in the deep power-off operation.

步骤S1203,用于基于PSRAM传输信号生成与PSRAM接口的类型适配的PSRAM接口信号。Step S1203, for generating a PSRAM interface signal adapted to the type of the PSRAM interface based on the PSRAM transmission signal.

本公开实施例所提供的用于伪静态随机存储器的控制方法,基于操作请求,生成与八路串行输入输出接口的类型适配的伪静态随机存储器PSRAM传输信号,以使PSRAM传输信号适用不同的PSRAM接口;基于PSRAM传输信号生成与PSRAM接口的类型适配的PSRAM接口信号,由于PSRAM接口信号是根据PSRAM接口的类型生成的,因此生成的PSRAM接口信号可以兼容不同类型的PSRAM接口和传输协议,使得控制器可以支持不同PSRAM芯片,提高PSRAM芯片选择的灵活性。The control method for the pseudo-static random access memory provided by the embodiment of the present disclosure generates a pseudo-static random access memory PSRAM transmission signal adapted to the type of the eight-way serial input and output interface based on the operation request, so that the PSRAM transmission signal is applicable to different PSRAM interface; based on the PSRAM transmission signal, a PSRAM interface signal adapted to the type of the PSRAM interface is generated. Since the PSRAM interface signal is generated according to the type of the PSRAM interface, the generated PSRAM interface signal can be compatible with different types of PSRAM interfaces and transmission protocols. The controller can support different PSRAM chips, and the flexibility of PSRAM chip selection is improved.

附图中的流程图和框图显示了根据本公开的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flowchart and block diagrams in the figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present disclosure. In this regard, each block in a flowchart or block diagram may represent a module, a program segment, or a portion of an instruction that contains one or more executable instruction. In some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved. It should also be noted that each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can be implemented by a dedicated hardware-based system that performs the specified function or action , or may be implemented by a combination of dedicated hardware and computer instructions.

本文已经公开了示例实施例,并且虽然采用了具体术语,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则可单独使用与特定实施例相结合描述的特征、特性和/或元素,或可与其他实施例相结合描述的特征、特性和/或元件组合使用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本公开的范围的情况下,可进行各种形式和细节上的改变。Example embodiments have been disclosed herein, and while specific terms have been employed, they are used and should be construed in a generic descriptive sense only and not for purposes of limitation. In some instances, it will be apparent to those skilled in the art that features, characteristics and/or elements described in connection with a particular embodiment may be used alone, or may be described in combination with other embodiments, unless explicitly stated otherwise. Combinations of features and/or elements. Accordingly, it will be understood by those of ordinary skill in the art that various changes in form and details may be made without departing from the scope of the present disclosure as set forth in the appended claims.

Claims (11)

1.一种用于伪静态随机存储器的控制器,其特征在于,包括数字控制器和物理层接口,所述物理层接口的输入端与所述数字控制器连接,输出端与伪静态随机存储器PSRAM接口连接,其中:1. a kind of controller for pseudo-static random access memory, it is characterized in that, comprise digital controller and physical layer interface, the input end of described physical layer interface is connected with described digital controller, output end is connected with pseudo-static random access memory PSRAM interface connection, where: 所述数字控制器,用于接收操作请求,并基于所述操作请求生成与八路串行输入输出接口的类型适配的PSRAM传输信号;The digital controller is configured to receive an operation request, and generate a PSRAM transmission signal adapted to the type of the eight-way serial input and output interface based on the operation request; 所述物理层接口,用于基于所述PSRAM传输信号生成与所述PSRAM接口的类型适配的PSRAM接口信号。The physical layer interface is configured to generate a PSRAM interface signal adapted to the type of the PSRAM interface based on the PSRAM transmission signal. 2.根据权利要求1所述的控制器,其特征在于,所述操作请求包括高级外设总线APB操作请求和高性能总线AHB操作请求;2. The controller according to claim 1, wherein the operation request comprises an Advanced Peripheral Bus APB operation request and a High Performance Bus AHB operation request; 所述数字控制器包括:The digital controller includes: 寄存器模块,用于基于接收到的APB操作请求生成APB控制信号和时序参数,以及接收传输状态信号并存储;The register module is used to generate APB control signals and timing parameters based on the received APB operation request, and receive and store the transmission status signal; AHB从机控制模块,用于响应接收到的AHB操作请求,基于所述APB控制信号和时序参数获得AHB指令信息;以及,将接收到的所述PSRAM的传输状态信息传输到AHB主机;The AHB slave control module is used to respond to the received AHB operation request, obtain AHB command information based on the APB control signal and timing parameters; and transmit the received transmission status information of the PSRAM to the AHB master; 读写事务传输模块,用于基于所述APB控制信号和所述AHB指令信息,生成所述PSRAM传输信号,以及,接收来自所述物理层接口的操作请求和时钟信号,并基于所述时钟信号对所述操作请求进行采样,并将采样结果传输至所述AHB从机控制模块。A read-write transaction transmission module, configured to generate the PSRAM transmission signal based on the APB control signal and the AHB instruction information, and receive an operation request and a clock signal from the physical layer interface, and based on the clock signal Sampling the operation request, and transmitting the sampling result to the AHB slave control module. 3.根据权利要求2所述的控制器,其特征在于,所述读写事务传输模块包括:3. The controller according to claim 2, wherein the read-write transaction transmission module comprises: 命令处理模块,用于对接收到的所述APB控制信号进行边沿检测,并输出APB控制有效信号和APB传输信号;A command processing module, configured to perform edge detection on the received APB control signal, and output an APB control valid signal and an APB transmission signal; 接收传输模块,用于基于所述物理层接口返回的数据进行跨时钟域传输,并在满足预设条件时,将所述物理层接口的数据输出,以及根据时序参数确定数据选通信号超时时,输出超时指示信号;The receiving and transmitting module is configured to perform cross-clock domain transmission based on the data returned by the physical layer interface, and output the data of the physical layer interface when a preset condition is satisfied, and determine when the data strobe signal times out according to the timing parameters , output a timeout indication signal; 发送传输模块,用于对所述APB控制信号和所述AHB指令信息进行传输时,基于各个传输状态生成所述PSRAM传输信号。The sending transmission module is configured to generate the PSRAM transmission signal based on each transmission state when transmitting the APB control signal and the AHB instruction information. 4.根据权利要求3所述的控制器,其特征在于,所述发送传输模块包括数据移位寄存器模块,所述数据移位寄存器模块包括多个状态机,每个所述状态机与一个所述八路串行输入输出接口的类型对应,每个所述状态机针对与之对应的所述八路串行输入输出接口的类型,基于各个传输状态产生所述PSRAM传输信号。4. The controller according to claim 3, wherein the sending transmission module includes a data shift register module, and the data shift register module includes a plurality of state machines, each of which is connected to one of the state machines Corresponding to the type of the eight-way serial input-output interface, each of the state machines generates the PSRAM transmission signal based on each transmission state for the corresponding type of the eight-way serial input-output interface. 5.根据权利要求3所述的控制器,其特征在于,所述发送传输模块还包括:5. The controller according to claim 3, wherein the sending transmission module further comprises: 时序检查模块,用于基于所述时序参数生成第一指示信号;a timing checking module, configured to generate a first indication signal based on the timing parameters; 写边界检查模块,用于基于存储页的参数和存储地址确定到达所述存储页的边界时,输出第二指示信号;A write boundary check module, configured to output a second indication signal when the boundary of the storage page is determined based on the parameters of the storage page and the storage address; 所述数据移位寄存器模块响应所述第一指示信号和所述第二指示信号对所述APB控制信号和所述AHB指令信息进行传输。The data shift register module transmits the APB control signal and the AHB instruction information in response to the first indication signal and the second indication signal. 6.根据权利要求2所述的控制器,其特征在于,所述数字控制器还包括:6. The controller according to claim 2, wherein the digital controller further comprises: 第一同步器,用于将超时信号从所述数字控制器的时钟信号到所述AHB的时钟信号的跨时钟域传输;a first synchronizer for cross-clock domain transmission of a timeout signal from the clock signal of the digital controller to the clock signal of the AHB; 第二同步器,用于将传输完成信号从所述数字控制器的时钟信号到所述APB的时钟信号的跨时钟域传输。The second synchronizer is used to transmit the transmission completion signal across clock domains from the clock signal of the digital controller to the clock signal of the APB. 7.根据权利要求1所述的控制器,其特征在于,所述APB操作请求包括APB读取请求、APB写入请求中的一种或多种;7. The controller according to claim 1, wherein the APB operation request comprises one or more of an APB read request and an APB write request; 所述AHB操作请求包括AHB读取请求、AHB写入请求中的一种或多种。The AHB operation request includes one or more of an AHB read request and an AHB write request. 8.根据权利要求1所述的控制器,其特征在于,所述物理层接口包括:8. The controller according to claim 1, wherein the physical layer interface comprises: 时钟门控处理模块,用于根据相移存储控制器时钟和时钟使能生成用于PSRAM的时钟信号SCLK和SCLKN;A clock gating processing module, configured to generate clock signals SCLK and SCLKN for the PSRAM according to the phase-shift memory controller clock and clock enable; 数据输入输出选择处理模块,用于根据存储控制器时钟的高低电平将数据输入输出拆分为两部分的存储控制器时钟;The data input and output selection processing module is used to split the data input and output into two parts of the storage controller clock according to the high and low levels of the storage controller clock; 数据掩码输出选择处理模块,用于根据数据掩码输出使能在存储控制器时钟的高低电平时将数据掩码拆分为两部分的数据掩码;The data mask output selection processing module is used to enable the data mask to be split into two parts of the data mask when the storage controller clock is high or low according to the data mask output; 数据选通时钟输出选择处理模块,用于基于时钟信号、数据掩码、PSRAM类型、数据选通时钟输出使能产生兼容不同的PSRAM接口的数据选通时钟输出;The data strobe clock output selection processing module is used to generate a data strobe clock output compatible with different PSRAM interfaces based on the clock signal, data mask, PSRAM type, and data strobe clock output enable; 数据选通时钟门控处理模块,用于基于数据选通时钟输出使能对输入的数据选通时钟数据掩码进行门控,获得数据选通时钟输入信号;A data strobe clock gating processing module, configured to gate the input data strobe clock data mask based on the data strobe clock output to obtain a data strobe clock input signal; 数据选通时钟选择操作完成延迟模块,用于对数据选通时钟输入信号进行物理延迟,以使得PSRAM返回的数据落后于所述数据选通时钟。The data strobe clock selection operation completion delay module is used for physically delaying the input signal of the data strobe clock, so that the data returned by the PSRAM lags behind the data strobe clock. 9.根据权利要求8所述的控制器,其特征在于,所述数据选通时钟选择操作完成延迟模块包括物理控制寄存器模块,所述物理控制寄存器模块用于选择延迟级数,每个所述延迟级数对应不同的延迟时间。9. The controller according to claim 8, wherein the data strobe clock selection operation completion delay module includes a physical control register module, and the physical control register module is used to select the number of delay stages, each of the The delay series correspond to different delay times. 10.一种基于权利要求1-9任意一项所述的用于伪静态随机存储器的控制器的控制方法,其特征在于,包括:10. A control method based on the controller for pseudo-static random access memory described in any one of claims 1-9, characterized in that, comprising: 接收操作请求;Receive operation requests; 基于所述操作请求生成与所述八路串行输入输出接口的类型适配的伪静态随机存储器PSRAM传输信号;generating a PSRAM transmission signal adapted to the type of the eight-way serial input and output interface based on the operation request; 用于基于所述PSRAM传输信号生成与所述PSRAM接口的类型适配的PSRAM接口信号。and generating a PSRAM interface signal adapted to the type of the PSRAM interface based on the PSRAM transmission signal. 11.根据权利要求10所述的控制方法,其特征在于,所述PSRAM传输信号包括读写命令、进入/退出半睡眠、进入/退出深度断电操作中各传输状态对应的传输信号。11 . The control method according to claim 10 , wherein the PSRAM transmission signals include transmission signals corresponding to transmission states in read and write commands, entering/exiting semi-sleep, and entering/exiting deep power-off operation.
CN202310154805.0A 2023-02-13 2023-02-13 Controller and control method for pseudo-static random access memory Pending CN116092552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310154805.0A CN116092552A (en) 2023-02-13 2023-02-13 Controller and control method for pseudo-static random access memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310154805.0A CN116092552A (en) 2023-02-13 2023-02-13 Controller and control method for pseudo-static random access memory

Publications (1)

Publication Number Publication Date
CN116092552A true CN116092552A (en) 2023-05-09

Family

ID=86188012

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310154805.0A Pending CN116092552A (en) 2023-02-13 2023-02-13 Controller and control method for pseudo-static random access memory

Country Status (1)

Country Link
CN (1) CN116092552A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040008558A1 (en) * 2002-07-12 2004-01-15 Hyun-Suk Lee Refresh control circuit and methods of operation and control of the refresh control circuit
CN110970067A (en) * 2019-10-29 2020-04-07 广东高云半导体科技股份有限公司 PSRAM controller, time delay control method thereof, FPGA chip and electronic equipment
CN111009272A (en) * 2019-11-18 2020-04-14 广东高云半导体科技股份有限公司 Input/output logic circuit, physical layer interface module, FPGA chip and storage system
JP2020135914A (en) * 2019-02-25 2020-08-31 華邦電子股▲ふん▼有限公司Winbond Electronics Corp. Pseudo-static random access memory and how it works
CN113971143A (en) * 2021-10-22 2022-01-25 展讯半导体(成都)有限公司 Memory controller, Internet of things chip and electronic equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040008558A1 (en) * 2002-07-12 2004-01-15 Hyun-Suk Lee Refresh control circuit and methods of operation and control of the refresh control circuit
JP2020135914A (en) * 2019-02-25 2020-08-31 華邦電子股▲ふん▼有限公司Winbond Electronics Corp. Pseudo-static random access memory and how it works
CN110970067A (en) * 2019-10-29 2020-04-07 广东高云半导体科技股份有限公司 PSRAM controller, time delay control method thereof, FPGA chip and electronic equipment
CN111009272A (en) * 2019-11-18 2020-04-14 广东高云半导体科技股份有限公司 Input/output logic circuit, physical layer interface module, FPGA chip and storage system
CN113971143A (en) * 2021-10-22 2022-01-25 展讯半导体(成都)有限公司 Memory controller, Internet of things chip and electronic equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨园格: "基于 A H B 总线的串行 PSR A M 高速访问设计", 中国知网, 31 December 2020 (2020-12-31) *

Similar Documents

Publication Publication Date Title
US9860088B1 (en) Inferring sampled data in decision feedback equalizer at restart of forwarded clock in memory system
KR101375466B1 (en) Mesochronous signaling system with multiple power modes
CN102981776B (en) Double data rate virtual static random access memory and its controller, access and operation method, writing and reading method
US7061823B2 (en) Limited output address register technique providing selectively variable write latency in DDR2 (double data rate two) integrated circuit memory devices
TW563132B (en) Common DRAM controller supports double-data-rate and quad-data-rate memory
US10572406B2 (en) Memory controller for receiving differential data strobe signals and application processor having the memory controller
JP4984129B2 (en) Data strobe synchronization circuit and method for writing at double data rate multi-bit
CN101692346B (en) Memory data sampling device and sampling controller
CN101149961B (en) Apparatus and method for controlling memory interface
US7385861B1 (en) Synchronization circuit for DDR IO interface
US6782459B1 (en) Method and apparatus for controlling a read valid window of a synchronous memory device
US7239576B2 (en) Memory device and method of controlling the same
CN109313918B (en) Memory component with input/output data rate alignment
US8243543B2 (en) Semiconductor memory device for high-speed data input/output
EP2808801B1 (en) Multiple data rate memory with read timing information
US20110235446A1 (en) Write strobe generation for a memory interface controller
CN1952868A (en) Memory module, memory system and method for controlling thereof
CN1504900B (en) Control circuit and method for reading data from memory
US8593902B2 (en) Controller and access method for DDR PSRAM and operating method thereof
WO2025030972A1 (en) Asynchronous bridge circuit, bus apparatus and system on chip
CN101510182B (en) Low speed DMA interface chip system and internal memory access method
CN116092552A (en) Controller and control method for pseudo-static random access memory
CN102522113B (en) SDRAM bridge circuit
US20090180335A1 (en) Integrated circuit with reduced pointer uncertainly
JP2010044821A (en) Semiconductor device and memory macro

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination