CN116076137A - 发送上行链路信道的方法、用户设备、处理装置、存储介质和计算机程序及接收上行链路信道的方法和基站 - Google Patents

发送上行链路信道的方法、用户设备、处理装置、存储介质和计算机程序及接收上行链路信道的方法和基站 Download PDF

Info

Publication number
CN116076137A
CN116076137A CN202180057329.XA CN202180057329A CN116076137A CN 116076137 A CN116076137 A CN 116076137A CN 202180057329 A CN202180057329 A CN 202180057329A CN 116076137 A CN116076137 A CN 116076137A
Authority
CN
China
Prior art keywords
pucch
pusch
time
transmission
overlapping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180057329.XA
Other languages
English (en)
Inventor
裵德显
梁锡喆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of CN116076137A publication Critical patent/CN116076137A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种UE:基于第一PUCCH和具有比第一PUCCH的优先级低的优先级的第二PUCCH在时间上彼此交叠,并且第一PUCCH满足第一时间条件,执行第一PUCCH的发送并且取消第二PUCCH的发送;以及基于第一PUSCH和具有比第一PUSCH的优先级低的优先级的第二PUSCH在时间上彼此交叠,并且第一PUSCH满足第二时间条件,执行第一PUSCH的发送并且取消第二PUSCH的发送,其中,第二时间条件的时间长度T_B比第一时间条件的时间长度T_A长。

Description

发送上行链路信道的方法、用户设备、处理装置、存储介质和计算机程序及接收上行链路信道的方法和基站
技术领域
本公开涉及一种无线通信系统。
背景技术
诸如机器对机器(M2M)通信、机器型通信(MTC)以及要求高数据吞吐量的各种装置(例如,智能电话和平板个人计算机(PC))的各种技术已出现并普及。因此,蜂窝网络中要求处理的数据吞吐量快速增加。为了满足这种快速增加的数据吞吐量,已开发出用于有效地采用更多频带的载波聚合技术或认知无线电技术以及用于提高在有限的频率资源上发送的数据容量的多输入多输出(MIMO)技术或多基站(BS)协作技术。
随着越来越多的通信装置需要更大的通信容量,需要相对于传统无线电接入技术(RAT)的增强移动宽带(eMBB)通信。另外,通过将多个装置和对象彼此连接来随时随地提供各种服务的大规模机器型通信(mMTC)是下一代通信中要考虑的一个主要问题。
还正在讨论考虑对可靠性和延迟敏感的服务/用户设备(UE)的通信系统设计。考虑eMBB通信、mMTC、超可靠低延迟通信(URLLC)等正在讨论下一代RAT的引入。
发明内容
技术问题
随着引入新的无线电通信技术,在规定的资源区域中BS应该向其提供服务的UE的数量不断增加,并且BS向/从BS提供服务的UE发送/接收的数据和控制信息的量也不断增加。由于BS可用于与UE通信的资源的量有限,所以需要一种BS使用有限的无线电资源有效地接收/发送上行链路/下行链路数据和/或上行链路/下行链路控制信息的新方法。换言之,由于节点的密度和/或UE的密度的增加,需要一种有效地使用高密度节点或高密度UE进行通信的方法。
还需要一种在无线通信系统中有效地支持具有不同要求的各种服务的方法。
对于性能对延时/延迟敏感的应用,克服延时或延迟是重要的挑战。
要利用本公开实现的目的不限于上文具体描述的那些,本领域技术人员将从以下详细描述更清楚地理解本文中未描述的其它目的。
技术方案
在本公开的一方面,提供了一种在无线通信系统中由用户设备(UE)发送上行链路信道的方法。该方法可包括以下步骤:基于第一物理上行链路控制信道PUCCH和具有比第一PUCCH的优先级低的优先级的第二PUCCH在时间上交叠并且第一PUCCH满足第一时间条件,执行第一PUCCH的发送并且取消第二PUCCH的发送;以及基于第一物理上行链路共享信道PUSCH和具有比第一PUSCH的优先级低的优先级的第二PUSCH在时间上交叠并且第一PUSCH满足第二时间条件,执行第一PUSCH的发送并且取消第二PUSCH的发送。第二时间条件的时间长度T_B可比第一时间条件的时间长度T_A长。
在本公开的另一方面,提供了一种被配置为在无线通信系统中发送上行链路信道的UE。该UE可包括:至少一个收发器;至少一个处理器;以及至少一个计算机存储器,其在操作上连接到所述至少一个处理器并且被配置为存储指令,所述指令在被执行时使得所述至少一个处理器执行操作。所述操作可包括:基于第一PUCCH和具有比第一PUCCH的优先级低的优先级的第二PUCCH在时间上交叠并且第一PUCCH满足第一时间条件,执行第一PUCCH的发送并且取消第二PUCCH的发送;以及基于第一PUSCH和具有比第一PUSCH的优先级低的优先级的第二PUSCH在时间上交叠并且第一PUSCH满足第二时间条件,执行第一PUSCH的发送并且取消第二PUSCH的发送。第二时间条件的时间长度T_B可比第一时间条件的时间长度T_A长。
在本公开的另一方面,提供了一种无线通信系统中的处理装置。该处理装置可包括:至少一个处理器;以及至少一个计算机存储器,其在操作上连接到所述至少一个处理器并且被配置为存储指令,所述指令在被执行时使得所述至少一个处理器执行操作。所述操作可包括:基于第一PUCCH和具有比第一PUCCH的优先级低的优先级的第二PUCCH在时间上交叠并且第一PUCCH满足第一时间条件,执行第一PUCCH的发送并且取消第二PUCCH的发送;以及基于第一PUSCH和具有比第一PUSCH的优先级低的优先级的第二PUSCH在时间上交叠并且第一PUSCH满足第二时间条件,执行第一PUSCH的发送并且取消第二PUSCH的发送。第二时间条件的时间长度T_B可比第一时间条件的时间长度T_A长。
在本公开的另一方面,提供了一种计算机可读存储介质。该计算机可读存储介质可被配置为存储包括指令的至少一个计算机程序,所述指令在被至少一个处理器执行时使得所述至少一个处理器针对UE执行操作。所述操作可包括:基于第一PUCCH和具有比第一PUCCH的优先级低的优先级的第二PUCCH在时间上交叠并且第一PUCCH满足第一时间条件,执行第一PUCCH的发送并且取消第二PUCCH的发送;以及基于第一PUSCH和具有比第一PUSCH的优先级低的优先级的第二PUSCH在时间上交叠并且第一PUSCH满足第二时间条件,执行第一PUSCH的发送并且取消第二PUSCH的发送。第二时间条件的时间长度T_B可比第一时间条件的时间长度T_A长。
在本公开的另一方面,提供了一种存储在计算机可读存储介质中的计算机程序。该计算机程序可包括至少一个程序代码,所述至少一个程序代码包括指令,所述指令在被执行时使得至少一个处理器执行操作。所述操作可包括:基于第一PUCCH和具有比第一PUCCH的优先级低的优先级的第二PUCCH在时间上交叠并且第一PUCCH满足第一时间条件,执行第一PUCCH的发送并且取消第二PUCCH的发送;以及基于第一PUSCH和具有比第一PUSCH的优先级低的优先级的第二PUSCH在时间上交叠并且第一PUSCH满足第二时间条件,执行第一PUSCH的发送并且取消第二PUSCH的发送。第二时间条件的时间长度T_B可比第一时间条件的时间长度T_A长。
在本公开的另一方面,提供了一种在无线通信系统中由基站(BS)从UE接收上行链路信道的方法。该方法可包括以下步骤:基于第一PUCCH和具有比第一PUCCH的优先级低的优先级的第二PUCCH在时间上交叠并且第一PUCCH满足第一时间条件,执行第一PUCCH的接收并且取消第二PUCCH的接收;以及基于第一PUSCH和具有比第一PUSCH的优先级低的优先级的第二PUSCH在时间上交叠并且第一PUSCH满足第二时间条件,执行第一PUSCH的接收并且取消第二PUSCH的接收。第二时间条件的时间长度T_B可比第一时间条件的时间长度T_A长。
在本公开的另一方面,提供了一种被配置为在无线通信系统中从UE接收上行链路信道的BS。该BS可包括:至少一个收发器;至少一个处理器;以及至少一个计算机存储器,其在操作上连接到所述至少一个处理器并且被配置为存储指令,所述指令在被执行时使得所述至少一个处理器执行操作。所述操作可包括:基于第一PUCCH和具有比第一PUCCH的优先级低的优先级的第二PUCCH在时间上交叠并且第一PUCCH满足第一时间条件,执行第一PUCCH的接收并且取消第二PUCCH的接收;以及基于第一PUSCH和具有比第一PUSCH的优先级低的优先级的第二PUSCH在时间上交叠并且第一PUSCH满足第二时间条件,执行第一PUSCH的接收并且取消第二PUSCH的接收。第二时间条件的时间长度T_B可比第一时间条件的时间长度T_A长。
在本公开的各个方面,时间长度T_B可比时间长度T_A长dadd,并且dadd可以是由UE向BS报告的附加处理时间。
在本公开的各个方面,关于dadd的信息可由BS提供给UE。
在本公开的各个方面,时间长度T_B可比时间长度T_A长dadd
在本公开的各个方面,基于与第二PUCCH在时间上交叠的第一PUCCH满足第一时间条件并且不满足第二时间条件,将包括在第二PUCCH中的上行链路控制信息UCI复用在第一PUCCH上。
在本公开的各个方面,第一时间条件可包括从调度较高优先级上行链路信道的物理下行链路控制信道(PDCCH)的最后符号到所述较高优先级上行链路信道的起始的时间距离大于或等于T_A=T_proc,2+d1,其中T_proc,2是所述UE的处理能力的PUSCH准备时间,并且d1由UE所报告的能力来确定。
在本公开的各个方面,第二时间条件可包括从PDCCH的最后符号到所述较高优先级上行链路信道的起始的时间距离大于或等于T_B=T_proc,2+d1+dadd,其中dadd>0。
在本公开的各个方面,基于第三PUCCH和具有比第三PUCCH的优先级低的优先级的第四PUSCH在时间上交叠并且第三PUCCH满足第一时间条件,可执行第三PUCCH的发送,并且可取消第四PUSCH的发送。
在本公开的各个方面,基于第三PUSCH和具有比第三PUSCH的优先级低的优先级的第四PUCCH在时间上交叠并且第三PUSCH满足第一时间条件,可执行第三PUSCH的发送,并且可取消第四PUCCH的发送。
在本公开的各个方面,基于与第四PUCCH在时间上交叠的第三PUSCH满足第一时间条件并且不满足第二时间条件,可将包括在第四PUCCH中的UCI复用在第三PUSCH上。
上述解决方案仅是本公开的一部分示例,本领域技术人员可从以下详细描述推导和理解本公开的技术特征被并入的各种示例。
有益效果
根据本公开的实现方式,可有效地发送/接收无线通信信号。因此,无线通信系统的总吞吐量可提升。
根据本公开的实现方式,可在无线通信系统中有效地支持具有不同要求的各种服务。
根据本公开的实现方式,在通信装置之间的无线电通信期间生成的延时/延迟可减小。
根据本公开的效果不限于上文具体描述的那些,本公开相关领域的技术人员将从以下详细描述更清楚地理解本文未描述的其它效果。
附图说明
附图被包括以提供本公开的进一步理解,附图示出本公开的实现方式的示例并且与详细描述一起用于说明本公开的实现方式:
图1示出本公开的实现方式应用于的通信系统1的示例;
图2是示出能够执行根据本公开的方法的通信装置的示例的框图;
图3示出能够执行本公开的实现方式的无线装置的另一示例;
图4示出在基于第3代合作伙伴计划(3GPP)的无线通信系统中使用的帧结构的示例;
图5示出时隙的资源网格;
图6示出由PDCCH导致的PDSCH时域资源指派(TDRA)的示例以及由PDCCH导致的PUSCH TDRA的示例;
图7示出混合自动重传请求-确认(HARQ-ACK)发送/接收过程;
图8示出将上行链路控制信息(UCI)与PUSCH复用的示例;
图9示出在单个时隙中具有交叠PUCCH的UE处理UL信道之间的冲突的处理的示例;
图10示出基于图9执行UCI复用的情况;
图11示出在单个时隙中具有交叠PUCCH和PUSCH的UE处理UL信道之间的冲突的处理;
图12示出考虑时间线条件的UCI复用;
图13示出时隙中的多个HARQ-ACK PUCCH的传输;
图14示出具有不同优先级的PUCCH之间的冲突情况;
图15和图16示出具有不同优先级的PUSCH和PUCCH之间的冲突情况;
图17示出根据本公开的一些实现方式的UE处的UL信道发送的流程;
图18示出根据本公开的一些实现方式的BS处的UL信道接收的流程;以及
图19示出根据本公开的一些实现方式的UE和BS之间的信号发送/接收的流程。
具体实施方式
在下文中,将参照附图详细描述根据本公开的实现方式。将在下面参照附图给出的详细描述旨在说明本公开的示例性实现方式,而非示出可根据本公开实现的仅有实现方式。以下详细描述包括具体细节以便提供对本公开的彻底理解。然而,对于本领域技术人员而言将显而易见的是,本公开可在没有这些具体细节的情况下实践。
在一些情况下,已知结构和装置可被省略或者可按框图形式示出,从而集中于结构和装置的重要特征,以不使本公开的概念模糊。贯穿本公开将使用相同的标号来指代相同或相似的部分。
下述技术、装置和系统可被应用于各种无线多址系统。例如,多址系统可包括码分多址(CDMA)系统、频分多址(FDMA)系统、时分多址(TDMA)系统、正交频分多址(OFDMA)系统、单载波频分多址(SC-FDMA)系统、多载波频分多址(MC-FDMA)系统等。CDMA可通过诸如通用地面无线电接入(UTRA)或CDMA2000的无线电技术来实现。TDMA可通过诸如全球移动通信系统(GSM)、通用分组无线电服务(GPRS)、增强数据速率GSM演进(EDGE)(即,GERAN)等的无线电技术来实现。OFDMA可通过诸如电气和电子工程师协会(IEEE)802.11(Wi-Fi)、IEEE802.16(WiMAX)、IEEE 802.20、演进UTRA(E-UTRA)等的无线电技术来具体实现。UTRA是通用移动电信系统(UMTS)的一部分,并且第3代合作伙伴计划(3GPP)长期演进(LTE)是使用E-UTRA的E-UMTS的一部分。3GPP LTE在下行链路(DL)上采用OFDMA并且在上行链路(UL)上采用SC-FDMA。LTE-advanced(LTE-A)是3GPP LTE的演进版本。
为了描述方便,将在本公开应用于LTE和/或新RAT(NR)的假设下给出描述。然而,本公开的技术特征不限于此。例如,尽管基于与3GPP LTE/NR系统对应的移动通信系统给出以下详细描述,但是除了3GPP LTE/NR系统所特定的事项之外,移动通信系统适用于其它任意移动通信系统。
对于本公开中所使用的术语和技术当中未详细描述的术语和技术,可参考基于3GPP的标准规范(例如,3GPP TS 36.211、3GPP TS 36.212、3GPP TS 36.213、3GPP TS36.321、3GPP TS 36.300、3GPP TS 36.331、3GPP TS 37.213、3GPP TS 38.211、3GPP TS38.212、3GPP TS 38.213、3GPP TS 38.214、3GPP TS 38.300、3GPP TS38.331等)。
在稍后描述的本公开的示例中,如果装置“假设”某事,则这可意味着信道传输实体遵照对应“假设”发送信道。这也可意味着信道接收实体在遵照该“假设”发送信道的前提下以符合该“假设”的形式接收或解码信道。
在本公开中,用户设备(UE)可以是固定的或移动的。通过与基站(BS)通信来发送和/或接收用户数据和/或控制信息的各种装置中的每一个可以是UE。术语UE可被称为终端设备、移动站(MS)、移动终端(MT)、用户终端(UT)、订户站(SS)、无线装置、个人数字助理(PDA)、无线调制解调器、手持装置等。在本公开中,BS是指与UE和/或另一BS通信并且与UE和另一BS交换数据和控制信息的固定站。术语BS可被称为高级基站(ABS)、节点B(NB)、演进节点B(eNB)、基站收发器系统(BTS)、接入点(AP)、处理服务器(PS)等。具体地,通用地面无线电接入(UTRAN)的BS被称为NB,演进UTRAN(E-UTRAN)的BS被称为eNB,新无线电接入技术网络的BS被称为gNB。在下文中,为了描述方便,不管通信技术的类型或版本如何,NB、eNB或gNB将被称为BS。
在本公开中,节点是指能够通过与UE通信来向/从UE发送/接收无线电信号的固定点。不管其名称如何,各种类型的BS可用作节点。例如,BS、NB、eNB、微微小区eNB(PeNB)、归属eNB(HeNB)、中继器、转发器等可以是节点。另外,节点可以不是BS。例如,无线电远程头端(RRH)或无线电远程单元(RRU)可以是节点。通常,RRH和RRU具有比BS的功率级别低的功率级别。由于RRH或RRU(下文中,RRH/RRU)通常通过诸如光缆的专用线路连接到BS,所以与根据通过无线链路连接的BS的协作通信相比,根据RRH/RRU和BS的协作通信可平滑地执行。每节点安装至少一个天线。天线可指物理天线端口或者指虚拟天线或天线组。节点也可被称为点。
在本公开中,小区是指一个或更多个节点提供通信服务的特定地理区域。因此,在本公开中,与特定小区的通信可意指与向特定小区提供通信服务的BS或节点的通信。特定小区的DL/UL信号是指从/向为特定小区提供通信服务的BS或节点的DL/UL信号。向UE提供UL/DL通信服务的小区被特别地称为服务小区。此外,特定小区的信道状态/质量是指在向特定小区提供通信服务的BS或节点与UE之间生成的信道或通信链路的信道状态/质量。在基于3GPP的通信系统中,UE可使用在小区特定参考信号(CRS)资源上发送的CRS和/或在信道状态信息参考信号(CSI-RS)资源(由特定节点的天线端口分配给特定节点)上发送的CSI-RS来测量从特定节点的DL信道状态。
基于3GPP的通信系统使用小区的概念以便管理无线电资源,并且将与无线电资源有关的小区与地理区域的小区相区分。
地理区域的“小区”可被理解为节点可使用载波来提供服务的覆盖范围,并且无线电资源的“小区”与作为由载波配置的频率范围的带宽(BW)关联。由于DL覆盖范围(节点能够发送有效信号的范围)与UL覆盖范围(节点能够从UE接收有效信号的范围)取决于承载信号的载波,所以节点的覆盖范围也可与该节点所使用的无线电资源的“小区”的覆盖范围关联。因此,术语“小区”可用于有时指示节点的服务覆盖范围,在其它时间指示无线电资源,或者在其它时间指示使用无线电资源的信号可利用有效强度到达的范围。
在3GPP通信标准中,使用小区的概念以便管理无线电资源。与无线电资源关联的“小区”由DL资源和UL资源的组合(即,DL分量载波(CC)和UL CC的组合)定义。小区可仅由DL资源配置,或者由DL资源和UL资源的组合配置。如果支持载波聚合,则DL资源(或DL CC)的载波频率与UL资源(或UL CC)的载波频率之间的链接可由系统信息指示。例如,DL资源和UL资源的组合可由系统信息块类型2(SIB2)链接指示。在这种情况下,载波频率可等于或不同于各个小区或CC的中心频率。当配置载波聚合(CA)时,UE与网络仅具有一个无线电资源控制(RRC)连接。在RRC连接建立/重新建立/切换期间,一个服务小区提供非接入层面(NAS)移动性信息。在RRC连接重新建立/切换期间,一个服务小区提供安全输入。该小区被称为主小区(Pcell)。Pcell是指在UE执行初始连接建立过程或发起连接重新建立过程的主频率上操作的小区。根据UE能力,辅小区(Scell)可被配置为与Pcell一起形成服务小区的集合。Scell可在RRC连接建立完成之后配置并且用于除了特定小区(SpCell)的资源之外提供附加无线电资源。DL上与Pcell对应的载波被称为下行链路主CC(DL PCC),UL上与Pcell对应的载波被称为上行链路主CC(UL PCC)。DL上与Scell对应的载波被称为下行链路辅CC(DLSCC),UL上与Scell对应的载波被称为上行链路辅CC(UL SCC)。
对于双连接(DC)操作,术语SpCell是指主小区组(MCG)的Pcell或辅小区组(SCG)的Pcell。SpCell支持PUCCH传输和基于竞争的随机接入并且始终被启用。MCG是与主节点(例如,BS)关联的一组服务小区,并且包括SpCell(Pcell)和可选地一个或更多个Scell。对于配置有DC的UE,SCG是与辅节点关联的服务小区的子集,并且包括PSCell以及0或更多个Scell。PSCell是SCG的主Scell。对于处于RRC_CONNECTED状态、未配置有CA或DC的UE,仅存在仅包括Pcell的一个服务小区。对于处于RRC_CONNECTED状态、配置有CA或DC的UE,术语服务小区是指包括SpCell和所有Scell的小区的集合。在DC中,为UE配置两个介质访问控制(MAC)实体,即,一个MAC实体用于MCG,一个MAC实体用于SCG。
配置有CA而未配置有DC的UE可配置有Pcell PUCCH组(包括Pcell和0或更多个Scell)和Scell PUCCH组(仅包括Scell)。对于Scell,可配置发送与对应小区关联的PUCCH的Scell(下文中,PUCCH小区)。指示为PUCCH Scell的Scell属于Scell PUCCH组,并且在PUCCH Scell上执行相关UCI的PUCCH传输。未指示为PUCCH Scell或指示用于PUCCH传输的小区是Pcell的Scell属于Pcell PUCCH组,并且在Pcell上执行相关UCI的PUCCH传输。
在无线通信系统中,UE在DL上从BS接收信息,并且UE在UL上向BS发送信息。BS和UE发送和/或接收的信息包括数据和各种控制信息,并且根据UE和BS发送和/或接收的信息的类型/用途,存在各种物理信道。
基于3GPP的通信标准定义了与承载源自高层的信息的资源元素对应的DL物理信道以及与由物理层使用但是没有承载源自高层的信息的资源元素对应的DL物理信号。例如,物理下行链路共享信道(PDSCH)、物理广播信道(PBCH)、物理多播信道(PMCH)、物理控制格式指示符信道(PCFICH)、物理下行链路控制信道(PDCCH)等被定义为DL物理信道,并且参考信号(RS)和同步信号(SS)被定义为DL物理信号。RS(也称为导频)表示具有BS和UE二者已知的预定义的特殊波形的信号。例如,解调参考信号(DMRS)、信道状态信息RS(CSI-RS)等被定义为DL RS。基于3GPP的通信标准定义了与承载源自高层的信息的资源元素对应的UL物理信道以及与由物理层使用但是没有承载源自高层的信息的资源元素对应的UL物理信号。例如,物理上行链路共享信道(PUSCH)、物理上行链路控制信道(PUCCH)和物理随机接入信道(PRACH)被定义为UL物理信道,并且定义用于UL控制/数据信号的DMRS、用于UL信道测量的探测参考信号(SRS)等。
在本公开中,PDCCH是指承载下行链路控制信息(DCI)的时间-频率资源集合(例如,资源元素(RE)集合),PDSCH是指承载DL数据的时间-频率资源集合(例如,RE集合)。PUCCH、PUSCH和PRACH分别是指承载上行链路控制信息(UCI)、UL数据和随机接入信号的时间-频率资源集合(即,RE集合)。在以下描述中,“UE发送/接收PUCCH/PUSCH/PRACH”的含义是UE分别在PUCCH/PUSCH/PRACH上或通过PUSCH/PUCCH/PRACH发送/接收UCI/UL数据/随机接入信号。另外,“BS发送/接收PBCH/PDCCH/PDSCH”的含义是BS分别在PBCH/PDCCH/PDSCH上或通过PBCH/PDCCH/PDSCH发送广播信息/DCI/DL数据。
在本公开中,由BS为UE调度或配置以用于发送或接收PUCCH/PUSCH/PDSCH的无线电资源(例如,时间-频率资源)也被称为PUCCH/PUSCH/PDSCH资源。
由于通信装置在小区上以无线电信号的形式接收SS/PBCH资源块(SSB)、DMRS、CSI-RS、PBCH、PDCCH、PDSCH、PUSCH和/或PUCCH,所以通信装置可能不通过射频(RF)接收器选择和接收仅包括特定物理信道或特定物理信号的无线电信号,或者可能不通过RF接收器选择和接收无线电信号而没有特定物理信道或特定物理信号。在实际操作中,通信装置经由RF接收器在小区上接收无线电信号,将作为RF频带信号的无线电信号转换为基带信号,然后使用一个或更多个处理器对基带信号中的物理信号和/或物理信道进行解码。因此,在本公开的一些实现方式中,没有接收物理信号和/或物理信道可意指通信装置没有尝试从无线电信号恢复物理信号和/或物理信道,例如,没有尝试对物理信号和/或物理信道进行解码,而非通信装置没有实际接收包括对应物理信号和/或物理信道的无线电信号。
随着越来越多的通信装置需要更大的通信容量,需要相对于传统无线电接入技术(RAT)的eMBB通信。另外,通过将多个装置和对象彼此连接来随时随地提供各种服务的大规模MTC是下一代通信中要考虑的一个主要问题。此外,也正在讨论考虑了对可靠性和延迟敏感的服务/UE的通信系统设计。考虑eMBB通信、大规模MTC、超可靠低延迟通信(URLLC)等,正在讨论下一代RAT的引入。目前,在3GPP中,正在进行EPC之后的下一代移动通信系统的研究。在本公开中,为了方便,对应技术被称为新RAT(NR)或第五代(5G)RAT,并且使用NR或支持NR的系统被称为NR系统。
图1示出本公开的实现方式应用于的通信系统1的示例。参照图1,应用于本公开的通信系统1包括无线装置、BS和网络。这里,无线装置表示使用RAT(例如,5G NR或LTE(例如,E-UTRA))执行通信的装置,并且可被称为通信/无线电/5G装置。无线装置可包括(但不限于)机器人100a、车辆100b-1和100b-2、扩展现实(XR)装置100c、手持装置100d、家用电器100e、物联网(IoT)装置100f和人工智能(AI)装置/服务器400。例如,车辆可包括具有无线通信功能的车辆、自主驾驶车辆以及能够执行车辆对车辆通信的车辆。这里,车辆可包括无人驾驶飞行器(UAV)(例如,无人机)。XR装置可包括增强现实(AR)/虚拟现实(VR)/混合现实(MR)装置,并且可按头戴式装置(HMD)、安装在车辆中的平视显示器(HUD)、电视、智能电话、计算机、可穿戴装置、家用电器装置、数字标牌、车辆、机器人等的形式实现。手持装置可包括智能电话、智能板、可穿戴装置(例如,智能手表或智能眼镜)和计算机(例如,笔记本)。家用电器可包括TV、冰箱和洗衣机。IoT装置可包括传感器和智能仪表。例如,BS和网络也可被实现为无线装置,并且特定无线装置可相对于另一无线装置作为BS/网络节点操作。
无线装置100a至100f可经由BS 200连接到网络300。AI技术可应用于无线装置100a至100f,并且无线装置100a至100f可经由网络300连接到AI服务器400。网络300可使用3G网络、4G(例如,LTE)网络或5G(例如,NR)网络来配置。尽管无线装置100a至100f可通过BS200/网络300彼此通信,但是无线装置100a至100f可彼此执行直接通信(例如,侧链路通信)而不经过BS/网络。例如,车辆100b-1和100b-2可执行直接通信(例如,车辆对车辆(V2V)/车辆对万物(V2X)通信)。IoT装置(例如,传感器)可与其它IoT装置(例如,传感器)或其它无线装置100a至100f执行直接通信。
可在无线装置100a至100f与BS 200之间以及无线装置100a至100f之间建立无线通信/连接150a和150b。这里,可通过各种RAT(例如,5G NR)建立诸如UL/DL通信150a和侧链路通信150b(或装置对装置(D2D)通信)的无线通信/连接。无线装置和BS/无线装置可通过无线通信/连接150a和150b向彼此发送/从彼此接收无线电信号。为此,用于发送/接收无线电信号的各种配置信息配置过程、各种信号处理过程(例如,信道编码/解码、调制/解调和资源映射/解映射)以及资源分配过程的至少一部分可基于本公开的各种提议执行。
图2是示出能够执行根据本公开的方法的通信装置的示例的框图。参照图2,第一无线装置100和第二无线装置200可通过各种RAT(例如,LTE和NR)发送和/或接收无线电信号。这里,{第一无线装置100和第二无线装置200}可对应于图1的{无线装置100x和BS 200}和/或{无线装置100x和无线装置100x}。
第一无线装置100可包括一个或更多个处理器102和一个或更多个存储器104,并且另外还包括一个或更多个收发器106和/或一个或更多个天线108。处理器102可控制存储器104和/或收发器106,并且可被配置为实现下面描述/提出的功能、过程和/或方法。例如,处理器102可处理存储器104内的信息以生成第一信息/信号,然后通过收发器106发送包括第一信息/信号的无线电信号。处理器102可通过收发器106接收包括第二信息/信号的无线电信号,然后将通过处理第二信息/信号而获得的信息存储在存储器104中。存储器104可连接到处理器102,并且可存储与处理器102的操作有关的各种信息。例如,存储器104可执行由处理器102控制的部分或全部过程或者存储包括用于执行下面描述/提出的过程和/或方法的命令的软件代码。这里,处理器102和存储器104可以是被设计为实现RAT(例如,LTE或NR)的通信调制解调器/电路/芯片的一部分。收发器106可连接到处理器102并且通过一个或更多个天线108发送和/或接收无线电信号。各个收发器106可包括发送器和/或接收器。收发器106可与射频(RF)单元互换使用。在本公开中,无线装置可表示通信调制解调器/电路/芯片。
第二无线装置200可包括一个或更多个处理器202和一个或更多个存储器204,并且另外还包括一个或更多个收发器206和/或一个或更多个天线208。处理器202可控制存储器204和/或收发器206,并且可被配置为实现之前/下面描述/提出的功能、过程和/或方法。例如,处理器202可处理存储器204内的信息以生成第三信息/信号,然后通过收发器206发送包括第三信息/信号的无线电信号。处理器202可通过收发器206接收包括第四信息/信号的无线电信号,然后将通过处理第四信息/信号而获得的信息存储在存储器204中。存储器204可连接到处理器202,并且可存储与处理器202的操作有关的各种信息。例如,存储器204可执行由处理器202控制的部分或全部过程或者存储包括用于执行之前/下面描述/提出的过程和/或方法的命令的软件代码。这里,处理器202和存储器204可以是被设计为实现RAT(例如,LTE或NR)的通信调制解调器/电路/芯片的一部分。收发器206可连接到处理器202并且通过一个或更多个天线208发送和/或接收无线电信号。各个收发器206可包括发送器和/或接收器。收发器206可与RF单元互换使用。在本公开中,无线装置可表示通信调制解调器/电路/芯片。
在本公开的无线装置100和200中实现的无线通信技术可包括用于低功率通信的窄带物联网以及LTE、NR和6G通信。例如,NB-IoT技术可以是低功率广域网(LPWAN)技术的示例,并且可通过(但不限于)诸如LTE Cat NB1和/或LTE Cat NB2的标准实现。另外地或另选地,在本公开的无线装置XXX和YYY中实现的无线通信技术可基于LTE-M技术来执行通信。例如,LTE-M技术可以是LPWAN技术的示例,并且可被称为诸如增强机器型通信(eMTC)的各种名称。例如,LTE-M技术可通过(但不限于)各种标准中的至少一种实现,例如:1)LTE CAT 0、2)LTE Cat M1、3)LTE Cat M2、4)LTE非BL(非带宽受限)、5)LTE-MTC、6)LTE机器型通信和/或7)LTE M。另外地或另选地,考虑到低功率通信,在本公开的无线装置XXX和YYY中实现的无线通信技术可包括(但不限于)ZigBee、蓝牙和低功率广域网(LPWAN)中的至少一种。例如,ZigBee技术可基于诸如IEEE 802.15.4的各种标准来创建与小/低功率数字通信有关的个域网(PAN),并且可被称为各种名称。
在下文中,将更具体地描述无线装置100和200的硬件元件。一个或更多个协议层可由(但不限于)一个或更多个处理器102和202实现。例如,一个或更多个处理器102和202可实现一个或更多个层(例如,诸如物理(PHY)层、介质访问控制(MAC)层、无线电链路控制(RLC)层、分组数据会聚协议(PDCP)层、无线电资源控制(RRC)层和服务数据适配协议(SDAP)层的功能层)。一个或更多个处理器102和202可根据本文献中所公开的功能、过程、提议和/或方法来生成一个或更多个协议数据单元(PDU)和/或一个或更多个服务数据单元(SDU)。一个或更多个处理器102和202可根据本文献中所公开的功能、过程、提议和/或方法来生成消息、控制信息、数据或信息。一个或更多个处理器102和202可根据本文献中所公开的功能、过程、提议和/或方法来生成包括PDU、SDU、消息、控制信息、数据或信息的信号(例如,基带信号),并且将所生成的信号提供给一个或更多个收发器106和206。一个或更多个处理器102和202可根据本文献中所公开的功能、过程、提议和/或方法来从一个或更多个收发器106和206接收信号(例如,基带信号)并获取PDU、SDU、消息、控制信息、数据或信息。
一个或更多个处理器102和202可被称为控制器、微控制器、微处理器或微计算机。一个或更多个处理器102和202可由硬件、固件、软件或其组合实现。作为示例,一个或更多个专用集成电路(ASIC)、一个或更多个数字信号处理器(DSP)、一个或更多个数字信号处理器件(DSPD)、一个或更多个可编程逻辑器件(PLD)或者一个或更多个现场可编程门阵列(FPGA)可被包括在一个或更多个处理器102和202中。本文献中所公开的功能、过程、提议和/或方法可使用固件或软件来实现,并且固件或软件可被配置为包括模块、过程或功能。被配置为执行本文献中所公开的功能、过程、提议和/或方法的固件或软件可被包括在一个或更多个处理器102和202中或被存储在一个或更多个存储器104和204中,以由一个或更多个处理器102和202驱动。本文献中所公开的功能、过程、提议和/或方法可按代码、命令和/或命令集的形式使用固件或软件来实现。
一个或更多个存储器104和204可连接到一个或更多个处理器102和202并且存储各种类型的数据、信号、消息、信息、程序、代码、命令和/或指令。一个或更多个存储器104和204可由只读存储器(ROM)、随机存取存储器(RAM)、电可擦除可编程只读存储器(EPROM)、闪存、硬盘驱动器、寄存器、高速缓冲存储器、计算机可读存储介质和/或其组合配置。一个或更多个存储器104和204可位于一个或更多个处理器102和202的内部和/或外部。一个或更多个存储器104和204可通过诸如有线或无线连接的各种技术连接到一个或更多个处理器102和202。
一个或更多个收发器106和206可向一个或更多个其它装置发送本文献的方法和/或操作流程图中提及的用户数据、控制信息和/或无线电信号/信道。一个或更多个收发器106和206可从一个或更多个其它装置接收本文献中所公开的功能、过程、提议、方法和/或操作流程图中提及的用户数据、控制信息和/或无线电信号/信道。例如,一个或更多个收发器106和206可连接到一个或更多个处理器102和202并且发送和接收无线电信号。例如,一个或更多个处理器102和202可执行控制以使得一个或更多个收发器106和206可向一个或更多个其它装置发送用户数据、控制信息或无线电信号。一个或更多个处理器102和202可执行控制以使得一个或更多个收发器106和206可从一个或更多个其它装置接收用户数据、控制信息或无线电信号。一个或更多个收发器106和206可连接到一个或更多个天线108和208。一个或更多个收发器106和206可被配置为通过一个或更多个天线108和208发送和接收本文献中所公开的功能、过程、提议、方法和/或操作流程图中提及的用户数据、控制信息和/或无线电信号/信道。在本文献中,一个或更多个天线可以是多个物理天线或多个逻辑天线(例如,天线端口)。一个或更多个收发器106和206可将所接收的无线电信号/信道等从RF频带信号转换为基带信号,以便使用一个或更多个处理器102和202处理所接收的用户数据、控制信息、无线电信号/信道等。一个或更多个收发器106和206可将使用一个或更多个处理器102和202处理的用户数据、控制信息、无线电信号/信道等从基带信号转换为RF频带信号。为此,一个或更多个收发器106和206可包括(模拟)振荡器和/或滤波器。
图3示出能够执行本公开的实现方式的无线装置的另一示例。参照图3,无线装置100和200可对应于图2的无线装置100和200,并且可由各种元件、组件、单元/部分和/或模块配置。例如,无线装置100和200中的每一个可包括通信单元110、控制单元120、存储器单元130和附加组件140。通信单元可包括通信电路112和收发器114。例如,通信电路112可包括图2的一个或更多个处理器102和202和/或一个或更多个存储器104和204。例如,收发器114可包括图2的一个或更多个收发器106和206和/或一个或更多个天线108和208。控制单元120电连接到通信单元110、存储器130和附加组件140,并且控制无线装置的总体操作。例如,控制单元120可基于存储在存储器单元130中的程序/代码/命令/信息来控制无线装置的电/机械操作。控制单元120可通过无线/有线接口经由通信单元110将存储在存储器单元130中的信息发送到外部(例如,其它通信装置),或者通过无线/有线接口将经由通信单元110从外部(例如,其它通信装置)接收的信息存储在存储器单元130中。
附加组件140可根据无线装置的类型不同地配置。例如,附加组件140可包括电源单元/电池、输入/输出(I/O)单元、驱动单元和计算单元中的至少一个。无线装置可按(但不限于)机器人(图1的100a)、车辆(图1的100b-1和100b-2)、XR装置(图1的100c)、手持装置(图1的100d)、家用电器(图1的100e)、IoT装置(图1的100f)、数字广播UE、全息装置、公共安全装置、MTC装置、医疗装置、金融科技装置(或金融装置)、安全装置、气候/环境装置、AI服务器/装置(图1的400)、BS(图1的200)、网络节点等实现。无线装置可根据使用情况/服务在移动或固定地点使用。
在图3中,无线装置100和200中的各种元件、组件、单元/部分和/或模块可全部通过有线接口彼此连接,或者其至少一部分可通过通信单元110无线连接。例如,在无线装置100和200中的每一个中,控制单元120和通信单元110可有线连接,并且控制单元120和第一单元(例如,130和140)可通过通信单元110无线连接。无线装置100和200内的各个元件、组件、单元/部分和/或模块还可包括一个或更多个元件。例如,控制单元120可由一个或更多个处理器的集合配置。作为示例,控制单元120可由通信控制处理器、应用处理器、电子控制单元(ECU)、图形处理单元和存储器控制处理器的集合配置。作为另一示例,存储器130可由随机存取存储器(RAM)、动态RAM(DRAM)、只读存储器(ROM))、闪存、易失性存储器、非易失性存储器和/或其组合配置。
在本公开中,至少一个存储器(例如,104或204)可存储指令或程序,并且这些指令或程序在被执行时可使得在操作上连接到所述至少一个存储器的至少一个处理器根据本公开的一些实施方式或实现方式执行操作。
在本公开中,计算机可读(非暂时性)存储介质可存储至少一个指令或程序,并且所述至少一个指令或程序在由至少一个处理器执行时可使得所述至少一个处理器根据本公开的一些实施方式或实现方式执行操作。
在本公开中,处理装置或设备可包括至少一个处理器和在操作上连接到所述至少一个处理器的至少一个计算机存储器。所述至少一个计算机存储器可存储指令或程序,并且这些指令或程序在被执行时可使得在操作上连接到至少一个存储器的至少一个处理器根据本公开的一些实施方式或实现方式执行操作。
在本公开中,计算机程序可包括存储在至少一个计算机可读(非易失性)存储介质上的程序代码,并且其在被执行时被配置为根据本公开的一些实现方式执行操作或者使得至少一个处理器根据本公开的一些实现方式执行操作。计算机程序可按计算机程序产品的形式提供。计算机程序产品可包括至少一个计算机可读(非易失性)存储介质。
本公开的通信装置包括:至少一个处理器;以及至少一个计算机存储器,其在操作上可连接到所述至少一个处理器并且被配置为存储指令,所述指令在被执行时使得所述至少一个处理器根据稍后描述的本公开的示例执行操作。
图4示出在基于3GPP的无线通信系统中使用的帧结构的示例。
图4的帧结构仅是示例性的,帧中的子帧的数量、时隙的数量和符号的数量可不同地改变。在NR系统中,可针对为一个UE聚合的多个小区配置不同的OFDM参数集(例如,子载波间距(SCS))。因此,可为聚合的小区不同地配置包括相同数量的符号(例如,子帧、时隙或传输时间间隔(TTI))的时间资源的(绝对时间)持续时间。这里,符号可包括OFDM符号(或循环前缀-OFDM(CP-OFDM)符号)和SC-FDMA符号(或离散傅里叶变换-扩展-OFDM(DFT-s-OFDM)符号)。在本公开中,符号、基于OFDM的符号、OFDM符号、CP-OFDM符号和DFT-s-OFDM符号可互换使用。
参照图4,在NR系统中,UL传输和DL传输被组织成帧。各个帧具有Tf=(△fmax*Nf/100)*Tc=10ms的持续时间并且被分成各自5ms的两个半帧。NR的基本时间单位是Tc=1/(△fmax*Nf),其中△fmax=480*103Hz并且Nf=4096。作为参考,LTE的基本时间单位是Ts=1/(△fref*Nf,ref),其中△fref=15*103Hz并且Nf,ref=2048。Tc和Tf具有常数κ=Tc/Tf=64的关系。各个半帧包括5个子帧,并且单个子帧的持续时间Tsf为1ms。子帧被进一步分成时隙,并且子帧中的时隙的数量取决于子载波间距。各个时隙基于循环前缀包括14或12个OFDM符号。在正常CP中,各个时隙包括14个OFDM符号,在扩展CP中,各个时隙包括12个OFDM符号。参数集取决于指数可缩放子载波间距△f=2u*15kHz。下表示出每时隙的OFDM符号的数量(Nslot symb)、每帧的时隙的数量(Nframe,u slot)和每子帧的时隙的数量(Nsubframe, slot)。
[表1]
u <![CDATA[N<sup>slot</sup><sub>symb</sub>]]> <![CDATA[N<sup>frame,u</sup><sub>slot</sub>]]> <![CDATA[N<sup>subframe,u</sup><sub>slot</sub>]]>
0 14 10 1
1 14 20 2
2 14 40 4
3 14 80 8
4 14 160 16
下表示出根据子载波间距Δf=2u*15kHz,每时隙的OFDM符号的数量、每帧的时隙的数量和每子帧的时隙的数量。
[表2]
u <![CDATA[N<sup>slot</sup><sub>symb</sub>]]> <![CDATA[N<sup>rame,u</sup><sub>slot</sub>]]> <![CDATA[N<sup>subframe,u</sup><sub>slot</sub>]]>
2 12 40 4
对于子载波间距配置u,时隙可在子帧内如下按升序索引:nus∈{0,...,nsubframe ,u slot-1},并且在帧内如下按升序索引:nu s,f∈{0,...,nframe,u slot-1}。
图5示出时隙的资源网格。时隙包括时域中的多个(例如,14或12个)符号。对于各个参数集(例如,子载波间距)和载波,从由高层信令(例如,RRC信令)指示的公共资源块(CRB)Nstart,u grid开始定义了Nsize,u grid,x*NRB sc个子载波和Nsubframe,u symb个OFDM符号的资源网格,其中Nsize,u grid,x是资源网格中的资源块(RB)的数量,并且对于下行链路,下标x为DL,对于上行链路为UL。NRB sc是每RB的子载波的数量。在基于3GPP的无线通信系统中,NRB sc通常为12。对于给定天线端口p、子载波间距配置u和传输链路(DL或UL),存在一个资源网格。通过高层参数(例如,RRC参数)向UE给予子载波间距配置u的载波带宽Nsize,u grid。用于天线端口p和子载波间距配置u的资源网格中的各个元素被称为资源元素(RE),并且一个复符号可被映射到各个RE。资源网格中的各个RE由频域中的索引k和表示相对于时域中的参考点的符号位置的索引l唯一地标识。在NR系统中,RB由频域中的12个连续子载波定义。在NR系统中,RB被分类为CRB和物理资源块(PRB)。对于子载波间距配置u,CRB在频域中从0向上编号。子载波间距配置u的CRB 0的子载波0的中心等于用作RB网格的公共参考点的“点A”。子载波间距配置u的PRB在带宽部分(BWP)内定义并且从0至Nsize,u BWP,i-1编号,其中i是BWP的数量。BWPi中的PRB nPRB与CRB nu CRB之间的关系由nu PRBuCRB+Nsize,u BwP,i给出,其中Nsize BwP,i是BWP相对于CRB 0开始的CRB。BWP包括频域中的多个连续RB。例如,BWP可以是在给定载波上的BWP i中为给定参数集ui定义的邻接CRB的子集。载波可包括最多N(例如,5)个BWP。UE可被配置为具有给定分量载波上的一个或更多个BWP。通过启用的BWP执行数据通信,并且在分量载波上仅为UE配置的BWP当中的预定数量的BWP(例如,一个BWP)可为活动的。
对于DL BWP或UL BWP的集合中的各个服务小区,网络可配置至少初始DL BWP和一个(如果服务小区配置有上行链路)或两个(如果使用补充上行链路)初始UL BWP。网络可配置附加UL和DL BWP。对于各个DL BWP或UL BWP,可针对服务小区向UE提供以下参数:i)SCS;ii)CP;iii)由在Nstart BWP=275的假设下指示偏移RBset和长度LRB作为资源指示符值(RIV)的RRC参数locationAndBandwidth提供的CRB Nstart BWP=Ocarrier+RBstart和邻接RB的数量Nsize BWP=LRB,以及由RRC参数offsetToCarrier针对SCS提供的值Ocarrier;DL BWP或UL BWP的集合中的索引;BWP公共参数的集合;以及BWP专用参数的集合。
虚拟资源块(VRB)可在BWP内定义并且从0至Nsize,u BWP,i-1索引,其中i表示BWP编号。VRB可根据非交织映射来映射至PRB。在一些实现方式中,对于非交织VRB至PRB映射,VRB n可被映射至PRB n。
配置载波聚合的UE可被配置为使用一个或更多个小区。如果UE配置有多个服务小区,则UE可配置有一个或多个小区组。UE也可配置有与不同BS关联的多个小区组。另选地,UE可配置有与单个BS关联的多个小区组。UE的各个小区组包括一个或更多个服务小区并且包括配置PUCCH资源的单个PUCCH小区。PUCCH小区可以是Pcell或对应小区组的Scell当中配置为PUCCH小区的Scell。UE的各个服务小区属于UE的小区组之一并且不属于多个小区。
NR频带被定义为两种类型的频率范围,即,FR1和FR2。FR2也被称为毫米波(mmW)。下表示出NR可操作的频率范围。
[表3]
频率范围指定 对应频率范围 子载波间距
FR1 410MHz-7125MHz 15、30、60kHz
FR2 24250MHz-52600MHz 60、120、240kHz
在下文中,将详细描述在基于3GPP的无线通信系统中可使用的物理信道。
PDCCH承载DCI。例如,PDCCH(即,DCI)承载关于下行链路共享信道(DL-SCH)的传输格式和资源分配的信息、关于上行链路共享信道(UL-SCH)的资源分配的信息、关于寻呼信道(PCH)的寻呼信息、关于DL-SCH的系统信息、关于UE/BS的协议栈当中比物理层更高的层(下文中,高层)的控制消息(例如,在PDSCH上发送的随机接入响应(RAR))的资源分配的信息、发送功率控制命令、关于配置调度(CS)的启用/停用的信息等。包括关于DL-SCH的资源分配的信息的DCI被称为PDSCH调度DCI,包括关于UL-SCH的资源分配的信息的DCI被称为PUSCH调度DCI。DCI包括循环冗余校验(CRC)。CRC根据PDCCH的所有者和用途以各种标识符(例如,无线电网络临时标识符(RNTI))掩码/加扰。例如,如果PDCCH用于特定UE,则CRS以UE标识符(例如,小区-RNTI(C-RNTI))掩码。如果PDCCH用于寻呼消息,则CRC以寻呼RNTI(P-RNTI)掩码。如果PDCCH用于系统信息(例如,系统信息块(SIB)),则CRC以系统信息RNTI(SI-RNTI)掩码。如果PDCCH用于随机接入响应,则CRC以随机接入-RNTI(RA-RNTI)掩码。
当一个服务小区上的PDCCH调度另一服务小区上的PDSCH或PUSCH时,称为跨载波调度。具有载波指示符字段(CIF)的跨载波调度可允许服务小区上的PDCCH调度另一服务小区上的资源。当服务小区上的PDSCH调度服务小区上的PDSCH或PUSCH时,称为自载波调度。当在小区中使用跨载波调度时,BS可将关于调度小区的该小区的信息提供给UE。例如,BS可向UE告知服务小区是由另一(调度)小区上的PDCCH调度还是由服务小区调度。如果服务小区由另一(调度)小区调度,则BS可向UE告知哪一小区用信号通知服务小区的DL指派和UL许可。在本公开中,承载PDCCH的小区被称为调度小区,PUSCH或PDSCH的传输由包括在PDCCH中的DCI调度的小区(即,承载由PDCCH调度的PUSCH或PDSCH的小区)被称为被调度小区。
PDSCH是用于UL数据传输的物理层UL信道。PDSCH承载DL数据(例如,DL-SCH传输块)并且经受诸如正交相移键控(QPSK)、16正交幅度调制(QAM)、64QAM、256QAM等的调制。通过对传输块(TB)进行编码来生成码字。PDSCH可承载最多两个码字。可执行每码字的加扰和调制映射,并且可将从各个码字生成的调制符号映射到一个或更多个层。各个层与DMRS一起被映射到无线电资源并且生成为OFDM符号信号。然后,通过对应天线端口发送OFDM符号信号。
PUCCH意指用于UCI传输的物理层UL信道。PUCCH承载UCI。UCI包括以下信息。
-调度请求(SR):用于请求UL-SCH资源的信息。
-混合自动重传请求(HARQ)-确认(ACK):对PDSCH上的DL数据分组(例如,码字)的响应。HARQ-ACK指示通信装置是否成功接收DL数据分组。响应于单个码字,可发送1比特HARQ-ACK。响应于两个码字,可发送2比特HARQ-ACK。HARQ-ACK响应包括肯定ACK(简称为ACK)、否定ACK(NACK)、不连续传输(DTX)或NACK/DTX。这里,术语HARQ-ACK可与HARQ ACK/NACK、ACK/NACK或A/N互换使用。
-信道状态信息(CSI):关于DL信道的反馈信息。CSI可包括信道质量信息(CQI)、秩指示符(RI)、预编码矩阵指示符(PMI)、CSI-RS资源指示符(CRI)、SS/PBCH资源块指示符(SSBRI)和层指示符(L1)。根据包括在CSI中的UCI类型,CSI可被分类为CSI部分1和CSI部分2。例如,第一码字的CRI、RI和/或CQI可包括在CSI部分1中,第二码字的LI、PMI和/或CQI可包括在CSI部分2中。
在本公开中,为了方便,由BS为/向UE配置/指示HARQ-ACK、SR和CSI传输的PUCCH资源分别被称为HARQ-ACK PUCCH资源、SR PUCCH资源和CSI PUCCH资源。
根据UCI有效载荷大小和/或传输长度(例如,包括在PUCCH资源中的符号数量),PUCCH格式可如下定义。关于PUCCH格式,也可参考表4。
(0)PUCCH格式0(PF0或F0)
-所支持的UCI有效载荷大小:至多K比特(例如,K=2)
-构成单个PUCCH的OFDM符号的数量:1至X个符号(例如,X=2)
-传输结构:PUCCH格式0中仅包括UCI信号而没有DMRS。UE通过选择并发送多个序列之一来发送UCI状态。例如,UE通过经由PUCCH(PUCCH格式0)发送多个序列之一来向BS发送特定UCI。UE仅在发送肯定SR时在用于对应SR配置的PUCCH资源中发送PUCCH(PUCCH格式0)。
-PUCCH格式0的配置包括对应PUCCH资源的以下参数:初始循环移位的索引、用于PUCCH传输的符号数量和/或用于PUCCH传输的第一符号。
(1)PUCCH格式1(PF1或F1)
-所支持的UCI有效载荷大小:至多K比特(例如,K=2)
-构成单个PUCCH的OFDM符号的数量:Y至Z个符号(例如,Y=4和Z=14)
-传输结构:DMRS和UCI按TDM配置在/映射到不同OFDM符号。换言之,在不发送调制符号的符号中发送DMRS,并且UCI被表示为特定序列(例如,正交覆盖码(OCC))和调制(例如,QPSK)符号之间的乘积。通过对UCI和DMRS二者应用循环移位(CS)/OCC,在多个PUCCH资源(符合PUCCH格式1)(在同一RB内)之间支持码分复用(CDM)。PUCCH格式1承载至多2比特的UCI,并且在时域中通过OCC(根据是否执行跳频而不同地配置)扩展调制符号。
-PUCCH格式1的配置包括对应PUCCH资源的以下参数:初始循环移位的索引、用于PUCCH传输的符号数量、用于PUCCH传输的第一符号和/或OCC的索引。
(2)PUCCH格式2(PF2或F2)
-所支持的UCI有效载荷大小:超过K比特(例如,K=2)
-构成单个PUCCH的OFDM符号的数量:1至X个符号(例如,X=2)
-传输结构:在同一符号内使用频分复用(FDM)配置/映射DMRS和UCI。UE通过对编码的UCI比特应用IFFT而没有DFT来发送UCI。PUCCH格式2承载比K比特更大比特大小的UCI,并且调制符号经受与DMRS的FDM,以进行传输。例如,DMRS位于给定RB内的符号索引#1、#4、#7和#10中,密度为1/3。伪噪声(PN)序列用于DMRS序列。可针对2符号PUCCH格式2启用跳频。
-PUCCH格式2的配置包括对应PUCCH资源的以下参数:PRB的数量、用于PUCCH传输的符号数量和/或用于PUCCH传输的第一符号。
(3)PUCCH格式3(PF3或F3)
-所支持的UCI有效载荷大小:超过K比特(例如,K=2)
-构成单个PUCCH的OFDM符号的数量:Y至Z个符号(例如,Y=4和Z=14)
-传输结构:DMRS和UCI按TDM配置/映射到不同OFDM符号。UE通过对编码的UCI比特应用DFT来发送UCI。PUCCH格式3不支持针对同一时间-频率资源(例如,同一PRB)的UE复用。
-PUCCH格式3的配置包括对应PUCCH资源的以下参数:PRB的数量、用于PUCCH传输的符号数量和/或用于PUCCH传输的第一符号。
(4)PUCCH格式4(PF4或F4)
-所支持的UCI有效载荷大小:超过K比特(例如,K=2)
-构成单个PUCCH的OFDM符号的数量:Y至Z个符号(例如,Y=4和Z=14)
-传输结构:DMRS和UCI按TDM配置/映射到不同OFDM符号。通过在DFT的前端应用OCC并对DMRS应用CS(或交织FDM(IFDM)映射),PUCCH格式4可在同一PRB中复用至多4个UE。换言之,UCI的调制符号经受与DMRS的TDM,以进行传输。
-PUCCH格式4的配置包括对应PUCCH资源的以下参数:用于PUCCH传输的符号数量、OCC的长度、OCC的索引和用于PUCCH传输的第一符号。
下表示出PUCCH格式。根据PUCCH传输长度,PUCCH格式可被分成短PUCCH格式(格式0和2)和长PUCCH格式(格式1、3和4)。
[表4]
Figure BDA0004113439320000231
PUCCH资源可根据UCI类型(例如,A/N、SR或CSI)来确定。用于UCI传输的PUCCH资源可基于UCI(有效载荷)大小来确定。例如,BS可为UE配置多个PUCCH资源集,并且UE可根据UCI(有效载荷)大小的范围(例如,UCI比特数)选择与特定范围对应的特定PUCCH资源集。例如,UE可根据UCI比特数NUCI选择以下PUCCH资源集之一。
-PUCCH资源集#0,如果UCI比特数=<2
-PUCCH资源集#1,如果2<UCI比特数=<N1
...
-PUCCH资源集#(K-1),如果NK-2<UCI比特数=<NK-1
这里,K表示PUCCH资源集的数量(K>1),并且Ni表示PUCCH资源集#i所支持的最大UCI比特数。例如,PUCCH资源集#1可包括PUCCH格式0至1的资源,其它PUCCH资源集可包括PUCCH格式2至4的资源(参见表4)。
各个PUCCH资源的配置包括PUCCH资源索引、起始PRB索引和PUCCH格式0至PUCCH格式4之一的配置。BS通过高层参数maxCodeRate向UE配置用于在使用PUCCH格式2、PUCCH格式3或PUCCH格式4的PUCCH传输内复用HARQ-ACK、SR和CSI报告的码率。高层参数maxCodeRate用于确定如何在PUCCH格式2、3或4的PUCCH资源上反馈UCI。
如果UCI类型是SR和CSI,则可通过高层信令(例如,RRC信令)为UE配置PUCCH资源集中要用于UCI传输的PUCCH资源。如果UCI类型是对半持久调度(SPS)PDSCH的HARQ-ACK,则可通过高层信令(例如,RRC信令)为UE配置PUCCH资源集中要用于UCI传输的PUCCH资源。另一方面,如果UCI类型是对DCI所调度的PDSCH的HARQ-ACK,则可由DCI调度PUCCH资源集中要用于UCI传输的PUCCH资源。
在基于DCI的PUCCH资源调度的情况下,BS可在PDCCH上向UE发送DCI并且通过DCI中的ACK/NACK资源指示符(ARI)指示特定PUCCH资源集中要用于UCI传输的PUCCH资源。ARI可用于指示用于ACK/NACK传输的PUCCH资源并且也称为PUCCH资源指示符(PRI)。这里,DCI可用于PDSCH调度并且UCI可包括对PDSCH的HARQ-ACK。BS可通过(UE特定)高层(例如,RRC)信令为UE配置包括数量比ARI可表示的状态更多的PUCCH资源的PUCCH资源集。ARI可指示PUCCH资源集的PUCCH资源子集,并且要使用所指示的PUCCH资源子集中的哪一PUCCH资源可基于关于PDCCH的传输资源信息(例如,PDCCH的起始CCE索引)根据隐含规则来确定。
对于UL-SCH数据传输,UE应该包括可用于UE的UL资源,对于DL-SCH数据接收,UE应该包括可用于UE的DL资源。BS通过资源分配向UE指派UL资源和DL资源。资源分配可包括时域资源分配(TDRA)和频域资源分配(FDRA)。在本公开中,UL资源分配也被称为UL许可,并且DL资源分配被称为DL指派。UL许可由UE在PDCCH上或在RAR中动态地接收,或者由BS通过RRC信令为UE半持久地配置。DL指派由UE在PDCCH上动态地接收,或者由BS通过RRC信令为UE半持久地配置。
在UL上,BS可通过向小区无线电网络临时标识符(C-RNTI)寻址的PDCCH为UE动态地分配UL资源。UE监测PDCCH以便发现用于UL传输的可能UL许可。BS可使用配置许可向UE分配UL资源。可使用两种类型的配置许可,类型1和类型2。在类型1中,BS通过RRC信令直接提供所配置的UL许可(包括周期性)。在类型2中,BS可通过RRC信令来配置RRC配置UL许可的周期性,并且通过向配置调度RNTI(CS-RNTI)寻址的PDCCH用信号通知、启用或停用所配置的UL许可。例如,在类型2中,向CS-RNTI寻址的PDCCH指示直至停用,可根据通过RRC信令配置的周期性隐含地重用对应UL许可。
在DL上,BS可通过向C-RNTI寻址的PDCCH向UE动态地分配DL资源。UE监测PDCCH以便发现可能DL许可。BS可使用SPS向UE分配DL资源。BS可通过RRC信令来配置所配置的DL指派的周期性,并且通过向CS-RNTI寻址的PDCCH用信号通知、启用或停用所配置的DL指派。例如,向CS-RNTI寻址的PDCCH指示直至停用,可根据通过RRC信令配置的周期性隐含地重用对应DL指派。
在下文中,将更详细地描述通过PDCCH的资源分配和通过RRC的资源分配。
*通过PDCCH的资源分配:动态许可/指派
PDCCH可用于调度PDSCH上的DL传输和PUSCH上的UL传输。用于调度DL传输的PDCCH上的DCI可包括DL资源指派,其至少包括与DL-SCH关联的调制和编码格式(例如,调制和编码方案(MCS))索引IMCS)、资源分配和HARQ信息。用于调度UL传输的PDCCH上的DCI可包括UL调度许可,其至少包括与UL-SCH关联的调制和编码格式、资源分配和HARQ信息。关于DL-SCH或UL-SCH的HARQ信息可包括新信息指示符(NDI)、传输块大小(TBS)、冗余版本(RV)和HARQ进程ID(即,HARQ进程号)。一个PDCCH所承载的DCI的大小和用途根据DCI格式而不同。例如,DCI格式0_0、DCI格式0_1或DCI格式0_2可用于调度PUSCH,DCI格式1_0、DCI格式1_1或DCI格式1_2可用于调度PDSCH。具体地,DCI格式0_2和DCI格式1_2可用于调度具有比DCI格式0_0、DCI格式0_1、DCI格式1_0,或DCI格式1_1所保证的传输可靠性和延迟要求更高的传输可靠性和更低的延迟要求的传输。本公开的一些实现方式可应用于基于DCL格式0_2的UL数据传输。本公开的一些实现方式可应用于基于DCI格式1_2的DL数据接收。
图6示出PDCCH所导致的PDSCH TDRA的示例和PDCCH所导致的PUSCH TDRA的示例。
由PDCCH承载以便调度PDSCH或PUSCH的DCI包括TDRA字段。TDRA字段为PDSCH或PUSCH的分配表提供行索引m+1的值m。预定义的默认PDSCH时域分配作为PDSCH的分配表应用,或者BS通过RRC信号pdsch-TimeDomainAllocationList配置的PDSCH TDRA表作为PDSCH的分配表应用。预定义的默认PUSCH时域分配作为PUSCH的分配表应用,或者BS通过RRC信号pusch-TimeDomainAllocationList配置的PUSCH TDRA表作为PUSCH的分配表应用。要应用的PDSCH TDRA表和/或要应用的PUSCH TDRA表可根据固定/预定义的规则(例如,参考3GPPTS 38.214)来确定。
在PDSCH时域资源配置中,各个索引行定义DL指派与PDSCH时隙偏移K0、起始和长度指示符值SLIV(或直接时隙中的PDSCH的起始位置(例如,起始符号索引S)和分配长度(例如,符号数量L))以及PDSCH映射类型。在PUSCH时域资源配置中,各个索引行定义UL许可与PUSCH时隙偏移K2、时隙中的PUSCH的起始位置(例如,起始符号索引S)和分配长度(例如,符号数量L)以及PUSCH映射类型。PDSCH的K0和PUSCH的K2指示具有PDCCH的时隙与具有与PDCCH对应的PDSCH或PUSCH的时隙之间的差。SLIV表示相对于具有PDSCH或PUSCH的时隙的开始的起始符号S以及从符号S计数的连续符号的数量L的联合指示符。PDSCH/PUSCH映射类型具有两种映射类型:映射类型A和映射类型B。在PDSCH/PUSCH映射类型A中,基于时隙的开始将解调参考信号(DMRS)映射至PDSCH/PUSCH资源。根据其它DMRS参数,PDSCH/PUSCH资源的符号当中的一个或两个符号可用作DMRS符号。例如,在PDSCH/PUSCH映射类型A中,根据RRC信令,DMRS位于时隙中的第三符号(符号#2)或第四符号(符号#3)上。在PDSCH/PUSCH映射类型B中,基于PDSCH/PUSCH资源的第一OFDM符号映射DMRS。根据其它DMRS参数,从PDSCH/PUSCH资源的第一符号起的一个或两个符号可用作DMRS符号。例如,在PDSCH/PUSCH映射类型B中,DMRS位于为PDSCH/PUSCH分配的第一符号上。在本公开中,PDSCH/PUSCH映射类型可被称为映射类型或DMRS映射类型。例如,在本公开中,PUSCH映射类型A可被称为映射类型A或DMRS映射类型A,PUSCH映射类型B可被称为映射类型B或DMRS映射类型B。
调度DCI包括提供关于用于PDSCH或PUSCH的RB的指派信息的FDRA字段。例如,FDRA字段提供关于用于向UE的PDSCH或PUSCH传输的小区的信息、关于用于PDSCH或PUSCH传输的BWP的信息和/或关于用于PDSCH或PUSCH传输的RB的信息。
*通过RRC的资源分配
如上所述,存在没有动态许可的两种类型的传输:配置许可类型1和配置许可类型2。在配置许可类型1中,UL许可由RRC提供并被存储为配置UL许可。在配置许可类型2中,UL许可由PDCCH提供并基于指示配置UL许可启用或停用的L1信令作为配置UL许可存储或清除。类型1和类型2可每服务小区和每BWP由RRC配置。多个配置可在不同的服务小区上同时有效。
当配置配置许可类型1时,可通过RRC信令向UE提供以下参数:
-cs-RNTI,与用于重传的CS-RNTI对应;
-periodicity,与配置许可类型1的周期性对应;
-timeDomainOffset,指示时域中相对于系统帧号(SFN)=0的资源偏移;
-timeDomainAllocation值m,提供指向分配表的行索引m+1,指示起始符号S、长度L和PUSCH映射类型的组合;
-frequencyDomainAllocation,提供频域资源分配;以及
-mcsAndTBS,提供指示调制阶数、目标码率和传输块大小的IMCS
在通过RRC为服务小区配置配置许可类型1时,UE存储RRC所提供的UL许可作为所指示的服务小区的配置UL许可,并且将配置UL许可初始化或重新初始化为在根据timeDomainOffset和S(从SLIV推导)的符号开始并以periodicity重复。在为配置许可类型1配置UL许可之后,UE可认为UL许可与满足下式的各个符号关联重复:[(SFN*numberOfSlotsPerFrame(numberOfSymbolsPerSlot)+(帧中的时隙数*numberOfSymbolsPerSlot)+时隙中的符号数]=(timeDomainOffset*numberOfSymbolsPerSlot+S+N*periodicity)modulo(1024*numberOfSlotsPerFrame*
numberOfSymbolsPerSlot),对于所有N>=0,其中numberOfSlotsPerFrame和numberOfSymbolsPerSlot分别指示每帧的连续时隙的数量和每时隙的连续OFDM符号的数量(参考表1和表2)。
对于配置许可类型2,BS可通过RRC信令向UE提供以下参数:
-cs-RNTI,与用于启用、停用和重传的CS-RNTI对应;以及
-periodicity,提供配置许可类型2的周期性。
通过PDCCH(向CS-RNTI寻址)将实际UL许可提供给UE。在为配置许可类型2配置UL许可之后,UE可认为UL许可与满足下式的各个符号关联重复:[(SFN*numberOfSlotsPerFrame*numberOfSymbolsPerSlot)+(帧中的时隙数*numberOfSymbolsPerSlot)+时隙中的符号数]=[(SFN开始时间*numberOfSlotsPerFrame*numberOfSymbolsPerSlot+slot开始时间*numberOfSymbolsPerSlot+symbol开始时间)+N*periodicity]modulo(1024*numberOfSlotsPerFrame*numberOfSymbolsPerSlot),对于所有N>=0,其中SFN开始时间、slot开始时间和symbol开始时间分别表示在配置许可被(重新)初始化之后PUSCH的第一传输机会的SFN、时隙和符号,numberOfSlotsPerFrame和numberOfSymbolsPerSlot分别指示每帧的连续时隙的数量和每时隙的连续OFDM符号的数量(参考表1和表2)。
在一些场景中,可由BS进一步向UE提供用于推导配置UL许可的HARQ进程ID的参数harq-ProcID-Offset和/或参数harq-ProcID-Offset2。harq-ProcID-Offset是用于共享频谱信道接入操作的配置许可的HARQ进程的偏移,harq-ProcID-Offset2是配置许可的HARQ进程的偏移。在本公开中,cg-RetransmissionTimer是基于配置许可的传输(重传)之后的持续时间,其中UE不应基于传输(重传)的HARQ进程自主地执行重传。当配置关于配置UL许可的重传时可由BS将cg-RetransmissionTimer提供给UE。对于既未配置harq-ProcID-Offset也未配置cg-RetransmissionTimer的配置许可,可从下式推导与UL传输的第一符号关联的HARQ进程ID:HARQ进程ID=[floor(CURRENT_symbol/periodicity)]modulonrofHARQ-Processes。对于具有harq-ProcID-Offset2的配置UL许可,可从下式推导与UL传输的第一符号关联的HARQ进程ID:HARQ进程ID=[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes+harq-ProcID-Offset2,其中CURRENT_symbol=(SFN*numberOfSlotsPerFrame*numberOfSymbolsPerSlot+帧中的时隙号*numberOfSymbolsPerSlot+时隙中的符号号),并且numberOfSlotsPerFrame和numberOfSymbolsPerSlot分别表示每帧的连续时隙数和每时隙的连续OFDM符号数。对于具有cg-RetransmissionTimer的配置UL许可,UE可从可用于配置许可配置的HARQ进程ID当中选择HARQ进程ID。
在DL上,可从BS每服务小区和每BWP通过RRC信令向UE提供半持久调度(SPS)。对于DL SPS,DL指派通过PDCCH提供给UE并基于指示SPS启用或停用的L1信令被存储或清除。当配置SPS时,BS可通过用于配置半持久传输的RRC信令向UE提供以下参数:
-cs-RNTI,与用于启用、停用和重传的CS-RNTI对应;
-nrofHARQ-Processes,提供用于SPS的HARQ进程的数量;
-periodicity,提供用于SPS的配置DL指派的周期性;
-n1PUCCH-AN,提供用于SPS的PUCCH的HARQ资源(网络将HARQ资源配置为格式0或格式1,并且实际PUCCH资源由PUCCH-Config配置并且在n1PUCCH-AN中由其ID引用)。
在为SPS配置DL指派之后,UE可依次认为第N DL指派出现在满足下式的时隙中:(numberOfSlotsPerFrame*SFN+帧中的时隙数)=[(numberOfSlotsPerFrame*SFN开始时间+slot开始时间)+N*periodicity*numberOfSlotsPerFrame/10]modulo(1024*numberOfSlotsPerFrame),其中SFN开始时间和slot开始时间分别表示在配置DL指派被(重新)初始化之后PDSCH的第一传输的SFN和时隙,numberOfSlotsPerFrame和numberOfSymbolsPerSlot分别指示每帧的连续时隙的数量和每时隙的连续OFDM符号的数量(参考表1和表2)。
在一些场景中,可由BS进一步向UE提供用于推导配置DL指派的HARQ进程ID的参数harq-ProcID-Offset。harq-ProcID-Offset是SPS的HARQ进程的偏移。对于没有harq-ProcID-Offset的配置DL指派,可从下式确定与DL传输开始的时隙关联的HARQ进程ID:HARQ进程ID=[floor(CURRENT_slot*10/(numberOfSlotsPerFrame*periodicity))]modulonrofHARQ-Processes,其中CURRENT_slot=[(SFN*numberOfSlotsPerFrame)+帧中的时隙号],并且numberOfSlotsPerFrame表示每帧的连续时隙数。对于具有harq-ProcID-Offset的配置DL指派,可从下式确定与DL传输开始的时隙关联的HARQ进程ID:HARQ进程ID=[floor(CURRENT_slot/periodicity)]modulo nrofHARQ-Processes+harq-ProcID-Offset,其中CURRENT_slot=[(SFN*numberOfSlotsPerFrame)+帧中的时隙号],并且numberOfSlotsPerFrame表示每帧的连续时隙数。
如果对应DCI格式的CRC利用RRC参数cs-RNTI所提供的CS-RNTI加扰并且启用传输块的新数据指示符字段被设定为0,则UE针对调度启用或调度释放验证DL SPS指派PDCCH或配置UL许可类型2PDCCH。如果根据表5和表6来设定DCI格式的所有字段,则实现DCI格式的验证。表5示出用于DL SPS和UL许可类型2调度启用PDCCH验证的特殊字段的示例,表6示出用于DL SPS和UL许可类型2调度释放PDCCH验证的特殊字段的示例。
[表5]
Figure BDA0004113439320000301
[表6]
DCI格式0_0 DCI格式1_0
HARQ进程号 全部设定为“0” 全部设定为“0”
冗余版本 设定为“00” 设定为“00”
调制和编码方案 全部设定为“1” 全部设定为“1”
资源块指派 全部设定为“1” 全部设定为“1”
用于DL SPS或UL许可类型2的实际DL指派和UL许可和对应MCS由对应DL SPS或UL许可类型2调度启用PDCCH所承载的DCI格式中的资源指派字段(例如,提供TDRA值m的TDRA字段、提供频率资源块指派的FDRA字段和/或MCS字段)提供。如果实现验证,则UE将DCI格式中的信息视为DL SPS或配置UL许可类型2的有效启用或有效释放。
图7示出HARQ-ACK发送/接收过程。
参照图7,UE可在时隙n中检测PDCCH。接下来,UE可根据通过时隙n中的PDCCH接收的调度信息在时隙n+K0中接收PDSCH,然后在时隙n+K1中通过PUCCH发送UCI。在这种情况下,UCI包括对PDSCH的HARQ-ACK响应。
用于调度PDSCH的PDCCH所承载的DCI(例如,DCI格式1_0或DCI格式1_1)可包括以下信息。
-FDRA:FDRA指示分配给PDSCH的RB集合。
-TDRA:TDRA指示DL指派与PDSCH时隙偏移K0、时隙中的PDSCH的起始位置(例如,符号索引S)和长度(例如,符号数量L)以及PDSCH映射类型。PDSCH映射类型A或PDSCH映射类型B可由TDRA指示。对于PDSCH映射类型A,DMRS位于时隙中的第三符号(符号#2)或第四符号(符号#3)中。对于PDSCH映射类型B,在为PDSCH分配的第一符号中分配DMRS。
-PDSCH-to-HARQ_feedback定时指示符:该指示符指示K1。
如果PDSCH被配置为发送最多一个TB,则HARQ-ACK响应可由一比特组成。如果PDSCH被配置为发送最多2个TB,则当未配置空间捆绑时,HARQ-ACK响应可由2比特组成,当配置空间捆绑时,由一比特组成。当对多个PDSCH的HARQ-ACK传输定时被指定为时隙n+K1时,在时隙n+K1中发送的UCI包括对多个PDSCH的HARQ-ACK响应。
在本公开中,由一个或多个PDSCH的HARQ-ACK比特组成的HARQ-ACK有效载荷可被称为HARQ-ACK码本。根据HARQ-ACK有效载荷确定方案,HARQ-ACK码本可被归类为半静态HARQ-ACK码本和动态HARQ-ACK码本。
在半静态HARQ-ACK码本的情况下,与UE要报告的HARQ-ACK有效载荷大小有关的参数由(UE特定)高层(例如,RRC)信号半静态地确定。半静态HARQ-ACK码本的HARQ-ACK有效载荷大小(例如,通过一个时隙中的一个PUCCH发送的(最大)HARQ-ACK有效载荷(大小))可基于与为UE配置的所有DL载波(即,DL服务小区)和可指示HARQ-ACK传输定时的所有DL调度时隙(或PDSCH传输时隙或PDCCH监测时隙)的组合(下文中,捆绑窗口)对应的HARQ-ACK比特数来确定。即,在半静态HARQ-ACK码本方案中,HARQ-ACK码本的大小被固定(为最大值),而不管实际调度的DL数据的数量如何。例如,DL许可DCI(PDCCH)包括PDSCH与HARQ-ACK定时信息,并且PDSCH与HARQ-ACK定时信息可具有多个值之一(例如,k)。例如,当在时隙#m中接收PDSCH并且用于调度PDSCH的DL许可DCI(PDCCH)中的PDSCH与HARQ-ACK定时信息指示k时,PDSCH的HARQ-ACK信息可在时隙#(m+k)中发送。作为示例,k∈{1,2,3,4,5,6,7,8}。当在时隙#n中发送HARQ-ACK信息时,HARQ-ACK信息可包括基于捆绑窗口的可能最大HARQ-ACK。即,时隙#n的HARQ-ACK信息可包括与时隙#(n-k)对应的HARQ-ACK。例如,当k∈{1,2,3,4,5,6,7,8}时,时隙#n的HARQ-ACK信息可包括与时隙#(n-8)至时隙#(n-1)对应的HARQ-ACK,而不管实际DL数据接收(即,最大数量的HARQ-ACK)如何。这里,HARQ-ACK信息可由HARQ-ACK码本或HARQ-ACK有效载荷代替。时隙可被理解/替换为DL数据接收的候选时机。如示例中描述的,可基于HARQ-ACK时隙基于PDSCH与HARQ-ACK定时来确定捆绑窗口,并且PDSCH与HARQ-ACK定时集合可具有预定义的值(例如,{1,2,3,4,5,6,7,8})或者可由高层(RRC)信令配置。在动态HARQ-ACK码本的情况下,UE要报告的HARQ-ACK有效载荷大小可通过DCI等动态地改变。在动态HARQ-ACK码本方案中,DL调度DCI可包括counter-DAI(即,c-DAI)和/或total-DAI(即,t-DAI)。这里,DAI指示下行链路指派索引并且用于BS告知UE所发送或调度的一个HARQ-ACK传输中要包括其HARQ-ACK的PDSCH。具体地,c-DAI是指示承载DL调度DCI的PDCCH(下文中,DL调度PDCCH)之间的顺序的索引,t-DAI是指示直至存在具有t-DAI的PDCCH的当前时隙,DL调度PDCCH的总数的索引。
在NR系统中,考虑在单个物理网络中实现多个逻辑网络的方法。逻辑网络需要支持具有各种要求的服务(例如,eMBB、mMTC、URLLC等)。因此,考虑各种服务要求设计NR的物理层以支持灵活传输结构。作为示例,如果需要,NR的物理层可改变OFDM符号长度(OFDM符号持续时间)和子载波间距(SCS)(下文中,OFDM参数集)。物理信道的传输资源也可在预定范围内(以符号为单位)改变。例如,在NR中,PUCCH(资源)和PUSCH(资源)可被配置为灵活地具有预定范围内的传输长度/传输起始定时。
通过控制资源集(CORESET)发送PDCCH。可为UE配置一个或更多个CORESET。CORESET由持续时间为1至3个OFDM符号的PRB的集合组成。构成CORESET的PRB和CORESET持续时间可通过高层(例如,RRC)信令提供给UE。根据对应搜索空间集合来监测配置的CORESET中的PDCCH候选的集合。在本公开中,监测意指根据监测的DCI格式对各个PDCCH候选进行解码(称为盲解码)。PBCH上的主信息块(MIB)向UE提供监测用于调度承载系统信息块1(SIB1)的PDSCH的PDCCH的参数(例如,CORESET#0配置)。PBCH还可指示不存在关联的SIB1。在这种情况下,可不仅向UE提供UE可假设不存在与SSB1关联的SSB的频率范围,而且可提供搜索与SIB1关联的SSB的其它频率。作为至少用于调度SIB1的CORESET,CORESET#0可由MIB或专用RRC信令配置。
由UE监测的PDCCH候选的集合依据PDCCH搜索空间集合来定义。搜索空间集合可以是公共搜索空间(CSS)集合或UE特定搜索空间(USS)集合。各个CORESET配置与一个或更多个搜索空间集合关联,并且各个搜索空间集合与一个CORESET配置关联。搜索空间集合基于BS提供给UE的以下参数来确定。
-controlResourceSetId:用于标识与搜索空间集合s关联的CORESET p的标识符。
-monitoringSlotPeriodicityAndOffset:时隙ks的PDCCH监测周期性和os个时隙的PDCCH监测偏移以配置用于PDCCH监测的时隙。
-duration:Ts<ks个时隙的持续时间,指示存在搜索空间集合s的时隙数量。
-monitoringSymbolsWithinSlot:时隙内的PDCCH监测图案,指示用于PDCCH监测的时隙内的CORESET的第一符号。
-nrofCandidates:每CCE聚合级别的PDCCH候选的数量。
-searchSpaceType:搜索空间集合s是CCE集合或USS集合的指示。
参数monitoringSymbolsWithinSlot可指示为PDCCH监测配置的时隙中用于PDCCH监测的第一符号(例如,参见monitoringSlotPeriodicityAndOffset和duration)。例如,当monitoringSymbolsWithinSlot是14比特参数时,最高有效(最左)比特可表示时隙中的第一OFDM符号,第二最高有效(最左)比特可表示时隙中的第二OFDM符号。这样,monitoringSymbolsWithinSlot的比特可分别表示时隙的14个OFDM符号。例如,monitoringSymbolsWithinSlot中的比特当中设定为1的比特可标识时隙中的CORESET的第一符号。
UE仅在PDCCH监测时机中监测PDCCH候选。UE从时隙内的PDCCH监测图案、PDCCH监测偏移和PDCCH监测周期性确定活动DL BWP上的监测时机。在一些实现方式中,对于搜索空间集合s,如果(nf*Nframe,u slot+nu s,f-os)mod ks=0,则UE确定存在于编号为nf的帧中编号为nu s,f的时隙中的PDCCH监测时机。UE从时隙nu s,f开始对于Ts个连续时隙监测搜索空间集合s的PDCCH候选,并且对于下一ks-Ts不监测搜索空间集合s的PDCCH候选。
下表示出搜索空间集合、相关RNTI及其使用情况。
[表7]
Figure BDA0004113439320000331
下表示出由PDCCH承载的DCI格式。
[表8]
Figure BDA0004113439320000341
DCI格式0_0可用于调度基于TB的(或TB级)PUSCH,DCI格式0_1可用于调度基于TB的(或TB级)PUSCH或基于码块组(CBG)的(或CBG级)PUSCH。DCI格式1_0可用于调度基于TB的(或TB级)PDSCH,DCI格式1_1可用于调度基于TB的(或TB级)PDSCH或基于CBG的(或CBG级)PDSCH。对于CSS,在通过RRC初始给出BWP大小之后,DCI格式0_0和DCI格式1_0具有固定大小。对于USS,在频域资源指派(FDRA)字段以外的字段中DCI格式0_0和DCI格式1_0的大小固定,而FDRA字段的大小可通过BS的相关参数配置而变化。在DCI格式0_1和DCI格式1_1中,可通过BS的各种RRC重新配置来改变DCI字段的大小。DCI格式2_0可用于向UE提供动态时隙格式信息(例如,SFI DCI),DCI格式2_1可用于向UE提供DL抢占信息,并且DCI格式2_4可用于指示UE需要取消UL传输的UL资源。
在包括BS和UE的无线通信系统中,当UE在PUCCH上发送UCI时,PUCCH资源可在时间轴上与另一PUCCH资源或PUSCH资源交叠。例如,(1)PUCCH(资源)和PUCCH(资源)(用于不同的UCI传输)或(2)PUCCH(资源)和PUSCH(资源)就同一UE而言可在时间轴上(在同一时隙中)交叠。UE可能不支持PUCCH-PUCCH同时传输或PUCCH-PUSCH同时传输(根据对UE能力的限制或根据从BS接收的配置信息)。另外,UE可能不被允许在预定时间范围内同时发送多个UL信道。
在本公开中,描述了当预定时间范围内存在UE应该发送的UL信道时处理多个UL信道的方法。在本公开中,还描述了处理在UL信道上应该已发送/接收的UCI和/或数据的方法。在本公开中在示例的描述中使用以下术语。
-UCI:UCI意指UE在UL上发送的控制信息。UCI包括多种类型的控制信息(即,UCI类型)。例如,UCI可包括HARQ-ACK(简称为A/N或AN)、SR和/或CSI。
-UCI复用:UCI复用可意指在公共物理UL信道(例如,PUCCH或PUSCH)上发送不同UCI(UCI类型)的操作。UCI复用可包括不同UCI(UCI类型)的复用。为了方便,复用的UCI被称为MUX UCI。此外,UCI复用可包括关于MUX UCI执行的操作。例如,UCI复用可包括确定UL信道资源以发送MUX UCI的处理。
-UCI/数据复用:UCI/数据复用可意指在公共物理UL信道(例如,PUSCH)上发送UCI和数据的操作。UCI/数据复用可包括将UCI与数据复用的操作。为了方便,复用的UCI/数据被称为MUX UCI/数据。此外,UCI/数据复用可包括关于MUX UCI/数据执行的操作。例如,UCI/数据复用可包括确定UL信道资源以发送MUX UCI/数据的处理。
-时隙:时隙意指用于数据调度的基本时间单位或时间间隔。时隙包括多个符号。这里,符号可以是基于OFDM的符号(例如,CP-OFDM符号或DFT-s-OFDM符号)。
-交叠UL信道资源:交叠UL信道资源意指在预定时间周期(例如,时隙)内在时间轴上彼此(至少部分地)交叠的UL信道(例如,PUCCH或PUSCH)资源。交叠UL信道资源可意指执行UCI复用之前的UL信道资源。在本公开中,在时间轴上(至少部分地)交叠的UL信道被称为在时间上或时域中冲突的UL信道。
图8示出将UCI与PUSCH复用的示例。当PUCCH资源和PUSCH资源在时隙中交叠并且未配置PUCCH-PUSCH同时传输时,可如所示在PUSCH上发送UCI。PUSCH上的UCI的传输被称为UCI捎带或PUSCH捎带。具体地,图8示出HARQ-ACK和CSI被承载在PUSCH资源上的情况。
当多个UL信道在预定时间间隔内交叠时,需要指定UE处理UL信道的方法,以便允许BS正确地接收UL信道。在下文中,将描述处理UL信道之间的冲突的方法。
图9示出在单个时隙中具有交叠PUCCH的UE处理UL信道之间的冲突的处理的示例。
为了发送UCI,UE可为各个UCI确定PUCCH资源。各个PUCCH资源可由起始符号和传输间隔定义。当用于PUCCH传输的PUCCH资源在单个时隙中交叠时,UE可基于具有最早起始符号的PUCCH资源来执行UCI复用。例如,UE可基于时隙中具有最早起始符号的PUCCH资源(下文中,PUCCH资源A)确定(时间上)交叠PUCCH资源(下文中,PUCCH资源B)(S901)。UE可对PUCCH资源A和PUCCH资源B应用UCI复用规则。例如,基于PUCCH资源A的UCI A和PUCCH资源B的UCI B,可根据UCI复用规则获得包括UCI A和UCI B的全部或部分的MUX UCI。为了复用与PUCCH资源A和PUCCH资源B关联的UCI,UE可确定单个PUCCH资源(下文中,MUX PUCCH资源)(S903)。例如,UE确定为UE配置或可用于UE的PUCCH资源集当中与MUX UCI的有效载荷大小对应的PUCCH资源集(下文中,PUCCH资源集X),并且确定属于PUCCH资源集X的PUCCH资源之一作为MUX PUCCH资源。例如,使用具有指示同一时隙用于PUCCH传输的PDSCH至HARQ反馈定时指示符字段的DCI当中的最后DCI中的PUCCH资源指示符字段,UE可将属于PUCCH资源集X的PUCCH资源之一确定为MUX PUCCH资源。UE可基于MUX UCI的有效载荷大小和MUX PUCCH资源的PUCCH格式的最大码率来确定MUX PUCCH资源的PRB的总数。如果MUX PUCCH资源与其它PUCCH资源(除了PUCCH资源A和PUCCH资源B之外)交叠,则UE可基于MUX PUCCH资源(或者包括MUX PUCCH资源的其它PUCCH资源当中具有最早起始符号的PUCCH资源)再次执行上述操作。
图10示出基于图9执行UCI复用的情况。参照图10,当多个PUCCH资源在时隙中交叠时,可基于最早PUCCH资源A(例如,具有最早起始符号的PUCCH资源A)执行UCI复用。在图10中,情况1和情况2示出第一PUCCH资源与另一PUCCH资源交叠。在这种情况下,可在第一PUCCH资源被视为最早PUCCH资源A的状态下执行图9的处理。相比之下,情况3示出第一PUCCH资源不与另一PUCCH资源交叠并且第二PUCCH资源与另一PUCCH资源交叠。在情况3中,不对第一PUCCH资源执行UCI复用。相反,可在第二PUCCH资源被视为最早PUCCH资源A的状态下执行图9的处理。情况2示出被确定为发送复用的UCI的MUX PUCCH资源重新与另一PUCCH资源交叠。在这种情况下,可在MUX PUCCH资源(或者包括MUX PUCCH资源的其它PUCCH资源当中的最早PUCCH资源(例如,具有最早起始符号的PUCCH资源))被视为最早PUCCH资源A的状态下另外执行图9的处理。
图11示出在单个时隙中具有交叠PUCCH和PUSCH的UE处理UL信道之间的冲突的处理。
为了发送UCI,UE可确定PUCCH资源(S1101)。用于UCI的PUCCH资源的确定可包括确定MUX PUCCH资源。换言之,UE用于UCI的PUCCH资源的确定可包括基于时隙中的多个交叠PUCCH来确定MUX PUCCH资源。
UE可基于所确定的(MUX)PUCCH资源在PUSCH资源上执行UCI捎带(S1103)。例如,当存在PUSCH资源(其上允许复用UCI传输)时,UE可对(在时间轴上)与PUSCH资源交叠的PUCCH资源应用UCI复用规则。UE可在PUSCH上发送UCI。
当时隙中不存在与所确定的PUCCH资源交叠的PUSCH时,省略S1103,并且可在PUCCH上发送UCI。
当所确定的PUCCH资源在时间轴上与多个PUSCH交叠时,UE可将UCI与PUSCH之一复用。例如,当UE打算向相应服务小区发送PUSCH时,UE可将UCI复用在服务小区当中的特定服务小区(例如,具有最小服务小区索引的服务小区)的PUSCH上。当特定服务小区的时隙中存在超过一个PUSCH时,UE可在时隙中发送的最早PUSCH上复用UCI。
图12示出考虑时间线条件的UCI复用。当UE针对在时间轴上交叠的PUCCH和/或PUSCH执行UCI和/或数据复用时,由于对PUCCH或PUSCH的灵活UL定时配置,UE可能缺少用于UCI和/或数据复用的处理时间。为了防止UE的处理时间不足,在针对(时间轴上)交叠的PUCCH和/或PUSCH执行UCI/数据复用的过程中考虑下面描述的两个时间线条件(下文中,复用时间线条件)。
(1)从(时间轴上)交叠的PUCCH和/或PUSCH当中最早信道的起始符号起在时间T1之前接收到与HARQ-ACK信息对应的PDSCH的最后符号。T1可基于i)根据UE处理能力定义的最小PDSCH处理时间N1和/或ii)根据调度符号的位置、PDSCH映射类型、BWP切换等预定义为等于或大于0的整数的d1,1来确定。
例如,T1可如下确定:T1=(N1+d1,1)*(2048+144)*κ*2-u*Tc。N1分别针对UE处理能力#1和#2基于表9和表10的u,并且μ是(μPDCCH,μPDSCH,μUL)中导致最大T1的一个,其中μPDCCH对应于用于调度PDSCH的PDCCH的子载波间距,μPDSCH对应于调度的PDSCH的子载波间距,μUL对应于要发送HARQ-ACK的UL信道的子载波间距,并且κ=Tc/Tf=64。在表9中,在N1,0的情况下,如果添加的DMRS的PDSCH DMRS位置为l1=12,则N1,0=14,否则,N1,0=13(参考3GPP TS 38.211的第7.4.1.1.2节)。如果用于PDSCH映射类型A的PDSCH的最后符号存在于第i时隙上,则对于i<7,d1,1=7-i,否则,d1,1=0。如果对于UE处理能力#1,PDSCH具有映射类型B,则当所分配的PDSCH符号的数量为7时d1,1可为0,当所分配的PDSCH符号的数量为4时d1,1可为3,当所分配的PDSCH符号的数量为2时d1,1可为3+d,其中d是调度PDCCH和调度的PDSCH的交叠符号的数量。如果对于UE处理能力#2,PDSCH映射类型为B,则当所分配的PDSCH符号的数量为7时d1,1可为0,并且当所分配的PDSCH符号的数量为4时d1,1可对应于调度PDCCH和调度的PDSCH的交叠符号的数量。此外,如果所分配的PDSCH符号的数量为2,则当调度PDSCH在3符号CORESET内并且CORESET和PDSCH具有相同的起始符号时d1,1可为3,并且对于其它情况,d1,1可以是调度PDCCH和调度的PDSCH的交叠符号的数量。在本公开中,T1也可称为T_proc,1。
(2)从(时间轴上)交叠的PUCCH和/或PUSCH当中最早信道的起始符号起在时间T2之前接收到用于指示PUCCH或PUSCH传输的(例如,触发)PDCCH的最后符号。T2可基于i)根据UE PUSCH定时能力定义的最小PUSCH准备时间N2,和/或ii)根据调度的符号位置、BWP切换等预定义为等于或大于0的整数的d2,x来确定。d2,x可被归类为与调度的符号的位置有关的d2,1和与BWP切换有关的d2,2
例如,T2可如下确定:T2=max{(N2+d2,1)*(2048+144)*κ*2-u*Tc+Text+Tswitch,d2,2}。N2分别对于UE定时能力#1和#2基于表11和表12的u,并且μ是(μDL,μUL)中导致最大T1的一个,其中μDL对应于承载用于调度PUSCH的DCI的PDCCH的子载波间距,μUL对应于PUSCH的子载波间距,并且κ=Tc/Tf=64。如果PUSCH分配的第一符号仅由DMRS组成,则d2,1可为0,否则,d2,1可为1。如果调度DCI触发了BWP切换,则d2,2等于切换时间,否则,d2,2为0。切换时间可根据频率范围(FR)不同地定义。例如,对于FR1,切换时间可被定义为0.5ms,对于FR2,可被定义为0.25ms。在本公开中,T2也可被称为T_proc,2。
下表示出根据UE处理能力的处理时间。具体地,表9示出对于UE的PDSCH处理能力#1的PDSCH处理时间,表10示出对于UE的PDSCH处理能力#2的PDSCH处理时间,表11示出对于UE的PUSCH定时能力#1的PUSCH准备时间,表12示出对于UE的PUSCH定时能力#2的PUSCH处理时间。
[表9]
Figure BDA0004113439320000381
[表10]
u/SCS PDSCH解码时间N1[符号]
0/15kHz 3
1/30kHz 4.5
2/60kHz 对于频率范围1,9
[表11]
u/SCS PUSCH准备时间N2[符号]
0/15kHz 10
1/30kHz 12
2/60kHz 23
3/120kHz 36
[表12]
u/SCS PUSCH准备时间N2[符号]
0/15kHz 5
1/30kHz 5.5
2/60kHz 对于频率范围1,11
UE可针对与频带组合内的一个频带条目对应的载波向BS报告由此支持的PDSCH处理能力。例如,UE可针对对应频带中支持的各个SCS报告关于UE是仅支持PDSCH处理能力#1还是支持PDSCH处理能力#2的UE能力。UE可针对与频带组合内的一个频带条目对应的载波报告由此支持的PUSCH处理能力。例如,UE可针对对应频带中支持的各个SCS报告关于UE是仅支持PUSCH处理能力#1还是支持PUSCH处理能力#2的UE能力。
如果被配置为在一个PUCCH内复用不同UCI类型的UE打算在时隙中发送多个交叠PUCCH或者在时隙中发送交叠PUCCH和PUSCH,则当满足特定条件时UE可复用UCI类型。特定条件可包括复用时间线条件。例如,图9至图11中应用UCI复用的PUCCH和PUSCH可以是满足复用时间线条件的UL信道。参照图12,UE可能需要在同一时隙中发送多个UL信道(例如,UL信道#1至#4)。这里,UL CH#1可以是由PDCCH#1调度的PUSCH。UL CH#2可以是用于发送对PDSCH的HARQ-ACK的PUCCH。PDSCH由PDCCH#2调度,并且UL CH#2的资源也可由PDCCH#2指示。
在这种情况下,如果时间轴上交叠的UL信道(例如,UL信道#1至#3)满足复用时间线条件,则UE可针对时间轴上交叠的UL信道#1至#3执行UCI复用。例如,UE可检查从PDSCH的最后符号起UL CH#3的第一符号是否满足T1的条件。UE还可检查从PDCCH#1的最后符号起ULCH#3的第一符号是否满足T2的条件。如果满足复用时间线条件,则UE可针对UL信道#1至#3执行UCI复用。相比之下,如果交叠UL信道当中的最早UL信道(例如,具有最早起始符号的UL信道)不满足复用时间线条件,则UE可能不被允许复用所有对应UCI类型。
图13示出时隙中的多个HARQ-ACK PUCCH的传输。
在一些场景中,规定UE不预期在时隙中发送超过一个具有HARQ-ACK信息的PUCCH。因此,根据这些场景,UE可在一个时隙中发送至多一个具有HARQ-ACK信息的PUCCH。为了防止UE由于对UE可发送的HARQ-ACK PUCCH的数量的限制而未能发送HARQ-ACK信息的情况,BS需要执行DL调度以使得HARQ-ACK信息可被复用在一个PUCCH资源上。然而,当考虑延迟和可靠性要求严格的服务(例如URLLC服务)时,将多个HARQ-ACK反馈仅集中在时隙中的一个PUCCH上的方案就PUCCH性能而言可能不可取。此外,为了支持延迟关键服务,BS可能需要在一个时隙中调度持续时间短的多个连续PDSCH。尽管UE可通过BS的配置/指示在时隙中的随机符号中发送PUCCH,但是如果UE仅被允许在时隙中发送最多一个HARQ-ACK PUCC,则BS可能无法执行PDSCH的快速背靠背调度并且UE可能无法执行快速HARQ-ACK反馈。因此,为了灵活且高效地使用资源并支持服务,最好允许在一个时隙中传输多个(非交叠)HARQ-ACKPUCCH(或PUSCH),如图13所示。
在下文中,将描述当UL传输在时隙内在时间上交叠时处理多个UL传输(例如,多个UL信道)的方法。例如,本公开提供了当较高优先级UL传输和低优先级UL传输在时间上交叠时(即,当被触发、指派或配置为较高优先级UL传输和低优先级UL传输在时间上交叠时)通过取消较高优先级UL传输开始之前的较低优先级UL传输来避免具有不同优先级的UL传输之间的冲突的实现方式。
图14示出具有不同优先级的PUCCH之间的冲突情况,图15和图16示出具有不同优先级的PUSCH和PUCCH之间的冲突情况。参照图14,当PDCCH接收中通过DCI格式调度(即,触发)的较高优先级H-PUCCH时间上与较低优先级L-PUCCH交叠时,UE可在与H-PUCCH交叠的第一符号之前取消L-PUCCH的传输。在这种情况下,根据UE实现,可取消整个L-PUCCH的传输,或者可取消L-PUCCH的与H-PUCCH交叠的部分的传输。因此,可至少取消L-PUCCH的与H-PUCCH交叠的部分的传输。
参照图15,当PDCCH接收中通过DCI格式调度(即,触发)的较高优先级H-PUCCH时间上与较低优先级L-PUSCH交叠时,UE可在与H-PUCCH交叠的第一符号之前取消L-PUSCH的传输。根据UE实现,可取消整个L-PUSCH的传输,或者可取消L-PUSCH的与H-PUCCH交叠的部分的传输。因此,可至少取消L-PUSCH的与H-PUCCH交叠的部分的传输。
参照图16,当PDCCH接收中通过DCI格式调度的较高优先级H-PUSCH时间上与较低优先级L-PUCCH交叠时,UE可在与H-PUSCH交叠的第一符号之前取消L-PUCCH的传输。根据UE实现,可取消整个L-PUCCH的传输,或者可取消L-PUCCH的与H-PUSCH交叠的部分的传输。因此,可至少取消L-PUCCH的与H-PUSCH交叠的部分的传输。
在图14至图16中,UE可预期H-PUCCH或H-PUSCH的传输不会在距PDCCH接收的最后符号T_proc,2+d1之前开始,其中T_proc,2是基于u和N2在d2,1的假设下对应UE处理能力的PUSCH准备时间,d1由所报告的UE能力确定。例如,UE报告给BS的参数push-PreparationLowPriority的值可用作d1
具体地,参考3GPP TS 38.213V16.2.0,当在第一PDCCH中通过DCI格式调度UE发送具有较高优先级的第一PUCCH或第一PUSCH,其与第二PDCCH中通过DCI格式调度的具有较低优先级的第二PUCCH或第二PUSCH交叠时,
>T_proc,2可基于与第一PDCCH、第二PDCCH、第一PUCCH或第一PUSCH和第二PUCCH或第二PUSCH当中的最小SCS配置对应的u的值。
>>如果交叠的组包括第一PUCCH,
>>>如果用于在一个服务小区中的UE的BWP上配置公共UE特定PDSCH参数的RRC配置PDSCH-ServingCellConfig中的参数processingType2Enabled对于UE接收第一PDCCH的服务小区和UE接收与第二PUCCH对应的PDSCH的所有服务小区被设定为启用,并且如果PDSCH-ServingCellConfig的processingType2Enabled对于具有第二PUSCH的服务小区被设定为启用,则对于u=0,N2可为5,对于u=1为5.5,对于u=2为11。
>>>否则,对于u=0,N2可为10,对于u=1为12,对于u=2为23,对于u=3为36。
>如果交叠的组包括第一PUSCH
>>如果PDSCH-ServingCellConfig的processingType2Enabled对于具有第一PUSCH和第二PUSCH的服务小区被设定为启用,并且如果PDSCH-ServingCellConfig的processingType2Enabled对于UE接收与第二PDCCH对应的PDSCH的所有服务小区被设定为启用,则对于u=0,N2可为5,对于u=1为5.5,对于u=2为11。
>>>否则,对于u=0,N2可为10,对于u=1为12,对于u=2为23,对于u=3为36。
参数processingType2Enabled可用于启用PDSCH的高级处理时间能力的配置。
当具有不同优先级的PUCCH之间或具有不同优先级的PUCCH和PUSCH之间发生冲突时,传统的基于3GPP的通信系统可基于扩展调度时间线来保证UE处理时间并且使得较低优先级UL传输能够在较高优先级UL传输之前被取消,如图14至图16中例示的。换言之,在传统的基于3GPP的通信系统中,UE需要最迟在与H-PUCCH交叠的第一符号之前取消L-PUCCH或L-PUSCH的传输,其中L-PUCCH或L-PUSCH时间上与在距PDCCH的最后符号至少T_proc,1+d1之后开始的H-PUCCH交叠。另外,UE需要最迟在与H-PUSCH交叠的第一符号之前取消L-PUCCH的传输,其中L-PUCCH时间上与在距PDCCH的最后符号至少T_proc,1+d1之后开始的对应H-PUSCH交叠。图14至图16示出了较低优先级UL信道的传输被触发/调度为在较高优先级UL信道的传输之前开始的情况。然而,对于与满足时间条件T_proc,1+d1的较高优先级UL信道交叠并被调度/触发为比较高优先级UL信道晚开始的L-PUSCH/L-PUCCH,UE可在第一交叠符号之前取消L-PUSCH/L-PUCCH的传输。当较低优先级UL信道被调度/触发为比较高优先级UL信道晚开始时,UE可取消整个L-PUSCH/L-PUCCH的传输,因为L-PUSCH/L-PUCCH从L-PUSCH/L-PUCCH的起始符号起与较高优先级UL信道交叠。
对于具有不同优先级的PUSCH之间的冲突,传统的基于3GPP的通信系统仅考虑配置许可PUSCH之间的冲突,其半静态地配置以使得BS很难基于调度避免冲突。即,传统的基于3GPP的通信系统没有考虑具有不同优先级的不同类型的PUSCH之间的冲突(例如,具有不同优先级的基于配置许可的PUSCH与基于动态许可的PUSCH之间在时间上交叠,或者具有不同优先级的基于动态许可的PUSCH之间在时间上交叠)。由于PUSCH传输基于由介质访问(MAC)层提供的传输块(TB),所以不仅需要考虑物理层操作,而且需要考虑MAC层操作以取消交叠PUSCH当中的一些PUSCH的传输。已规定,UE不应预期具有不同优先级的PUSCH之间在时间上交叠,因此,已预期BS调度具有不同优先级的PUSCH彼此时间上不交叠。然而,如果BS配置多个配置许可(CG)PUSCH,则BS可能难以调度基于PDCCH的PUSCH(即,基于动态许可的PUSCH)不与CG PUSCH交叠,因为预期CG PUSCH占用大量资源。在一些情况下,BS可能期望在BS向UE调度基于动态许可(DG)的PUSCH(以下称为第一PUSCH)的状态下动态地调度另一PUSCH(以下称为第二PUSCH)。然而,根据传统的基于3GPP的无线系统,BS具有这样的约束:需要调度第二PUSCH,使得第二PUSCH时间上不与第一PUSCH交叠。最近,为了使得BS能够自由地调度PUSCH,考虑允许BS调度PUSCH,使得具有不同优先级的基于CG的PUSCH和基于DG的PUSCH时间上交叠或者具有不同优先级的基于DG的PUSCH时间上交叠。
在下文中,将描述当具有不同优先级的PUSCH之间存在冲突时(即,当具有不同优先级的PUSCH被调度为在时间上彼此交叠时)处理UL信道之间冲突的方法。
如果在具有不同优先级的PUSCH之间发生冲突,则UE需要取消正在进行的或正在准备中的PUSCH的传输,并准备新PUSCH的传输。新PUSCH传输可以用于发送诸如具有较高优先级的URLLC服务的业务,并且UE可能需要几乎在最小处理时间内发送新PUSCH。然而,如果PUSCH管线的一部分用于前一PUSCH传输,则UE可能需要附加时间来取消前一PUSCH并再次使用PUSCH管线来匹配新PUSCH,使得UE可能需要比用于PUSCH传输的现有处理时间长的处理时间。
另外,为了保护重要性相对高的较低优先级UCI,正在考虑在较高优先级PUSCH上发送较低优先级UCI。对应的UCI可对应于与要取消的PUSCH复用的UCI。在这种情况下,UE可能需要附加时间来将具有不同优先级的UCI包括在PUSCH中。
在下文中,将描述以下实现方式:当较高优先级PUSCH传输取消了其它较低优先级UL传输时,较高优先级PUSCH传输的调度时间保证足够的时间来取消其它较低优先级UL传输以及将URLLC传输中的时间延迟最小化。具体地,将描述以下的实现方式:根据要由较高优先级(HP)PUSCH取消的较低优先级(LP)UL传输的类型使用不同的取消时间线以及处理基于取消时间线取消的LP PUCCH/PUSCH。
UE侧:
首先,将从UE的角度再次描述本公开的实现方式。
图17示出根据本公开的一些实现方式的UE处的UL信道发送的流程。
UE可被配置有针对各个优先级发送PUCCH和/或PUSCH所需的较高层参数。如果具有不同优先级的PUCCH和/或PUSCH在时间上交叠,则UE可以应用本公开的一些实现方式中要描述的取消时间线。在本公开的一些实现方式中,当UL信道彼此冲突时(即,当UL信道至少在时间上彼此交叠时),UE可基于取消时间线(即,取消时间条件)当中的满足的取消时间线,将包括在LP PUCCH/PUSCH中的LP UCI复用在HP PUSCH/PUCCH上。
在本公开的一些实现方式中,UE可如下操作。
UE可与BS建立RRC连接并且向BS发送UE能力报告(S1701)。UE可接收具有不同优先级的UL许可(S1703)。根据本公开的一些实现方式,UE可基于所发送的UE能力报告在多个UL许可之间执行复用和/或优先化。UE可取消非优先化的PUCCH和/或PUSCH的发送并且发送优先化的PUSCH(S1705)。在这种情况下,非优先化的PUCCH和/或PUSCH中的UCI可根据所满足的时间线在优先化的PUSCH上发送。
在本公开的UE的操作中可考虑以下实现方式。
<实现方式A1>针对PUSCH优先化的附加UL取消/准备时间偏移
在优先化中,可不同地对待PUCCH与PUSCH冲突的情况和PUSCH与另一PUSCH冲突的情况。当具有不同优先级的两个UL信道彼此交叠时,当UE在两个UL信道当中选择并发送一个UL信道时,并且当两个UL信道均为PUSCH时,UE可假设更长的PUSCH准备时间或更长的调度时间(与当具有不同优先级的PUCCH在时间上交叠时或者当具有不同优先级的PUCCH和PUSCH在时间上交叠时相比),以便确定调度的有效性(例如,以确定HP PUSCH是否被有效调度)。
在传统的基于3GPP的无线通信系统中,UE发送PUCCH(具体地,HARQ-ACK PUCCH)的过程可包括UE接收并处理PDSCH并且在物理(PHY)层在PUCCH上发送处理结果的过程。另一方面,PUSCH传输过程可包括以下的过程:在通过PDCCH接收到UL许可之后,MAC层从较高层信息(MAC SDU)生成适于PUSCH资源的TB并且将TB发送到PHY层。当各个信道被取消时,可能需要不同的处理。当PUCCH被取消时,可不必取消PDSCH解码和HARQ组合,因此PHY层将HARQ-ACK信息转换成比特序列并发送比特序列的过程可能需要被取消。另一方面,对于PUSCH,取消已从MAC SDU生成MAC PDU的PUSCH。因此,如果仅取消PHY信道的传输而不取消PUSCH,则除非存在来自BS的特殊辅助,否则可能难以发送所生成的MAC PDU,并且由于进行等待直到RLC重新排序,导致可能存在大的延迟。为了避免这些不利影响,用于撤销MAC PDU生成过程的MAC层过程可能是必需的,这可能需要附加的层间操作。在实现方式A1中,附加处理时间偏移d3被用来反映这种取消的UL信道的特性。
在这种情况下,d3可被包括在用于向BS告知UE所支持的能力的能力信令中并被发送。d3的值可通过RRC参数来发送,并且可从预定范围中选择一个值。例如,可选择值{0,1,2}中的一个。
另选地,为了确定d3的值,可如上所述考虑冲突的无线电资源的类型(例如,PUSCH或PUCCH)(具体地,要被取消的无线电资源的类型)。例如,当PUCCH被取消时,d3=0,或者d3可能不被应用。当PUSCH被取消时,可在值0、1和2当中选择d3作为由UE通过能力信令报告的值。另选地,可由作为单独能力的单独RRC参数报告当PUCCH被取消时应用的d3的值可不同于当PUSCH被取消时应用的d3的值。
另选地,可认为d3的值根据冲突资源而动态地改变。例如,取决于在UL信道之间的冲突中涉及的信道的数量大于或等于N还是小于或等于N,d3可具有不同的值。作为另一示例,取决于要被取消的信道的时间长度是大于或等于L个符号还是小于或等于L个符号,d3可具有不同的值。作为其它示例,取决于是否调度在时间上与被取消的信道交叠的另一UL信道,d3可具有不同的值。例如,当存在与被取消的PUSCH资源在时间上交叠的另一PUCCH资源时,并且当在PUSCH资源被取消的情况下PUCCH传输能够通过在对应PUSCH资源上执行UCI复用来执行时,d3可具有较大的值。在这种情况下,可通过BS的L1信令和/或高层信令来预定义或确定在各个情况下要使用的信道数量N、信道长度L和d3的值。
例如,当UE支持具有不同优先级的两个PUSCH之间的优先化时,UE可通过能力信令(即,能力报告)向BS报告附加处理时间d3。当UE在具有不同优先级的两个PUSCH之间执行优先化时,UE可仅预期以下情况:从调度具有较大(即,较高)优先级的PUSCH的PDCCH的末尾到对应PUSCH的起始的距离大于或等于T_proc,2+d1+d3或T'_proc,2+d1。换言之,可调节为UE预期与LP PUSCH在时间上交叠的HP PUSCH不在从调度HP PUSCH的传输的PDCCH的最后符号起经过时间T_proc,2+d1+d3之前开始。
另选地,对于时间延迟减少,当UE在具有不同优先级的两个PUSCH之间执行优先化时,UE可仅预期以下情况:从调度具有较大(即,较高)优先级的PUSCH的PDCCH的末尾到具有较高优先级的PUSCH与具有较小(即,较低)优先级的PUSCH交叠的符号当中的第一符号的起始的距离大于或等于T_proc,2+d1+d3或T'_proc,2+d1。换言之,可调节UE期望LP PUSCH与HPPUSCH交叠的第一符号不在从调度HP PUSCH的传输的PDCCH的最后符号起经过时间T_proc,2+d1+d3之前开始。这可保证从PDCCH调度HP PUSCH到实际需要取消的时间点的距离,从而减少了较高优先级调度中的延迟。
在实现方式A1中可考虑以下内容。
-T_proc,2=max{(N2+d2,1+d2)(2048+144)*κ*2-u*Tc+Text+Tswitch,d2,2}}
-T'_proc,2=max{(N2+d2,1+d2+d3)(2048+144)*κ*2-u*Tc+Text+Tswitch,d2,2}}
-T_proc,2和T'_proc,2是针对对应UE处理能力的PUSCH准备时间。
-假设d2,1=0,在3GPP TS 38.214V16.2.0的第6.4节中定义N2和d3以外的其它参数(例如,Text、Tswtich、d2,2等)。
-d1可由所报告的UE能力来确定。
-N2可如3GPP TS 38.214V16.2.0中描述的确定(参见3GPP TS 38.214V16.2.0中的N2)。
<实现方式A2>针对PUSCH复用的附加UL取消/准备时间线
当UE选择并发送(在时间上)彼此交叠并且具有不同优先级的两个UL信道中的一个时,UE可通过考虑附加准备时间或调度时间来基于两个PUSCH准备时间或调度时间确定H-PUSCH调度的有效性。
附加准备时间或调度时间可以以由符号的数量表示的偏移的形式来定义,该偏移可由UE和BS之间的L1信令或高层信令来预先确定或确定。UE可基于常规时间线X和附加时间线Y中的每一个来使用偏移确定调度的有效性。
例如,当UE支持在具有不同优先级的两个PUSCH/PUCCH之间(即,在具有不同优先级的PUSCH和PUCCH之间、在具有不同优先级的PUSCH之间或在具有不同优先级的PUCCH之间)的优先化时,UE可通过能力信令报告附加处理时间d优先级。当UE执行具有不同优先级的PUSCH/PUCCH之间的优先化时,如果具有较大(即,较高)优先级的PUSCH/PUCCH的起始和调度对应PUSCH/PUCCH或相关PDSCH的PDCCH的末尾之间的距离大于或等于T_proc,2+d1,则UE可确定满足时间线X。如果该距离大于或等于T_proc,2+d1+d优先级或T'_proc,2d1,则UE可确定满足附加时间线Y。
在实现方式A2中可考虑以下内容。
-T_proc,2=max{(N2+d2,1+d2)(2048+144)*κ*2-u*Tc+Text+Tswitch,d2,2}}
-T'_proc,2=max{(N2+d2,1+d2+d优先级)(2048+144)*κ*2-u*Tc+Text+Tswitch,d2,2}}
-T_proc,2和T'_proc,2是针对对应UE处理能力的PUSCH准备时间。
-假设d2,1=0,在3GPP TS 38.214V16.2.0的第6.4节中定义N2和d优先级以外的其它参数(例如,Text、Tswtich、d2,2等)。
-d1可由所报告的UE能力来确定。
-N2可如3GPP TS 38.214V16.2.0中描述的确定(参见3GPP TS 38.214V16.2.0中的N2)。
在本公开的一些实施方式中,UE可考虑时间线X和时间线Y来执行以下操作。
<实现方式A2-1>
如果具有不同优先级的两个交叠UL传输满足时间线X但不满足时间线Y,则UE可至少从具有较低优先级的PUSCH或PUCCH的符号当中的与具有较大(即,较高)优先级的PUSCH或PUCCH交叠的第一符号起取消具有较小(即,较低)优先级的PUSCH或PUCCH的传输,并且BS可预期UE将如上所述操作。
<实现方式A2-2>
如果具有不同优先级的两个交叠UL传输满足时间线X和时间线Y二者,并且如果具有较小(较低)优先级的UL信道是包括UCI的PUCCH或PUSCH,则UE可在具有较大(较高)优先级的PUSCH或PUCCH上复用和发送包括在具有较小(较低)优先级的PUSCH或PUCCH中的UCI,并且BS可期望UE将如上所述操作。
在实现方式A2-2中,时间线Y可以是启用优先级间复用的时间条件。即,当具有较大(较高)优先级的UL传输以足够的时间被调度时,实现方式A2-2可在有限的基础上启用优先级间UL复用,从而防止当LP PUSCH/PUCCH被取消时可能发生的问题。
<实现方式A3>
如果UE在取消PUSCH/PUCCH之后接收到满足特定条件的PDCCH,则UE可在对应PDCCH所指示的资源或具有与由对应PDCCH所指示的时隙(或由少于14个符号(例如,2或7个符号)组成的子时隙)内先前取消的PUSCH或PUCCH相同的时隙内(或子时隙内)位置的资源上发送取消的PUSCH或PUCCH的有效载荷。如果PUCCH被取消并且如果PUSCH调度满足特定条件,则UE可在PUSCH上发送假定要在被取消的PUCCH上发送的UCI。如果PUSCH被取消并且如果PUSCH调度满足特定条件,则UE可仅重传PUSCH的被取消部分。例如,参照图15,如果L-PUSCH传输开始但在H-PUSCH传输开始之前被取消,则除了在L-PUSCH被取消之前传输的一部分之外,仅由于H-PUSCH的起始而被取消的L-PUSCH的一部分可被重传。
当传统UE或使用实现方式A2-1的UE执行UL传输之间的优先化时,UE可取消LPPUSCH/PUCCH的全部或一部分。根据实现方式A3,UE可通过另一传输将包括在被取消的传输中的UCI直接发送到BS。具体地,当包括HARQ-ACK反馈的PUSCH/PUCCH被取消时,BS可再次接收HARQ-ACK反馈,即,接收与被取消的HARQ-ACK反馈关联的PDSCH的接收结果,而无需调度关联的PDSCH的重传。
在实现方式A3中,以下可被视为特定条件。
-对应PDCCH是在具有较小(较低)优先级的传输被取消的符号之后首先接收的PDCCH。
-调度DCI的特定字段值与预定字段值匹配。例如,在对应PDCCH上承载的调度DCI中的类型1资源分配字段为0并且MCS的值为31(参见3GPP TS 38.212)。
-预先配置用于标识满足特定条件的PDCCH的RNTI,并且对应PDCCH的CRC利用对应RNTI加扰。在这种情况下,对应PDCCH可以是组公共PDCCH。如果UE取消PUCCH/PUSCH的传输,则UE可以以与先前取消的传输的方式相同的方式在通过将预定或指示的时隙或子时隙偏移应用于接收调度被取消的PUCCH/PUSCH的PDCCH的时间而确定的时隙中发送被取消的PUCCH/PUSCH。例如,可基于用于传输的时隙位置以外的与先前取消的传输相同的参数(例如,起始符号、符号数量、DM-RS位置、天线端口等)来执行被取消的PUCCH/PUSCH的重传。
BS侧:
将从BS的角度再次描述本公开的上述实现方式。
图18示出根据本公开的一些实现方式的BS处的UL信道接收的流程。
BS可被配置有针对各个优先级发送PUCCH和/或PUSCH所需的较高层参数。如果对于UE具有不同优先级的PUCCH和/或PUSCH在时间上交叠,则BS可预期UE可应用以上在本公开的一些实现方式中描述的取消时间线。在本公开的一些实现方式中,当UE在UL信道之间有冲突时(即,当UL信道至少在时间上彼此交叠时),BS可预期UE可基于取消时间线(即,取消时间条件)当中的满足的取消时间线,将包括在LP PUCCH/PUSCH中的LP UCI复用到HPPUSCH/PUCCH。
在本公开的一些实现方式中,BS可如下操作。
BS可与UE建立RRC连接并且从UE接收UE能力报告(S1801)。BS可考虑UE的能力将具有不同优先级的多个PUSCH的UL许可发送到UE(S1803)。BS可假设UE根据本公开的一些实施方式执行多个UL许可之间的复用和/或优先化,然后根据复用和/或优先化的结果来接收由UE优先化的PUSCH(S1805)。BS可假设根据UE的能力在优先化的PUSCH上发送非优先化的PUCCH和/或PUSCH中的UCI,然后执行PUSCH的解码。非优先化的PUCCH和/或PUSCH中的UCI可在优先化的PUSCH上传输。
在本公开的BS的操作中可考虑以下实现方式。
<实现方式B1>针对PUSCH优先化的附加UL取消/准备时间偏移
在优先化中,可不同地对待PUCCH与PUSCH冲突的情况和PUSCH与另一PUSCH冲突的情况。当具有不同优先级的两个UL信道彼此交叠时,当UE在两个UL信道当中选择并发送一个UL信道时,并且当两个UL信道均为PUSCH时,BS可假设UE使用更长的PUSCH准备时间或更长的调度时间(与当具有不同优先级的PUCCH在时间上交叠时或者当具有不同优先级的PUCCH和PUSCH在时间上交叠时相比),以便确定调度的有效性(例如,以确定HP PUSCH是否被有效调度)。
在传统的基于3GPP的无线通信系统中,UE发送PUCCH(具体地,HARQ-ACK PUCCH)的过程可包括UE接收并处理PDSCH并且在物PHY层在PUCCH上发送处理结果的过程。另一方面,PUSCH传输过程可包括以下的过程:在通过PDCCH接收到UL许可之后,MAC层从较高层信息(MAC SDU)生成适于PUSCH资源的TB并且将TB发送到PHY层。当各个信道被取消时,可能需要不同的处理。当PUCCH被取消时,可不必取消PDSCH解码和HARQ组合,因此PHY层将HARQ-ACK信息转换成比特序列并发送比特序列的过程可能需要被取消。另一方面,对于PUSCH,取消已从MAC SDU生成MAC PDU的PUSCH。因此,如果仅取消PHY信道的传输而不取消PUSCH,则除非有来自BS的特殊辅助,否则可能难以发送所生成的MAC PDU,并且由于进行等待直到RLC重新排序,导致可能存在大的延迟。为了避免这些不利影响,用于撤销MAC PDU生成过程的MAC层过程可能是必需的,这可能需要附加的层间操作。在实现方式B1中,附加处理时间偏移d3被用来反映这种被取消的UL信道的特性。
在这种情况下,d3可被包括在用于向BS告知UE所支持的能力的能力信令中并被发送。d3的值可由RRC参数来传输,并且可从预定范围中选择一个值。例如,可选择值{0,1,2}中的一个。
另选地,为了确定d3的值,可如上所述考虑冲突的无线电资源的类型(例如,PUSCH或PUCCH)(具体地,要被取消的无线电资源的类型)。例如,当PUCCH被取消时,d3=0,或者d3可能不被应用。当PUSCH被取消时,可在值0、1和2当中选择d3作为由UE通过能力信令报告的值。另选地,可由作为单独能力的单独RRC参数报告当PUCCH被取消时应用的d3的值可不同于当PUSCH被取消时应用的d3的值。
另选地,可认为d3的值根据冲突资源而动态地改变。例如,取决于在UL信道之间的冲突中涉及的信道的数量大于或等于N还是小于或等于N,d3可具有不同的值。作为另一示例,取决于要被取消的信道的时间长度是大于或等于L个符号还是小于或等于L个符号,d3可具有不同的值。作为其它示例,取决于是否调度在时间上与被取消的信道交叠的另一UL信道,d3可具有不同的值。例如,当存在与被取消的PUSCH资源在时间上交叠的另一PUCCH资源时,并且当在PUSCH资源被取消的情况下PUCCH传输能够通过在对应PUSCH资源上执行UCI复用来执行时,d3可具有较大的值。在这种情况下,可通过BS的L1信令和/或高层信令来预定义或确定在各个情况下要使用的信道数量N、信道长度L和d3的值。
例如,当UE支持具有不同优先级的两个PUSCH之间的优先化时,UE可通过能力信令(即,能力报告)向BS报告附加处理时间d3。当UE在具有不同优先级的两个PUSCH之间执行优先化时,BS可通过假设UE仅预期以下情况来执行调度:从调度具有较大(即,较高)优先级的PUSCH的PDCCH的末尾到对应PUSCH的起始的距离大于或等于T_proc,2+d1+d3或T'_proc,2+d1。例如,BS可调度与LP PUSCH在时间上交叠的HP PUSCH,使得HP PUSCH至少在从调度HPPUSCH的传输的PDCCH的最后符号起经过时间T_proc,2+d1+d3之后开始。
另选地,对于时间延迟减少,当UE在具有不同优先级的两个PUSCH之间执行优先化时,BS可通过假设UE仅预期以下情况来执行调度:从调度具有较大(即,较高)优先级的PUSCH的PDCCH的末尾到具有较高优先级的PUSCH与具有较小(即,较低)优先级的PUSCH交叠的符号当中的第一符号的起始的距离大于或等于T_proc,2+d1+d3或T'_proc,2+d1。例如,BS可执行调度,使得LP PUSCH与HP PUSCH交叠的第一符号至少在从调度HP PUSCH的传输的PDCCH的最后符号起经过时间T_proc,2+d1+d3之后开始。这可保证从PDCCH调度HP PUSCH到实际需要取消的时间点的距离,从而减少了较高优先级调度中的延迟。
在实现方式B1中可考虑以下内容。
-T_proc,2=max{(N2+d2,1+d2)(2048+144)*κ2-u*Tc+Text+Tswitch,d2,2}}
-T'_proc,2=max{(N2+d2,1+d2+d3)(2048+144)*κ2-u*Tc+Text+Tswitch,d2,2}}
-T_proc,2和T'_proc,2是针对对应UE处理能力的PUSCH准备时间。
-假设d2,1=0,在3GPP TS 38.214V16.2.0的第6.4节中定义N2和d3以外的其它参数(例如,Text、Tswtich、d2,2等)。
-d1可以由所报告的UE能力来确定。
-N2可如3GPP TS 38.214V16.2.0中描述的确定(参见3GPP TS 38.214V16.2.0中的N2)。
<实现方式B2>针对PUSCH复用的附加UL取消/准备时间线
当UE选择并发送(在时间上)彼此交叠并且具有不同优先级的两个UL信道中的一个时,BS可假设UE将通过考虑附加准备时间或调度时间来基于两个PUSCH准备时间或调度时间确定H-PUSCH调度的有效性。
附加准备时间或调度时间可以以由符号的数量表示的偏移的形式来定义,该偏移可由UE和BS之间的L1信令或高层信令来预先确定或确定。BS可假设UE将基于常规时间线X和附加时间线Y中的每一个来使用偏移确定调度的有效性。
例如,当UE支持在具有不同优先级的两个PUSCH/PUCCH之间(即,在具有不同优先级的PUSCH和PUCCH之间、在具有不同优先级的PUSCH之间或在具有不同优先级的PUCCH之间)的优先化时,UE可通过能力信令报告附加处理时间d优先级。BS可通过如下假设来执行调度和/或接收UL信道:当UE执行具有不同优先级的PUSCH/PUCCH之间的优先化时,如果具有较大(即,较高)优先级的PUSCH/PUCCH的起始和调度对应PUSCH/PUCCH或相关PDSCH的PDCCH的末尾之间的距离大于或等于T_proc,2+d1,则UE将确定满足时间线X。另外,BS可通过如下假设来执行调度和/或接收UL信道:如果距离大于或等于T_proc,2+d1+d优先级或T'_proc,2+d1,则UE可确定满足附加时间线Y。
在实现方式B2中可考虑以下内容。
-T_proc,2=max{(N2+d2,1+d2)(2048+144)*κ*2-u*Tc+Text+Tswitch,d2,2}}
-T'_proc,2=max{(N2+d2,1+d2+d优先级)(2048+144)*κ*2-u*Tc+Text+Tswitch,d2,2}}
-T_proc,2和T'_proc,2是针对对应UE处理能力的PUSCH准备时间。
-假设d2,1=0,在3GPP TS 38.214V16.2.0的第6.4节中定义N2和d优先级以外的其它参数(例如,Text、Tswtich、d2,2等)。
-d1可由所报告的UE能力来确定。
-N2可如3GPP TS 38.214V16.2.0中描述的确定(参见3GPP TS 38.214V16.2.0中的N2)。
在本公开的一些实施方式中,BS可考虑时间线X和时间线Y针对UE执行以下的资源分配操作。
<实现方式B2-1>
如果具有不同优先级的两个交叠UL传输满足时间线X但不满足时间线Y,则UE可至少从具有较小优先级的PUSCH或PUCCH的符号当中的与具有较大(即,较高)优先级的PUSCH或PUCCH交叠的第一符号起取消具有较小(即,较低)优先级的PUSCH或PUCCH的传输,并且BS可预期UE将如上所述操作。
<实现方式B2-2>
如果具有不同优先级的两个交叠UL传输满足时间线X和时间线Y二者,并且如果具有较小(较低)优先级的UL信道是包括UCI的PUCCH或PUSCH,则UE可在具有较大(较高)优先级的PUSCH或PUCCH上复用和发送包括在具有较小(较低)优先级的PUSCH或PUCCH中的UCI,并且BS可期望UE将如上所述操作。
在实现方式B2-2中,时间线Y可以是启用优先级间复用的时间条件。即,当具有较大(较高)优先级的UL传输以足够的时间被调度时,实现方式B2-2可在有限的基础上启用优先级间UL复用,从而防止当LP PUSCH/PUCCH被取消时可能发生的问题。
<实现方式B3>
如果UE在取消PUSCH/PUCCH之后接收到满足特定条件的PDCCH,则BS可假设UE将在对应PDCCH所指示的资源或具有与由对应PDCCH所指示的时隙内先前取消的PUSCH或PUCCH相同的时隙内(或子时隙内)位置的资源上发送取消的PUSCH或PUCCH的有效载荷。如果PUCCH被取消并且如果PUSCH调度满足特定条件,则BS可通过如下假设来接收PUSCH:UE将在PUSCH上发送假定要在被取消的PUCCH上发送的UCI。如果PUSCH被取消并且如果PUSCH调度满足特定条件,则BS可通过如下假设来执行UL接收:UE将仅重传PUSCH的被取消部分。例如,参照图15,如果L-PUSCH传输开始但在H-PUSCH传输开始之前被取消,则BS可假设除了在L-PUSCH被取消之前传输的一部分之外,仅由于H-PUSCH的起始而被取消的L-PUSCH的一部分被重传。
当传统UE或使用实现方式B2-1的UE执行UL传输之间的优先化时,BS可通过如下假设来执行UL接收:UE将取消LP PUSCH/PUCCH的全部或一部分。根据实现方式B3,BS可通过UE的另一传输直接接收包括在UE的被取消的传输中的UCI。具体地,根据实现方式B3,当包括HARQ-ACK反馈的PUSCH/PUCCH被取消时,BS可再次接收HARQ-ACK反馈,即,接收与被取消的HARQ-ACK反馈关联的PDSCH的接收结果,而无需调度关联的PDSCH的重传。
在实现方式B3中,以下可被视为特定条件。
-对应PDCCH是在具有较小(较低)优先级的传输被取消的符号之后首先接收的PDCCH。
-调度DCI的特定字段值与预定字段值匹配。例如,在对应PDCCH上承载的调度DCI中的类型1资源分配字段为0并且MCS的值为31(参见3GPP TS 38.212)。
-预先配置用于标识满足特定条件的PDCCH的RNTI,并且对应PDCCH的CRC利用对应RNTI加扰。在这种情况下,对应PDCCH可以是组公共PDCCH。如果UE取消PUCCH/PUSCH的传输,则BS可通过如下假设来执行UL接收:UE以与先前取消的传输的方式相同的方式在通过将预定或指示的时隙或子时隙偏移应用于接收调度被取消的PUCCH/PUSCH的PDCCH的时间而确定的时隙中发送被取消的PUCCH/PUSCH。例如,BS可通过如下假设来执行UL接收:基于用于传输的时隙位置以外的与先前取消的传输相同的参数(例如,起始符号、符号数量、DM-RS位置、天线端口等)来执行被取消的PUCCH/PUSCH的重传。
图19示出根据本公开的一些实现方式的UE和BS之间的信号发送/接收的流程。
BS与UE可建立RRC连接,并且UE可向BS报告UE能力信息(S1901)。BS可发送用于向UE分配具有不同优先级并且在时间上交叠的多个PUSCH资源的UL许可(S1903)。根据本公开的一些实现方式,UE可基于UL许可和时间线条件来执行优先化和/或复用,并且BS可假设要由UE执行的优先化和/或复用。UE可在优先化的PUSCH资源上执行UL传输,并且BS可在优先化的PUSCH资源上接收UL传输(S1905)。
根据本公开的一些实现方式,当HP PUSCH传输取消其它LP UL传输时,BS和UE可允许HP PUSCH传输的调度时间保证足够的时间来取消其它LP UP传输以及将URLLC传输中的时间延迟最小化。根据本公开的一些实现方式,可允许UE使用多个时间线(即,多个时间条件),从而降低UE的实现复杂度以及执行优先级间UL复用。另外,可允许BS在无需再次请求LP UCI的情况下在HP信道上执行接收。
UE可根据本公开的一些实现方式执行与UL信道的传输关联的操作。UE可包括:至少一个收发器;至少一个处理器;以及至少一个计算机存储器,其在操作上可连接到所述至少一个处理器并且存储指令,这些指令在被执行时使得所述至少一个处理器根据本公开的一些实现方式执行操作。用于UE的处理设备可包括:至少一个处理器;以及至少一个计算机存储器,其在操作上可连接到所述至少一个处理器并且存储指令,这些指令在被执行时使得所述至少一个处理器根据本公开的一些实现方式执行操作。计算机可读存储介质可存储包括指令的至少一个计算机程序,这些指令在由至少一个处理器执行时使得所述至少一个处理器根据本公开的一些实现方式执行操作。计算机可读(非暂时性)存储介质可存储包括指令的至少一个计算机程序,这些指令在由至少一个处理器执行时使得所述至少一个处理器根据本公开的一些实现方式执行操作。计算机程序或计算机程序产品可包括指令,这些指令被存储在至少一个计算机可读(非易失性)存储介质上并且在被执行时使得(至少一个处理器)根据本公开的一些实现方式执行操作。
对于UE、处理装置、计算机可读(非易失性)存储介质和/或计算机程序产品,这些操作可包括:基于第一PUCCH和具有比第一PUCCH的优先级低的优先级的第二PUCCH在时间上彼此交叠并且第一PUCCH满足第一时间条件,执行第一PUCCH的发送并且取消第二PUCCH的发送;以及基于第一PUSCH和具有比第一PUSCH的优先级低的优先级的第二PUSCH在时间上彼此交叠并且第一PUSCH满足第二时间条件,执行第一PUSCH的发送并且取消第二PUSCH的发送。第二时间条件的时间长度T_B可比第一时间条件的时间长度T_A长。
在本公开的一些实现方式中,这些操作还可包括:基于第三PUCCH和具有比第三PUCCH的优先级低的优先级的第四PUSCH在时间上彼此交叠并且第三PUCCH满足第一时间条件,执行第三PUCCH的发送并且取消第四PUSCH的发送。
在本公开的一些实现方式中,这些操作还可包括:基于第三PUSCH和具有比第三PUSCH的优先级低的优先级的第四PUCCH在时间上彼此交叠并且第三PUSCH满足第一时间条件,执行第三PUSCH的发送并且取消第四PUCCH的发送。
在本公开的一些实现方式中,这些操作还可包括:基于与第二PUCCH在时间上交叠的第一PUCCH满足第一时间条件并且不满足第二时间条件,将包括在第二PUCCH中的UCI复用在第一PUCCH上。
在本公开的一些实现方式中,这些操作还可包括:基于与第四PUCCH在时间上交叠的第三PUSCH满足第一时间条件并且不满足第二时间条件,将包括在第四PUCCH中的UCI复用在第三PUSCH上。
在本公开的一些实现方式中,第一时间条件可包括以下:从调度较高优先级UL信道的PDCCH的最后符号到所述较高优先级上行链路信道的起始的时间距离大于或等于T_A=T_proc,2+d1,其中T_proc,2是针对UE的处理能力的PUSCH准备时间,并且d1由UE所报告的能力来确定。
在本公开的一些实现方式中,第二时间条件可包括以下:PDCCH的最后符号到较高优先级上行链路信道的起始的时间距离大于或等于T_B=T_proc,2+d1+dadd,其中T_proc,2是针对UE的处理能力的PUSCH准备时间,并且d1由UE所报告的能力来确定。
BS可根据本公开的一些实现方式执行关于HARQ-ACK接收的操作。BS可包括:至少一个收发器;至少一个处理器;以及至少一个计算机存储器,其在操作上连接到所述至少一个处理器并且被配置为存储指令,所述指令在被执行时使得所述至少一个处理器根据本公开的一些实现方式执行操作。用于BS的处理装置可包括:至少一个处理器;以及至少一个计算机存储器,其在操作上连接到所述至少一个处理器并且被配置为存储指令,这些指令在被执行时使得所述至少一个处理器根据本公开的一些实现方式执行操作。计算机可读(非暂时性)存储介质可存储包括指令的至少一个计算机程序,这些指令在由至少一个处理器执行时使得所述至少一个处理器根据本公开的一些实现方式执行操作。计算机程序或计算机程序产品可包括指令,这些指令被存储在至少一个计算机可读(非易失性)存储介质上并且在被执行时使得(至少一个处理器)根据本公开的一些实现方式执行操作。
对于BS、处理装置、计算机可读(非易失性)存储介质和/或计算机程序产品,这些操作可包括:基于第一PUCCH和具有比第一PUCCH的优先级低的优先级的第二PUCCH在时间上彼此交叠并且第一PUCCH满足第一时间条件,执行第一PUCCH的接收并且取消第二PUCCH的接收;以及基于第一PUSCH和具有比第一PUSCH的优先级低的优先级的第二PUSCH在时间上彼此交叠并且第一PUSCH满足第二时间条件,执行第一PUSCH的接收并且取消第二PUSCH的接收。第二时间条件的时间长度T_B可比第一时间条件的时间长度T_A长。
在本公开的一些实现方式中,这些操作还可包括:基于第三PUCCH和具有比第三PUCCH的优先级低的优先级的第四PUSCH在时间上交叠并且第三PUCCH满足第一时间条件,执行第三PUCCH的接收并且取消第四PUSCH的接收。
在本公开的一些实现方式中,这些操作还可包括:基于第三PUSCH和具有比第三PUSCH的优先级低的优先级的第四PUCCH在时间上交叠并且第三PUSCH满足第一时间条件,执行第三PUSCH的接收并且取消第四PUCCH的接收。
在本公开的一些实现方式中,这些操作还可包括:基于与第二PUCCH在时间上交叠的第一PUCCH满足第一时间条件并且不满足第二时间条件,在第一PUCCH上接收假定要在第二PUCCH上接收的UCI。
在本公开的一些实现方式中,这些操作还可包括:基于与第四PUCCH在时间上交叠的第三PUSCH满足第一时间条件并且不满足第二时间条件,在第三PUSCH上接收假定要在第四PUCCH上接收的UCI。
在本公开的一些实现方式中,时间长度T_B可比时间长度T_A长dadd。在这种情况下,dadd可对应于在本公开的实现方式A1中描述的d3或者在本公开的实现方式A2中描述的d优先级
在本公开的一些实现方式中,第一时间条件可包括以下:从调度较高优先级UL信道的PDCCH的最后符号到所述较高优先级上行链路信道的起始的时间距离大于或等于T_A=T_proc,2+d1,其中T_proc,2是针对UE的处理能力的PUSCH准备时间,并且d1由UE所报告的能力来确定。
在本公开的一些实现方式中,第二时间条件可包括以下:PDCCH的最后符号到较高优先级上行链路信道的起始的时间距离大于或等于T_B=T_proc,2+d1+dadd,其中T_proc,2是针对UE的处理能力的PUSCH准备时间,并且d1由UE所报告的能力来确定。
已呈现了如上所述的本公开的示例以使得本领域普通技术人员能够实现和实践本公开。尽管参考示例描述了本公开,但是本领域技术人员可在本公开的示例中进行各种修改和变化。因此,本公开并非旨在限于本文所阐述的示例,而是符合与本文所公开的原理和特征一致的最宽范围。
工业实用性
本公开的实现方式可在BS、UE或无线通信系统中的其它设备中使用。

Claims (15)

1.一种在无线通信系统中由用户设备UE发送上行链路信道的方法,该方法包括以下步骤:
基于第一物理上行链路控制信道PUCCH和具有比所述第一PUCCH的优先级低的优先级的第二PUCCH在时间上交叠并且所述第一PUCCH满足第一时间条件,执行所述第一PUCCH的发送并且取消所述第二PUCCH的发送;以及
基于第一物理上行链路共享信道PUSCH和具有比所述第一PUSCH的优先级低的优先级的第二PUSCH在时间上交叠并且所述第一PUSCH满足第二时间条件,执行所述第一PUSCH的发送并且取消所述第二PUSCH的发送,
其中,所述第二时间条件的时间长度T_B比所述第一时间条件的时间长度T_A长。
2.根据权利要求1所述的方法,其中,所述时间长度T_B比所述时间长度T_A长dadd,并且
其中,dadd是由UE向基站BS报告的附加处理时间。
3.根据权利要求1所述的方法,该方法还包括以下步骤:
接收关于dadd的信息,其中,所述时间长度T_B比所述时间长度T_A长dadd
4.根据权利要求1所述的方法,该方法还包括以下步骤:
基于与所述第二PUCCH在时间上交叠的所述第一PUCCH满足所述第一时间条件并且不满足所述第二时间条件,将包括在所述第二PUCCH中的上行链路控制信息UCI复用在所述第一PUCCH上。
5.根据权利要求1所述的方法,其中,所述第一时间条件包括以下:
从调度较高优先级上行链路信道的物理下行链路控制信道PDCCH的最后符号到所述较高优先级上行链路信道的起始的时间距离大于或等于T_A=T_proc,2+d1,其中T_proc,2是针对所述UE的处理能力的PUSCH准备时间,并且d1由UE所报告的能力来确定。
6.根据权利要求5所述的方法,其中,所述第二时间条件包括以下:
从所述PDCCH的最后符号到所述较高优先级上行链路信道的起始的所述时间距离大于或等于T_B=T_proc,2+d1+dadd,其中dadd>0。
7.根据权利要求1所述的方法,该方法还包括以下步骤:
基于第三PUCCH和具有比所述第三PUCCH的优先级低的优先级的第四PUSCH在时间上交叠并且所述第三PUCCH满足所述第一时间条件,执行所述第三PUCCH的发送并且取消所述第四PUSCH的发送。
8.根据权利要求1所述的方法,该方法还包括以下步骤:
基于第三PUSCH和具有比所述第三PUSCH的优先级低的优先级的第四PUCCH在时间上交叠并且所述第三PUSCH满足所述第一时间条件,执行所述第三PUSCH的发送并且取消所述第四PUCCH的发送。
9.根据权利要求8所述的方法,该方法还包括以下步骤:
基于与所述第四PUCCH在时间上交叠的所述第三PUSCH满足所述第一时间条件并且不满足所述第二时间条件,将包括在所述第四PUCCH中的上行链路控制信息UCI复用在所述第三PUSCH上。
10.一种在无线通信系统中被配置为发送上行链路UL信道的用户设备UE,该UE包括:
至少一个收发器;
至少一个处理器;以及
至少一个计算机存储器,所述至少一个计算机存储器在操作上连接到所述至少一个处理器并且被配置为存储指令,所述指令在被执行时使得所述至少一个处理器执行操作,所述操作包括:
基于第一物理上行链路控制信道PUCCH和具有比所述第一PUCCH的优先级低的优先级的第二PUCCH在时间上交叠并且所述第一PUCCH满足第一时间条件,执行所述第一PUCCH的发送并且取消所述第二PUCCH的发送;以及
基于第一物理上行链路共享信道PUSCH和具有比所述第一PUSCH的优先级低的优先级的第二PUSCH在时间上交叠并且所述第一PUSCH满足第二时间条件,执行所述第一PUSCH的发送并且取消所述第二PUSCH的发送,
其中,所述第二时间条件的时间长度T_B比所述第一时间条件的时间长度T_A长。
11.一种无线通信系统中的处理装置,该处理装置包括:
至少一个处理器;以及
至少一个计算机存储器,所述至少一个计算机存储器在操作上连接到所述至少一个处理器并且被配置为存储指令,所述指令在被执行时使得所述至少一个处理器执行操作,所述操作包括:
基于第一物理上行链路控制信道PUCCH和具有比所述第一PUCCH的优先级低的优先级的第二PUCCH在时间上交叠并且所述第一PUCCH满足第一时间条件,执行所述第一PUCCH的发送并且取消所述第二PUCCH的发送;以及
基于第一物理上行链路共享信道PUSCH和具有比所述第一PUSCH的优先级低的优先级的第二PUSCH在时间上交叠并且所述第一PUSCH满足第二时间条件,执行所述第一PUSCH的发送并且取消所述第二PUSCH的发送,
其中,所述第二时间条件的时间长度T_B比所述第一时间条件的时间长度T_A长。
12.一种计算机可读存储介质,该计算机可读存储介质被配置为存储包括指令的至少一个计算机程序,所述指令在由至少一个处理器执行时使得所述至少一个处理器针对用户设备UE执行操作,所述操作包括:
基于第一物理上行链路控制信道PUCCH和具有比所述第一PUCCH的优先级低的优先级的第二PUCCH在时间上交叠并且所述第一PUCCH满足第一时间条件,执行所述第一PUCCH的发送并且取消所述第二PUCCH的发送;以及
基于第一物理上行链路共享信道PUSCH和具有比所述第一PUSCH的优先级低的优先级的第二PUSCH在时间上交叠并且所述第一PUSCH满足第二时间条件,执行所述第一PUSCH的发送并且取消所述第二PUSCH的发送,
其中,所述第二时间条件的时间长度T_B比所述第一时间条件的时间长度T_A长。
13.一种计算机程序,该计算机程序存储在计算机可读存储介质中,该计算机程序包括至少一个程序代码,所述至少一个程序代码包括指令,所述指令在被执行时使得至少一个处理器执行操作,所述操作包括:
基于第一物理上行链路控制信道PUCCH和具有比所述第一PUCCH的优先级低的优先级的第二PUCCH在时间上交叠并且所述第一PUCCH满足第一时间条件,执行所述第一PUCCH的发送并且取消所述第二PUCCH的发送;以及
基于第一物理上行链路共享信道PUSCH和具有比所述第一PUSCH的优先级低的优先级的第二PUSCH在时间上交叠并且所述第一PUSCH满足第二时间条件,执行所述第一PUSCH的发送并且取消所述第二PUSCH的发送,
其中,所述第二时间条件的时间长度T_B比所述第一时间条件的时间长度T_A长。
14.一种在无线通信系统中由基站BS从用户设备UE接收上行链路信道的方法,该方法包括以下步骤:
基于第一物理上行链路控制信道PUCCH和具有比所述第一PUCCH的优先级低的优先级的第二PUCCH在时间上交叠并且所述第一PUCCH满足第一时间条件,执行所述第一PUCCH的接收并且取消所述第二PUCCH的接收;以及
基于第一物理上行链路共享信道PUSCH和具有比所述第一PUSCH的优先级低的优先级的第二PUSCH在时间上交叠并且所述第一PUSCH满足第二时间条件,执行所述第一PUSCH的接收并且取消所述第二PUSCH的接收,
其中,所述第二时间条件的时间长度T_B比所述第一时间条件的时间长度T_A长。
15.一种在无线通信系统中被配置为从用户设备UE接收物理上行链路共享信道PUSCH的基站BS,该BS包括:
至少一个收发器;
至少一个处理器;以及
至少一个计算机存储器,所述至少一个计算机存储器在操作上连接到所述至少一个处理器并且被配置为存储指令,所述指令在被执行时使得所述至少一个处理器执行操作,所述操作包括:
基于第一物理上行链路控制信道PUCCH和具有比所述第一PUCCH的优先级低的优先级的第二PUCCH在时间上交叠并且所述第一PUCCH满足第一时间条件,执行所述第一PUCCH的接收并且取消所述第二PUCCH的接收;以及
基于第一物理上行链路共享信道PUSCH和具有比所述第一PUSCH的优先级低的优先级的第二PUSCH在时间上交叠并且所述第一PUSCH满足第二时间条件,执行所述第一PUSCH的接收并且取消所述第二PUSCH的接收,
其中,所述第二时间条件的时间长度T_B比所述第一时间条件的时间长度T_A长。
CN202180057329.XA 2020-08-06 2021-08-06 发送上行链路信道的方法、用户设备、处理装置、存储介质和计算机程序及接收上行链路信道的方法和基站 Pending CN116076137A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20200098856 2020-08-06
KR10-2020-0098856 2020-08-06
PCT/KR2021/010415 WO2022031110A1 (ko) 2020-08-06 2021-08-06 상향링크 채널을 전송하는 방법, 사용자기기, 프로세싱 장치, 저장 매체 및 컴퓨터 프로그램, 그리고 상향링크 채널을 수신하는 방법 및 기지국

Publications (1)

Publication Number Publication Date
CN116076137A true CN116076137A (zh) 2023-05-05

Family

ID=80118288

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180057329.XA Pending CN116076137A (zh) 2020-08-06 2021-08-06 发送上行链路信道的方法、用户设备、处理装置、存储介质和计算机程序及接收上行链路信道的方法和基站

Country Status (5)

Country Link
US (1) US11770825B2 (zh)
EP (1) EP4195841A1 (zh)
KR (1) KR102624850B1 (zh)
CN (1) CN116076137A (zh)
WO (1) WO2022031110A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11792856B2 (en) * 2020-02-13 2023-10-17 Qualcomm Incorporated Uplink collision handling
CN114258085A (zh) * 2020-09-23 2022-03-29 华硕电脑股份有限公司 无线通信系统中服务质量(QoS)信息修改的方法和设备
US11882600B2 (en) * 2021-06-18 2024-01-23 Qualcomm Incorporated Conditional uplink grant in unlicensed spectrum
US20230115082A1 (en) * 2021-09-30 2023-04-13 Qualcomm Incorporated Management of concurrent uplink shared channel transmissions

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11357017B2 (en) * 2019-01-11 2022-06-07 Lenovo (Singapore) Pte. Ltd. Method and apparatus for transmitting a high priority uplink transmission
US11172495B2 (en) * 2019-01-11 2021-11-09 Qualcomm Incorporated Collision handling
CN111865539B (zh) * 2019-04-30 2022-12-06 大唐移动通信设备有限公司 一种上行信道传输方法、终端及基站
EP4252475A4 (en) * 2021-01-13 2024-04-24 Samsung Electronics Co Ltd PROCEDURE FOR SENDING AND RECEIVING UPLINK CONTROL INFORMATION

Also Published As

Publication number Publication date
US11770825B2 (en) 2023-09-26
EP4195841A1 (en) 2023-06-14
US20230189260A1 (en) 2023-06-15
WO2022031110A1 (ko) 2022-02-10
KR102624850B1 (ko) 2024-01-15
KR20230023808A (ko) 2023-02-17

Similar Documents

Publication Publication Date Title
CN113692769B (zh) 发送下行链路控制信息的方法和基站、接收下行链路控制信息的方法和用户设备以及存储介质
US20220248410A1 (en) Method, user equipment, device, and storage medium for performing uplink transmission, and method and base station for performing uplink reception
CN113785527A (zh) 发送pusch的方法、用户设备、设备和存储介质以及接收pusch的方法和基站
CN115336213B (zh) Harq-ack发送方法、用户设备和存储介质及harq-ack接收方法和基站
US20220191882A1 (en) Method, user equipment, device, and storage medium for performing uplink transmission, and method and base station for performing uplink reception
US20210409182A1 (en) Method for transmitting harq-ack information, and communication device
US11770825B2 (en) Method, user equipment, processing device, storage medium, and computer program for transmitting uplink channel, and method and base station for receiving uplink channel
US11528740B2 (en) Method and base station for transmitting downlink control information, and user equipment, apparatus, and storage medium for receiving downlink control information
US20230035066A1 (en) Method, user device and storage medium for transmitting uplink channel, and method and base station for receiving uplink channel
CN113424631A (zh) 执行上行链路传输的方法、用户设备、设备和存储介质以及执行上行链路接收的方法和基站
US20230180245A1 (en) Method, user equipment, processing device, storage medium, and computer program for transmitting uplink channel, and method and base station for receiving uplink channel
US11791946B2 (en) Method, user equipment, processing device, storage medium, and computer program for receiving downlink channel, and method and base station for transmitting downlink channel
US11882571B2 (en) Method, user equipment, processing device, storage medium, and computer program for receiving downlink channel, and method and base station for transmitting downlink channel
US20230261807A1 (en) Method and user equipment for transmitting harq-ack information, and base station for receiving harq-ack information
US11855783B2 (en) Method for transmitting HARQ-ACK information, and communication device
CN114467355A (zh) 监测上行链路取消指令的方法、用户设备、装置、计算机可读存储介质、发送上行链路取消指令的方法和基站
US20230092884A1 (en) Method for transmitting power headroom report, user equipment, processing device, storage medium, and computer program
US20230036564A1 (en) Harq-ack information transmission method, user equipment, and storage medium, and harq-ack information reception method and base station
CN116803032A (zh) 接收下行链路信道的方法、用户设备、处理装置、存储介质和计算机程序及发送下行链路信道的方法和基站
EP4380086A1 (en) Method, user equipment, processing device and storage medium for transmitting harq-ack information, and method and base station for receiving harq-ack information
EP4329230A1 (en) Method, user equipment, processing device, and storage medium for transmitting harq-ack information, and method and base station for receiving harq-ack information
CN117296288A (zh) 发送harq-ack信息的方法、用户设备、处理装置和存储介质及接收harq-ack信息的方法和基站
CN117121594A (zh) 发送harq-ack信息的方法、用户设备、处理装置、存储介质和计算机程序及接收harq-ack信息的方法和基站
CN117121411A (zh) 传输harq-ack信息的方法、用户设备、处理设备、存储介质和计算机程序以及harq-ack信息接收方法和基站
CN118020257A (zh) 传输harq-ack信息的方法、用户设备、处理设备和存储介质以及接收harq-ack信息的方法和基站

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination