CN116080890A - 具有芯部和外壳的加强件 - Google Patents

具有芯部和外壳的加强件 Download PDF

Info

Publication number
CN116080890A
CN116080890A CN202211385223.5A CN202211385223A CN116080890A CN 116080890 A CN116080890 A CN 116080890A CN 202211385223 A CN202211385223 A CN 202211385223A CN 116080890 A CN116080890 A CN 116080890A
Authority
CN
China
Prior art keywords
stiffener
panel
slats
core
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211385223.5A
Other languages
English (en)
Inventor
约翰·马丁·盖顿
克里斯·希斯曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Operations GmbH
Original Assignee
Airbus Operations GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Operations GmbH filed Critical Airbus Operations GmbH
Publication of CN116080890A publication Critical patent/CN116080890A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/064Stringers; Longerons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/10Shape of wings
    • B64C3/14Aerofoil profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/18Spars; Ribs; Stringers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/18Spars; Ribs; Stringers
    • B64C3/182Stringers, longerons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/18Spars; Ribs; Stringers
    • B64C3/187Ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C2001/0054Fuselage structures substantially made from particular materials
    • B64C2001/0072Fuselage structures substantially made from particular materials from composite materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及一种具有芯部和外壳的加强件,该加强件包括芯部以及包围芯部的外壳,其中,外壳由纤维材料形成,并且芯部包括并排布置的第一板条和第二板条、以及板条之间的泡沫间隔件。加强件沿纵向方向延伸,并且板条和泡沫间隔件具有沿加强件的纵向方向延伸的相应长度。芯部组装有位于板条之间的间隔件,然后包围有外壳。加强件可以是飞行器机翼的桁条。

Description

具有芯部和外壳的加强件
技术领域
本发明涉及加强件以及结合该加强件的面板组件。
背景技术
复合加强件具有多种不同的形式。一种众所周知的形式是所谓的“叶片”桁条。叶片桁条具有相对高的纵横比(深度/宽度),这可能导致各种缺点:例如叶片的自由边缘可能易于损坏,以及叶片可能易于屈曲。
另一种形式是“欧米茄形”或“帽形”加强件。帽形加强件具有相对较低的纵横比(深度/宽度),这可以避免叶片桁条的缺点,但是也可能引入不同的问题:例如重量增加,以及加强件之间的间距增加。
US2010129589中公开了一种“帽形”加强件的示例。在一个示例中,复合材料被铺设在放置于内模线工具中的泡沫上。然后,机身蒙皮被放置或铺设在复合材料、泡沫和内模线工具上。该制造过程具有的问题是,加强件必须在内模线工具上进行组装,这可能使得该过程复杂且难以自动化。
在WO2020/229501中公开的一种飞行器面板组件包括面板以及位于面板上的多个加强件。每个加强件具有附接至面板的附接部分以及与面板间隔开的结构部分。肋条支脚梁在一系列相交部处穿过加强件。在每个相交部处,肋条支脚梁位于面板与加强件中的相应一个加强件的结构部分之间。
发明内容
本发明的第一方面提供了一种加强件,该加强件包括芯部、以及包围芯部的外壳,其中,外壳由纤维材料形成,并且芯部包括并排布置的第一板条和第二板条、以及板条之间的间隔件,其中,加强件沿纵向方向延伸,并且板条和间隔件具有在加强件的纵向方向上延伸的相应长度。
可选地,板条间隔开一定间隙;间隔件位于板条之间的间隙中;板条、间隔件和间隙具有各自的宽度;板条的宽度沿纵向方向减小;并且间隔件和间隙的宽度沿纵向方向增加。
可选地,芯部具有沿着加强件的长度基本不变的宽度。
可选地,间隔件由泡沫材料形成。
可选地,板条由纤维材料形成,纤维材料可选地为纤维增强的复合材料。
可选地,外壳的纤维材料为纤维增强的复合材料。
可选地,板条与间隔件相比具有更高的每单位体积质量。
可选地,加强件还包括位于板条与外壳之间的盖。
可选地,板条与盖相比具有更高的每单位体积质量,并且/或者盖由泡沫材料形成。
可选地,芯部具有不多于两个板条。
可选地,外壳具有深度和横向于加强件的长度的宽度,板条在外壳的宽度上间隔开,并且外壳的深度大于外壳的宽度。
可选地,外壳包括支脚、与支脚相反的冠部、第一侧壁、以及与第一侧壁相反的第二侧壁。
可选地,在横向于加强件的纵向方向的截面中观察,每个侧壁均长于支脚。
可选地,第一板条与第一侧壁相邻,并且第二板条与第二侧壁相邻。
可选地,第一侧壁与第二侧壁彼此大致平行。
可选地,外壳具有大致矩形的外部轮廓。
可选地,板条在沿着板条的相应长度的任何点处彼此不接触。
可选地,每个板条和每个间隔件沿着加强件的整个长度连续延伸,或者至少沿着加强件的整个长度的大部分长度连续延伸。
本发明的第二方面提供了一种加强面板组件,该加强面板组件包括面板、以及粘附至面板的根据第一方面的加强件。
可选地,外壳包括支脚、与支脚相反的冠部、第一侧壁、以及与支脚相反的第二侧壁,其中,外壳的支脚粘附至面板。
外壳具有支脚与冠部之间的外壳深度、以及侧壁之间的外壳宽度。可选地,外壳深度大于外壳宽度。
可选地,每个板条包括面向面板的内边缘、背离面板的外边缘、面向另一板条的内侧部、以及背离另一板条的外侧部。
每个板条在其内边缘与外边缘之间具有板条深度;并且在其内侧部与外侧部之间具有板条宽度。对于每个板条来说,板条深度可以大于板条宽度。
可选地,面板组件包括附接至面板的梁,加强件包括在相交部处从梁的第一侧跨过梁到梁的第二侧的桥状部,桥状部具有背离面板的外表面和面向面板的内表面,桥状部的内表面偏离面板以在相交部处形成凹部,并且桥状部的外表面偏离面板以在相交部处形成突出部。
可选地,桥状部包括增强纤维,所述增强纤维沿着桥状部连续延伸并且在相交部处从梁的第一侧跨过梁到梁的第二侧。可选地,所述增强纤维中的至少一些增强纤维在桥状部的每个端部处偏离面板。
本发明的第二方面提供了一种飞行器,该飞行器包括根据第二方面的加强面板组件。
本发明的第三方面提供了一种制造根据第一方面的桁条的方法,该方法包括:组装具有位于板条之间的间隔件的芯部;然后用外壳包围芯部。
本发明的第四方面提供了一种制造根据第二方面的加强面板组件的方法,该方法包括:通过根据第三方面的方法制造加强件;然后将加强件粘附至面板。
可选地,通过下述方式将加强件粘附至面板:用基体共灌注面板以及外壳的纤维材料;然后固化基体。
附图说明
现在将参照附图对本发明的实施方式进行描述,在附图中:
图1示出了飞行器;
图2示出了飞行器的右舷机翼;
图3是机翼盒的截面图;
图4是加强面板组件的等距视图;
图5是图4的组件的平面图;
图6是图4的组件的侧视图;
图7是沿着图6中的线C-C截取的截面图;
图8是沿着图6中的线B-B截取的截面图;
图9是沿着图5中的线A-A截取的截面图;
图10是沿着图5中的线D-D截取的截面图;
图11A示出了肋条支脚梁的第一实施方式;
图11B示出了肋条支脚梁的第二实施方式;以及
图12是根据本发明的另一实施方式的加强面板组件的等距视图。
具体实施方式
图1示出了具有左舷机翼2和右舷机翼3的飞行器1。每个机翼具有悬臂结构,其长度在翼展方向42上从根部延伸到梢部,该根部连结至飞行器机身4。机翼2、3在构造上相似,因此将仅参照图2和图3详细描述右舷机翼3。
机翼的主要结构元件是由图3中以横截面示出的上覆盖面板21和下覆盖面板22以及前翼梁6和后翼梁7形成的机翼盒。覆盖面板21、22和翼梁6、7分别是碳纤维增强的聚合物(CFRP)层压部件。每个覆盖面板具有弯曲的空气动力学表面(上覆盖面板21的上表面和下覆盖面板22的下表面),在飞行器飞行期间空气在该空气动力学表面上流动。每个覆盖面板还具有内表面,该内表面承载一系列沿翼展方向42延伸的加强件8。每个覆盖面板承载大量的加强件8,为清楚起见,在图2中仅示出了加强件中的五个加强件,并且在图3中仅示出了加强件中的七个加强件。可以在机翼的弦上设置更大数目的加强件。每个加强件8均连结至一个覆盖面板,但不连结至另一覆盖面板。在飞行器机翼覆盖面板的情况下,加强件8通常被称为桁条,但是下面将使用术语“加强件”。
机翼盒还具有多个横向的肋条,每个肋条均连结至覆盖面板21、22和翼梁6、7。该肋条包括位于机翼盒的根部处的最靠内的内侧肋条10,以及沿着机翼盒的长度与最靠内的肋条间隔开的许多其他的肋条。机翼盒被分成两个燃料箱:由内侧肋条10、中跨肋条11、覆盖面板21、22和翼梁6、7界定的内侧机翼燃料箱;以及由中跨肋条11、机翼盒的梢部处的外侧肋条12、覆盖面板21、22和翼梁6、7界定的外侧机翼燃料箱。
内侧肋条10是附接肋条,该附接肋条形成机翼盒的根部并且连结至机身4的本体内的中央机翼盒20。隔板肋条13(以虚线示出)在燃料箱内形成将燃料箱分成多个舱的内部隔板。肋条10、11、12被密封以防止燃料从两个燃料箱流出,但是隔板肋条13未被密封,使得燃料可以在舱之间流过隔板肋条13。如在图2中可以看到的,加强件8在靠近内侧肋条10和外侧肋条12处停止,但是穿过隔板肋条13和中跨肋条11。
每个肋条10、11、13将上覆盖面板21连接至下覆盖面板22,并且图3通过示例的方式示出了用于肋条11的上肋条/覆盖件连接装置和下肋条/覆盖件连接装置。肋条支脚梁18粘附至每个覆盖面板21、22的内表面,并且通过穿过肋条11和肋条支脚梁18的紧固件14(比如螺栓或铆钉)附接至加强件8之间的肋条11。加强件8穿过肋条11中的鼠洞孔开口20。
每个加强件8在相交部处跨过肋条支脚梁18。在每个相交部处,肋条支脚梁18位于面板21、22与加强件8中的相应一个加强件之间。
如上所指出的,上覆盖面板21和下覆盖面板22分别提供燃料箱的上壁和下壁。如果燃料箱填充过量,则可能产生较大的燃料压力,这具有使肋条支脚梁18从覆盖面板脱离的风险。互锁的肋条支脚/桁条装置使加强件8能够保持肋条支脚梁18向下抵靠覆盖面板,并防止燃料压力将肋条支脚梁18与覆盖面板分离。
每个肋条/覆盖界面使用单个肋条支脚梁18使得组件的制造复杂度降低。也不必将多个肋条支脚彼此对准。
图4和图5示出了面板组件,该面板组件包括:覆盖面板22;肋条支脚梁18;以及加强件8,加强件8承载在覆盖面板22的内表面上。
图7示出了加强件8中的一个加强件的横向于其长度的横截面。每个加强件8包括芯部30和外壳31。外壳31具有封闭的横截面,并且在所有侧完全包围芯部30。在该示例中,外壳31具有大致矩形的外部轮廓,该外部轮廓具有圆形拐角,尽管其他形状也是可能的。
外壳31由纤维增强的复合材料、比如碳纤维增强的聚合物形成。例如,外壳31可以包括围绕芯部30卷绕的一层织造织物,或者外壳31可以通过编织形成。
外壳31包括支脚32、与支脚32相反的冠部33、第一侧壁34、以及与第一侧壁34相反的第二侧壁35。外壳在所有侧完全包围芯部30。
外壳的支脚32粘附至覆盖面板22。在外壳31的圆形拐角与覆盖面板22相交的地方施加有粘合剂的凸沿36。
如图7中在横向于加强件的纵向方向的截面中所观察的,每个侧壁34、35长于支脚32。如图7中在横向于加强件的纵向方向的截面中所观察的,每个侧壁34、35也长于冠部33。
第一侧壁34和第二侧壁35是竖向的并且彼此大致平行。可以通过各种无损检测(NDT)技术来检查加强件8。在一个示例中,超声波通过加强件8的侧壁34、35中的一个侧壁被引导到加强件中,并且对反射进行分析。侧壁34、35的竖向取向使得易于以这种方式对加强件进行检查,因为超声波被引导回到NDT探头,而不是像US2010129589中那样通过倾斜的侧壁以一定角度被向上引导。然而,在其他实施方式中,外壳31可以具有梯形截面,使得第一侧壁34和第二侧壁35彼此不平行。
芯部30包括第一板条40和第二板条41、板条之间的间隔件50、以及板条40、41与外壳31的冠部33之间的盖51。
如在图7中所示出的,板条40、41并排布置。每个板条包括面向面板22的内边缘、背离面板22并且由盖51覆盖的外边缘、面向另一板条的内侧部、以及背离另一板条的外侧部。
每个板条在其外边缘与其内侧部相交的地方具有肩部。板条肩并肩地布置。
第一板条40与第一侧壁34相邻,并且第二板条41与第二侧壁35相邻。在该实施方式中,板条的外侧部与外壳的侧壁34、35接触,并且可选地粘附至外壳的侧壁34、35。在其他实施方式中,板条的外侧部可以与外壳的侧壁34、35相邻,而不与外壳的侧壁34、35接触。
在该实施方式中,板条40、41具有矩形横截面,但这不是必需的,并且其他横截面形状也是可能的。
优选地,芯部30具有不多于两个板条40、41。这使得NDT测试是容易的,并且简化了芯部30的组装。
板条40、41由纤维增强的复合材料形成,该纤维增强的复合材料可以为与外壳31的材料类似的碳纤维增强的聚合物、或者其他类型的纤维增强的复合材料。
间隔件50由足够刚性的材料形成,以控制板条40、41之间的间隙的尺寸。例如,间隔件50可以由泡沫材料形成。
盖51与外壳31的冠部33相邻并接触。盖51由足够刚性的材料形成,以提供冲击保护。例如,盖51可以由泡沫材料形成,该泡沫材料可以是与间隔件50的材料相同或不同的材料。
板条40、41和外壳31为结构部件,所述结构部件比间隔件50具有更高的每单位体积质量并且比盖51具有更高的每单位体积质量。
每个加强件8在由图2、图5、图6、图8和图9中的箭头42所指示的纵向/翼展方向上延伸。纵向/翼展方向42是机翼3的向外朝向机翼的梢部延伸的翼展方向。
如在图8和图9所示出的,板条40、41、间隔件50和盖51具有在加强件8的纵向/翼展方向42上延伸的相应的长度。板条40、41、间隔件50和盖51沿着加强件8的整个长度从其内侧端部连续延伸至其外侧端部、或者至少沿着加强件8的整个长度的大部分长度连续延伸。
板条40、41在加强件的宽度上间隔开一定间隙,并且间隔件50填充板条之间的间隙。板条40、41在沿着板条的相应长度的任何点处彼此不接触。
外壳31具有深度(在图7中标为D)和横向于加强件的长度的宽度(在图7中标为W)。板条40、41在外壳31的宽度上间隔开,并且外壳的深度(D)大于外壳的宽度(W)。在该示例中,纵横比(平均外壳深度/平均外壳宽度)约为4,然而纵横比可以变化。通常,外壳的纵横比大于2、或者大于3。
与US2010129589中的加强件相比,相对较高的纵横比(深度/宽度)使得加强件8更轻,并且更易于在面板上布置成相邻的加强件之间具有较小间距。
与常规的叶片加强件相比,加强件8还具有相对较低的纵横比(深度/宽度),这使得加强件8不易屈曲并且也不易在其自由边缘处损坏。
每个板条40、41具有在其内边缘与外边缘之间的板条深度、以及在其内边缘与外边缘之间的板条宽度。对于每个板条,板条深度大于板条宽度。在该示例中,纵横比(平均板条深度/平均板条宽度)约为10,然而纵横比可以变化。通常,每个板条的纵横比大于3、或者大于5。
将间隔件50夹置在一对板条40、41之间使得可以通过适当选择间隔件50的宽度来定制加强件8的宽度。
将间隔件50夹置在一对板条40、41之间还可以通过改变间隔件与板条的相对宽度来使加强件8的机械性能沿着加强件的长度发生变化。
在图8中示出了这种情况的示例。板条40、板条41、间隔件50以及板条40、41之间的间隙在图8中示出为具有相应的宽度。在图8所示的过渡区域52中,板条40、41的宽度沿纵向方向42减小、即朝向机翼的梢部减小。间隔件50的宽度以及板条之间的间隙在相同的过渡区域52上沿相反的方向增加。
因此,加强件的总宽度——即侧壁34、35之间的宽度——在过渡区域52中不发生改变。这确保了即使板条40、41的宽度和横截面面积发生变化,芯部30的宽度和横截面面积沿着加强件的长度基本不会发生变化。
桁条8通过下述方式制造而成:组装芯部30,芯部30具有位于板条40、41之间的间隔件50;然后用外壳31包围芯部30,例如通过将外壳31围绕芯部30卷绕或编织来包围芯部30。
加强件8可以配装为干纤维预制件,即具有由多孔干纤维材料形成的外壳31和板条40、41的干纤维预制件。替代性地,加强件8可以配装为预浸料件,即具有由“预浸料”纤维增强的复合材料配装而成的外壳31和板条40、41的预浸料件。
覆盖面板22可以作为干纤维预制件铺设在模制工具上,并且加强件8可以放置在位于模制工具上的面板上。每个加强件8可以在被放置于覆盖面板22上之前配装为预浸料件并被预固化,或者每个加强件8可以作为干纤维预制件放置在覆盖面板22上。
模制工具上的覆盖面板预制件随后被灌注基体材料,基体材料然后被固化。基体材料的固化将加强件8粘附至面板22。如果每个加强件8在其被铺设到面板22上之前被预固化,则加强件通过共粘结接头粘附至面板22。如果每个加强件作为干纤维预制件被放置在覆盖面板22上,那么加强件和面板22预制件通过基体材料被共同灌注,使得每个加强件8通过共固化接头粘附至面板22。
使用具有完全包围芯部30的闭合横截面的外壳31是有利的,因为其可以使加强件8在自动化过程中“离线”进行轻松组装和处理,而不是像US2010129589中那样“在线”铺设在模制工具上。
如在图9和图10中所示出的,每个加强件8包括相应的桥状部60,桥状部60在相交部处从肋条支脚梁18的第一侧(图9和图10的左手侧)跨过肋条支脚梁18到肋条支脚梁18的第二侧(图9和图10的右手侧)。
每个桥状部60具有背离面板22的外表面61和面向面板22的内表面62。每个桥状部的内表面62偏离面板以在相交部处形成凹部63,并且每个桥状部的外表面61偏离面板以在相交部处形成突出部64。
每个突出部64包括一对斜面70、以及斜面之间的平坦的顶部71。每个斜面70在其与顶部71相交的地方是圆形的。其他形状也是可能的:例如,顶部71和/或斜面70可以是连续圆形的。
每个桥状部的内表面62在其向上偏离并远离面板时遵循弯曲路径65。其他形状也是可能的:例如,内表面62可以是连续圆形的。
如在图10中所示出的,每个加强件8包括:第一加强件部分66,其在肋条支脚梁18的第一侧附接至面板22,第一加强件部分66具有第一加强件部分深度D1;以及第二加强件部分67,其在肋条支脚梁18的第二侧附接至面板,第二加强件部分67具有第二加强件部分深度D2。桥状部60在其外表面61与内表面62之间具有桥状部深度D3。
突出部64的顶部处的桥状部深度D3与第一加强件部分深度D1和第二加强件部分深度D2大致相同。
每个外壳包括在图7中示出的支脚32,其在桥状部60上连续延伸。如在图9中所示出的,支脚32具有第一支脚部分32a、第二支脚部分32b和桥状部支脚部分32c,第一支脚部分32a在肋条支脚梁18的第一侧粘附至面板,第二支脚部分32b在肋条支脚梁18的第二侧粘附至面板,桥状部支脚部分32c在桥状部60处偏离面板。桥状部支脚部分32c的内表面提供了桥状部60的内表面62。
在每个相交部处,设置有一对桥状部支撑结构80、81。所述一对桥状部支撑结构80、81包括在肋条支脚梁的第一侧位于桥状部与面板之间的第一桥状部支撑结构80、以及在肋条支脚梁的第二侧位于桥状部与面板之间的第二桥状部支撑结构81。支撑结构80、81没有被卷绕在外壳31内,并且可以被添加为肋条支脚梁18的用于使加强件8坐置于其上的一部分。支撑结构80、81可以由泡沫材料或碳纤维复合材料制成。
每个支脚32包括沿着桥状部60连续延伸并在相交部处从梁的第一侧跨过梁到梁的第二侧的增强纤维。支脚32中的增强纤维的一些或全部增强纤维可以在桥状部60的每个端部处偏离面板。外壳31的其余部分中的增强纤维的一些或所有增强纤维也可以在桥状部60的每个端部处偏离面板。
每个板条40、41均包括沿着桥状部60连续延伸并在相交部处从梁的第一侧跨过梁到梁的第二侧的增强纤维。板条40、41中的增强纤维的一些或全部增强纤维可以在桥状部的每个端部处偏离面板。
如在图11A中所示出的,肋条支脚梁18在每个相交部处均具有梁凹部90。梁凹部90降低了肋条支脚梁18在相交部处的高度,使得桥状部60不必偏离面板太远。
每个梁凹部90均具有基部91和一对成角度的侧壁92。每个桥状部60的内表面坐置于梁凹部90的相应一个梁凹部中、与基部91接触。
肋条支脚梁18的宽度在每个相交部处增加,因此肋条支脚梁18在相交部处(在每个梁凹部90的基部91处)的宽度大于肋条支脚梁18在相交部之间的突出部93处的宽度。
图11B示出了肋条支脚梁18的替代性实施方式。图11B中的肋条支脚梁18与图11A中的肋条支脚梁18相同,除了每个梁凹部的基部具有带竖向侧壁的切除部95。加强件8被容纳在切除部95中。
每个桥状部60具有将外表面61与内表面62连接的一对侧壁34、35。在图11B的实施方式中,切除部95的竖向侧壁与桥状部60的侧壁34、35接触。这为加强件8提供了支撑,从而防止加强件8侧向翻倒。
每个加强件8可以通过如上所述的共粘结接头或共固化接头在肋条支脚梁18的每一侧粘附至面板22。
类似地,肋条支脚梁18可以通过共粘结接头或共固化接头粘附至面板22。
此外,每个桥状部的内表面62可以通过共粘结接头或共固化接头粘附至肋条支脚梁18。
总之,飞行器机翼3包括上覆盖面板21、下覆盖面板22、将上覆盖面板连接至下覆盖面板的肋条10、11、12、13以及附接至上覆盖面板和下覆盖面板的多个加强件8。肋条11、13通过图3中所示的相应的肋条/覆盖件连接装置与每个覆盖面板21、22连结。每个肋条/覆盖件连接装置包括肋条支脚梁18,肋条支脚梁18在一系列相交部处穿过加强件8,并附接至相交部之间的肋条11、13中的相应的一个肋条。如在图4中所示出的,每个加强件8在每个相交部处偏离面板,以形成相应的突出的桥状部60,该桥状部在相交部处跨过肋条支脚梁18。这相对于WO2020/229501中的布置结构有所改进,因为桥状部60可以在加强件的横截面没有任何变化的情况下连续延伸跨过相交部。
每个加强件8具有使加强件的长度延伸的两个连续负载的承载部件(板条40、41)。这些板条40、41在板条40、41之间具有泡沫部件50,从而允许板条的任何厚度增加占用加强件内部(泡沫厚度增加和减少),以保持外部轮廓保持不变。在加强件的顶端上存在有泡沫盖51,以阻止对结构层片的边缘冲击并改善损伤容限。在加强件8互锁于/跨过肋条支脚梁18的地方,存在有用以允许结构部件坐置于顶端上的部件(互锁支撑件80、81)。整个加强件8然后被卷绕或编织。
图12示出了根据本发明的替代性实施方式的加强面板组件。图12中的下覆盖面板22与前述实施方式中的下覆盖面板22相同。加强件108粘附至面板22。加强件108与加强件8相同、包括图7的横截面中所示出的所有元件。肋条11由肋条111代替,并且省略了肋条支脚梁18。加强件108穿过肋条111中的鼠洞而无需偏离成形成桥状部60。肋条111具有肋条支脚118,肋条支脚118在加强件108之间螺栓连接至面板22。
上述加强面板是用于飞行器机翼的覆盖件,但本发明可以应用于供飞行器用的其他类型的加强面板组件。例如,加强面板组件可以形成飞行器机身的蒙皮,机身包括沿前后方向延伸的纵梁和围绕机身周向延伸的框架。在这种情况下,纵梁可以具有偏离蒙皮并跨过框架的桥状部,或者框架可以具有偏离蒙皮并跨过纵梁的桥状部。类似地,纵梁可以形成为如在图7中所示的那样,或者框架可以形成为如在图7中所示的那样。在后一种情况下,加强件的纵向方向是框架的周向方向。
在其他实施方式中,加强面板组件可以为不同交通工具、比如船只或航天器的一部分;或者加强面板组件可以用在除交通工具之外的东西中。
当词语“或”出现时,这将被解释为表示“和/或”,使得所指的项目不一定是相互排斥的,并且可以以任何适当的组合使用。
尽管上面已经参照一个或更多个优选实施方式描述了本发明,但将理解的是可以在不脱离如所附权利要求限定的本发明的范围的情况下作出各种改变或修改。

Claims (25)

1.一种加强件,所述加强件包括芯部、以及包围所述芯部的外壳,其中,所述外壳由纤维材料形成,并且所述芯部包括并排布置的第一板条和第二板条、以及所述板条之间的间隔件,其中,所述加强件沿纵向方向延伸,并且所述板条和所述间隔件具有沿所述加强件的所述纵向方向延伸的相应长度。
2.根据权利要求1所述的加强件,其中,所述板条由间隙间隔开;所述间隔件位于所述板条之间的所述间隙中;所述板条、所述间隔件和所述间隙具有相应的宽度;所述板条的所述宽度沿所述纵向方向减小;并且所述间隔件和所述间隙的所述宽度沿所述纵向方向增加。
3.根据权利要求2所述的加强件,其中,所述芯部具有的宽度沿着所述加强件的长度基本不发生变化。
4.根据任一前述权利要求所述的加强件,其中,所述间隔件由泡沫材料形成。
5.根据任一前述权利要求所述的加强件,其中,所述板条由纤维材料形成,所述纤维材料可选地为纤维增强的复合材料。
6.根据任一前述权利要求所述的加强件,其中,所述外壳的所述纤维材料是纤维增强的复合材料。
7.根据任一前述权利要求所述的加强件,其中,所述板条与所述间隔件相比具有更高的每单位体积质量。
8.根据任一前述权利要求所述的加强件,还包括位于所述板条与所述外壳之间的盖。
9.根据权利要求8所述的加强件,其中,所述板条与所述盖相比具有更高的每单位体积质量,并且/或者所述盖由泡沫材料形成。
10.根据任一前述权利要求所述的加强件,其中,所述芯部具有不多于两个板条。
11.根据任一前述权利要求所述的加强件,其中,所述外壳具有深度和横向于所述加强件的长度的宽度,所述板条在所述外壳的所述宽度上间隔开,并且所述外壳的所述深度大于所述外壳的所述宽度。
12.根据任一前述权利要求所述的加强件,其中,所述外壳包括支脚、与所述支脚相反的冠部、第一侧壁、以及与所述第一侧壁相反的第二侧壁。
13.根据权利要求12所述的加强件,其中,在横向于所述加强件的所述纵向方向的截面中观察,每个侧壁均长于所述支脚。
14.根据权利要求12或13所述的加强件,其中,所述第一板条与所述第一侧壁相邻,并且所述第二板条与所述第二侧壁相邻。
15.根据权利要求12至14中的任一项所述的加强件,其中,所述第一侧壁和所述第二侧壁彼此大致平行。
16.根据任一前述权利要求所述的加强件,其中,所述外壳具有大致矩形的外部轮廓。
17.根据任一前述权利要求所述的加强件,其中,所述板条在沿着所述板条的相应长度的任何点处彼此不接触。
18.根据任一前述权利要求所述的加强件,其中,每个板条和每个间隔件沿着所述加强件的整个长度连续延伸,或者至少沿着所述加强件的整个长度的大部分长度连续延伸。
19.一种加强面板组件,所述加强面板组件包括面板以及粘附至所述面板的根据任一前述权利要求所述的加强件。
20.根据权利要求19所述的加强面板组件,其中,所述外壳包括支脚、与所述支脚相反的冠部、第一侧壁、以及与所述支脚相反的第二侧壁,其中,所述外壳的所述支脚粘附至所述面板。
21.根据权利要求19或20所述的加强面板组件,其中,每个板条包括面向所述面板的内边缘、背离所述面板的外边缘、面向另一所述板条的内侧部、以及背离另一所述板条的外侧部。
22.一种飞行器,所述飞行器包括根据权利要求19、20或21所述的加强面板组件。
23.一种制造根据权利要求1至18中的任一项所述的桁条的方法,所述方法包括:组装具有位于所述板条之间的所述间隔件的所述芯部;然后用所述外壳包围所述芯部。
24.一种制造根据权利要求19、20或21所述的加强面板组件的方法,所述方法包括:通过根据权利要求23所述的方法制造所述加强件;然后将所述加强件粘附至所述面板。
25.根据权利要求24所述的方法,其中,通过下述方法将所述加强件粘附至所述面板:用基体共灌注所述面板以及所述外壳的所述纤维材料;然后固化所述基体。
CN202211385223.5A 2021-11-08 2022-11-07 具有芯部和外壳的加强件 Pending CN116080890A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB2115992.6A GB2612957A (en) 2021-11-08 2021-11-08 Stiffener with core and shell
GB2115992.6 2021-11-08

Publications (1)

Publication Number Publication Date
CN116080890A true CN116080890A (zh) 2023-05-09

Family

ID=84329794

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211385223.5A Pending CN116080890A (zh) 2021-11-08 2022-11-07 具有芯部和外壳的加强件

Country Status (4)

Country Link
US (1) US20230142588A1 (zh)
EP (1) EP4177158A1 (zh)
CN (1) CN116080890A (zh)
GB (1) GB2612957A (zh)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4311661A (en) * 1980-05-05 1982-01-19 Mcdonnell Douglas Corporation Resin impregnation process
US5709893A (en) * 1995-06-06 1998-01-20 The Boeing Company Breathable tooling for forming parts from volatile-emitting composite materials
US8042767B2 (en) * 2007-09-04 2011-10-25 The Boeing Company Composite fabric with rigid member structure
US8540921B2 (en) 2008-11-25 2013-09-24 The Boeing Company Method of forming a reinforced foam-filled composite stringer
DE102009002697B4 (de) * 2009-04-28 2014-02-27 Airbus Operations Gmbh Formkern und Verfahren zur Herstellung eines Faserverbundbauteils für die Luft- und Raumfahrt
US8636252B2 (en) * 2010-06-25 2014-01-28 The Boeing Company Composite structures having integrated stiffeners with smooth runouts and method of making the same
US8628717B2 (en) * 2010-06-25 2014-01-14 The Boeing Company Composite structures having integrated stiffeners and method of making the same
FR2987307B1 (fr) * 2012-02-29 2017-02-10 Daher Aerospace Procede et dispositif pour le compactage et la consolidation d'un panneau composite de forte epaisseur a matrice thermoplastique
CN204937457U (zh) * 2015-08-14 2016-01-06 中国航空工业集团公司西安飞机设计研究所 一种加筋壁板及具有其的翼面及飞行器
US20170274577A1 (en) * 2016-03-24 2017-09-28 The Boeing Company Composite structures with stiffeners and method of making the same
US10899103B2 (en) * 2016-11-03 2021-01-26 Anthony A. DUPont Isogrid stiffening elements
US11014644B2 (en) * 2017-10-25 2021-05-25 The Boeing Company Stiffened-cavity for modular wrap ply assembly for hat stringer
US10669005B2 (en) * 2018-02-27 2020-06-02 The Boeing Company Solid laminate stringer
GB2581835A (en) * 2019-03-01 2020-09-02 Airbus Operations Ltd Composite stiffener
US20220024556A1 (en) * 2019-05-14 2022-01-27 Airbus Operations Limited Aircraft panel assembly
GB2583941A (en) * 2019-05-14 2020-11-18 Airbus Operations Ltd Stiffened panel assembly
US20210252817A1 (en) * 2020-02-18 2021-08-19 The Boeing Company Methods for fabricating solid laminate stringers on a composite panel

Also Published As

Publication number Publication date
EP4177158A1 (en) 2023-05-10
US20230142588A1 (en) 2023-05-11
GB2612957A (en) 2023-05-24

Similar Documents

Publication Publication Date Title
US11312472B2 (en) Wing structure
US10029780B2 (en) Stiffened composite panels
US9669919B2 (en) Highly integrated infused box made of composite material and method of manufacturing
US10308345B2 (en) Structure
US9701391B2 (en) Aircraft structure comprising a skin panel
US11613341B2 (en) Wing assembly having wing joints joining outer wing structures to center wing structure
CN101977811B (zh) 用于飞机的机身结构
US10086921B2 (en) Aircraft having a forward-facing section that deflects elastically under impact loads
GB2516830A (en) Aircraft Structure
US20220033058A1 (en) Wing assembly having discretely stiffened composite wing panels
EP2977313A1 (en) Rib foot
CN116080890A (zh) 具有芯部和外壳的加强件
CN116080891A (zh) 面板组件
EP2889212B1 (en) Subfloor structure with an integral hull for a rotary wing aircraft
EP3945017B1 (en) Bead-stiffened movable surfaces
EP4227211B1 (en) Fuel tank stringer with flow passage

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication