CN116072849A - 甲壳素衍生单位点镍正极复合材料的制备方法及锂硫电池 - Google Patents

甲壳素衍生单位点镍正极复合材料的制备方法及锂硫电池 Download PDF

Info

Publication number
CN116072849A
CN116072849A CN202310122530.2A CN202310122530A CN116072849A CN 116072849 A CN116072849 A CN 116072849A CN 202310122530 A CN202310122530 A CN 202310122530A CN 116072849 A CN116072849 A CN 116072849A
Authority
CN
China
Prior art keywords
chitin
nickel
composite material
site
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310122530.2A
Other languages
English (en)
Inventor
雷爱文
李延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN202310122530.2A priority Critical patent/CN116072849A/zh
Publication of CN116072849A publication Critical patent/CN116072849A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请公开了甲壳素衍生单位点镍正极复合材料的制备方法及锂硫电池。本正极复合材料,采用甲壳素纳米纤维自组装和自模板刻蚀的方式,利用甲壳素本身含大量羟基和乙酰氨基等特征官能团,通过金属—超分子组装效应,得到甲壳素衍生的金属气凝胶,经过高温热解形成一种具有复合单位点镍的碳基单原子催化剂,将其应用于锂硫电池正极材料,在保持循环稳定性和高比能量的同时,极大提高了载硫的量。

Description

甲壳素衍生单位点镍正极复合材料的制备方法及锂硫电池
技术领域
本申请涉及电极材料的技术领域,尤其涉及甲壳素衍生单位点镍正极复合材料的制备方法及锂硫电池。
背景技术
锂硫电池是以硫元素作为电池正极,金属锂作为负极的一种锂电池,单质硫正极材料具有超高的理论比容量和比能量(1675mAh/g和2600Wh/kg),加上硫元素的廉价清洁,质量较轻,储量丰富等优点,使得锂硫电池电池成为可持续、高能量密度的二代电池和新能源技术中的优良选择,也是后锂离子电池时代核心发展的电池技术之一。
锂硫电池电池技术主要有三个目标:1.高能量密度;2.长循环寿命;3.高硫负载量。为了实现这三个目标,至少还需要解决以下技术难点:1.导电性:复合S之后确保正极材料的高导电性,可以确保高的比率放电能力和能量效率。2.表面化学:控制Li2S2的沉积和溶解。3.正极构筑:能够承受柔性的体积膨胀,并确保连续的电子和锂离子的传输路径。4.电解质优化:确保聚硫化物的最佳溶解,以及最佳S利用率。
为了解决以上的这些挑战,已经开发了多种应用材料复合硫作为正极提高锂硫电池的效率。而这其中,多维纳米碳材料是最廉价易得,对于结构上的各种改性相对灵活,例如:零维碳量子点、一维碳纤维和二三维多孔碳等等,并且碳材料作为电极材料在储能领域中应用广泛,具有诸多优势:1.碳材料的多级孔能与多硫化物良好吸附复合;2.本征电导率高,解决硫正极导电性和界面电子传输困难的问题;3.多孔碳易修饰功能化,可以增加金属复合位点,促进硫正极转化,加大了材料的应用效果。
然而,相关技术中锂硫电池的正极材料难以加好地兼顾循环稳定性和高比能量同载硫量。
发明内容
有鉴于此,本申请提供甲壳素衍生单位点镍正极复合材料的制备方法及锂硫电池,能够在保持循环稳定性和高比能量的同时,极大提高了载硫量。
本发明人从杂原子掺杂的多孔碳材料中寻找到了似乎通往正极材料的途径。经过对众多杂原子掺杂的多孔碳材料的筛选确定了甲壳素,甲壳素作为一种海洋生物质废料,1.结构明确,绿色可持续;2.作为碳前体可以有效引进氮氧原子掺杂作为Lewis碱位增加锂化过程中锂离子的传输;3.甲壳素作为催化剂前体在高温煅烧过程产生大量孔道,可以有效地吸附小分子硫,避免穿梭效应;4.大量的羟基和含氮官能团可以进一步复合单位点镍,加快锂硫电池内部反应动力学,从而提高效率。
并基于上述甲壳素的优势,采用甲壳素纳米纤维自组装和自模板刻蚀的方式,利用甲壳素本身含大量羟基和乙酰氨基等特征官能团,通过金属—超分子组装效应,得到甲壳素衍生的金属气凝胶,经过高温热解形成一种具有复合单位点镍的碳基单原子催化剂,将其应用于锂硫电池正极材料,在保持循环稳定性和高比能量的同时,极大提高了载硫的量。由此,创立了本发明创造。
第一方面,本申请提供一种甲壳素衍生单位点镍正极复合材料的制备方法,包括以下步骤:
(1)将甲壳素在TEMPO溶剂中且在次氯酸盐、溴化盐的添加下被氧化,得到甲壳素纳米纤维溶液;
(2)使所述甲壳素纳米纤维溶液在造孔剂添加下与镍源反应,得到三维多孔材料,并由所述三维多孔材料形成甲壳素气凝胶;
(3)对甲壳素气凝胶煅烧,得到单位点镍纳米碳催化剂,并由所述单位点镍纳米碳催化剂负载硫形成正极复合材料。
合适但非限制性地,所述氧化反应的pH为10~11。
合适但非限制性地,步骤(1)中,TEMPO、甲壳素、溴化盐、次氯酸盐质量比为1:(10~100):(10:100):(20:100)。
合适但非限制性地,步骤(1)中,所述甲壳素纳米纤维溶液浓度在1~5wt%,纤维长度为500nm~5μm,直径为10nm~50nm。
合适但非限制性地,步骤(2)中,所述镍源为四水合醋酸镍。
合适但非限制性地,步骤(2)中,所述造孔剂为硝酸锌。
合适但非限制性地,步骤(2)中,形成甲壳素气凝胶的方式为冷冻干燥。
合适但非限制性地,步骤(3)中,所述煅烧在惰性气氛中实施,所述煅烧的加热方式为恒定速率升温至930-970℃,煅烧的时间为1-3h。
合适但非限制性地,步骤(3)中,所述单位点镍纳米碳催化剂负载硫的方式为,先在55-65℃加热4-8h,再在145-165℃保持10-14h。
第二方面,本申请提供一种锂硫电池,具有如上述制备方法所得甲壳素衍生单位点镍正极复合材料。
本申请选用TEMPO氧化的不可溶解生物质高分子,所得的甲壳素纳米纤维具有较大的长径比,且保留大量含氮氧官能团,能够很好的配位金属盐,形成孔隙丰富的三维网络结构,并且在炭化后还能均匀的分散金属位点,能够获得高比表面积、高孔隙率的纳米碳材料,再经过高温升华的方法负载单质硫,可以得到高负载的锂硫电池正极材料。以上制备得到的杂原子掺杂单位点金属镍催化剂,用于复合S正极去提高Li-S电池容量和充放电效率。目前初步试验装配电池得到的结果显示:获得已经报导较高的载硫量(9.5mg/cm2);比较稳定充放电循环(1000cycles圈);较高的电池容量(1210mAh/g);优越的快充时间(1350ss)。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为实施例1碳所得杂原子掺杂单位点金属催化剂电镜图。
具体实施方式
下面将结合本申请实施例,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例1
甲壳素衍生单位点镍正极复合材料的制备方法,包括以下步骤:
(1)生物质废料甲壳素粉末,投入5wt%质量分数的TEMPO和溴化钠试剂,搅拌混合为一相之后,再加入次氯酸钠作为氧化剂,保持溶液的PH=10.5,充分反应后离心除去不溶物即为甲壳素纳米纤维溶液(浓度在3wt%,纤维长度为2.5μm,直径为30nm),其中,TEMPO、甲壳素、溴化钠、次氯酸钠质量比为1:55:50:60。
(2)离心后的甲壳素纳米纤维溶液利用细胞破碎装置震荡处理,处理后,再用透析袋纯化破碎后的溶液。
(3)对纯化后的甲壳素纳米纤维溶液投入六水合硝酸锌和四水合醋酸镍,搅拌均匀后,放入冰箱冷冻,最后用冷冻干燥,得到甲壳素气凝胶。
(4)干燥后得到甲壳素气凝胶样品,利用管式炉煅烧,在氩气气氛下以5℃·min-1的升温速率升温至950℃并保持2小时,获得单位点镍纳米碳催化剂。通过混合硫、二硫化碳溶液和制备好的单位点镍纳米碳催化剂(SACs-Ni-NC)加热到60℃,并剧烈搅拌6h蒸干溶剂二硫化碳,再进一步热处理在155℃保持12h,得到S@SACs-Ni-NC复合材料。
实施例2
甲壳素衍生单位点镍正极复合材料的制备方法,包括以下步骤:
(1)生物质废料甲壳素粉末,投入8wt%质量分数的TEMPO和溴化钠试剂,搅拌混合为一相之后,再加入次氯酸钠作为氧化剂,保持溶液的PH=10,充分反应后离心除去不溶物即为甲壳素纳米纤维溶液(浓度在1wt%,纤维长度为500nm,直径为10nm),其中,TEMPO、甲壳素、溴化钠、次氯酸钠质量比为1:10:10:20。
(2)离心后的甲壳素纳米纤维溶液利用细胞破碎装置震荡处理,处理后,再用透析袋纯化破碎后的溶液。
(3)对纯化后的甲壳素纳米纤维溶液投入六水合硝酸锌和四水合醋酸镍,搅拌均匀后,放入冰箱冷冻,最后用冷冻干燥,得到甲壳素气凝胶。
(4)干燥后得到甲壳素气凝胶样品,利用管式炉煅烧,在氩气气氛下以7℃·min-1的升温速率升温至930℃并保持3小时,获得单位点镍纳米碳催化剂。通过混合硫、二硫化碳溶液和制备好的单位点镍纳米碳催化剂(SACs-Ni-NC)加热到65℃,并剧烈搅拌4h蒸干溶剂二硫化碳,再进一步热处理在145℃保持14h,得到S@SACs-Ni-NC复合材料。
实施例3
甲壳素衍生单位点镍正极复合材料的制备方法,包括以下步骤:
(1)生物质废料甲壳素粉末,投入10wt%质量分数的TEMPO和溴化钠试剂,搅拌混合为一相之后,再加入次氯酸钠作为氧化剂,保持溶液的PH=11,充分反应后离心除去不溶物即为甲壳素纳米纤维溶液(浓度在5wt%,纤维长度为5μm,直径为50nm),其中,TEMPO、甲壳素、溴化钠、次氯酸钠质量比为1:100:100:100。
(2)离心后的甲壳素纳米纤维溶液利用细胞破碎装置震荡处理,处理后,再用透析袋纯化破碎后的溶液。
(3)对纯化后的甲壳素纳米纤维溶液投入六水合硝酸锌和四水合醋酸镍,搅拌均匀后,放入冰箱冷冻,最后用冷冻干燥,得到甲壳素气凝胶。
(4)干燥后得到甲壳素气凝胶样品,利用管式炉煅烧,在氩气气氛下以10℃·min-1的升温速率升温至970℃并保持1小时,获得单位点镍纳米碳催化剂。通过混合硫、二硫化碳溶液和制备好的单位点镍纳米碳催化剂(SACs-Ni-NC)加热到65℃,并剧烈搅拌4h蒸干溶剂二硫化碳,再进一步热处理在165℃保持14h,得到S@SACs-Ni-NC复合材料。
实施例4
甲壳素衍生单位点镍正极复合材料的制备方法,包括以下步骤:
(1)生物质废料甲壳素粉末,投入5wt%质量分数的TEMPO和溴化钠试剂,搅拌混合为一相之后,再加入次氯酸钠作为氧化剂,保持溶液的PH=10,充分反应后离心除去不溶物即为甲壳素纳米纤维溶液(浓度在3wt%,纤维长度为2.5μm,直径为20nm),其中,TEMPO、甲壳素、溴化钠、次氯酸钠质量比为1:50:60:55。
(2)离心后的甲壳素纳米纤维溶液利用细胞破碎装置震荡处理,处理后,再用透析袋纯化破碎后的溶液。
(3)对纯化后的甲壳素纳米纤维溶液投入六水合硝酸锌和四水合醋酸镍,搅拌均匀后,放入冰箱冷冻,最后用冷冻干燥,得到甲壳素气凝胶。
(4)干燥后得到甲壳素气凝胶样品,利用管式炉煅烧,在氩气气氛下以5℃·min-1的升温速率升温至950℃并保持2小时,获得单位点镍纳米碳催化剂。通过混合硫、二硫化碳溶液和制备好的单位点镍纳米碳催化剂(SACs-Ni-NC)加热到60℃,并剧烈搅拌6h蒸干溶剂二硫化碳,再进一步热处理在155℃保持12h,得到S@SACs-Ni-NC复合材料。
比较例1
与实施例1唯一不同的是,将其中甲壳素替换成纤维素纳米晶粉末。
比较例2
与实施例1唯一不同的是,将其中甲壳素替换成木质纤维素。
比较例3
与实施例1唯一不同的是,将其中甲壳素替换成葡萄糖并适应性地将TEMPO替换成分散效果更佳的聚乙烯吡咯烷酮。
比较例4
与实施例1唯一不同的是,在步骤(3)中不添加四水合醋酸镍。
比较例5
与实施例1唯一不同的是,在步骤(3)中不添加六水合硝酸锌。
评价
A、针对以上实施例1和比较例1-5所得正极材料,按照期刊文献“Y.Lu,J.L.Qin,T.Shen,Y.F.Yu,K.Chen,Y.Z.Hu,J.N.Liang,M.X.Gong,J.J.Zhang,and D.L.Wang,Adv.Energy Mater.2021,11,2101780”进行载硫量。
B、针对以上实施例1和比较例1-5所得正极材料,电极由上述催化剂材料、乙炔黑和聚偏氟乙烯,按照质量比为8:1:1在N-甲基吡咯烷酮中形成均匀的浆液。然后将浆液涂在碳纸上,在60℃下真空干燥12小时。将复合材料作为等效工作电极和对电极,每个扣式电池滴加25μL Li2S6阴极电解液。在Autolab PG302N电化学工作站上进行,扫描速率为50mV-1,电压范围在-1.0~1.0V之间。EIS测试的频率范围为100MHz至0.01Hz。电化学测量使用扣式型电池(2032型)进行。稳定性测试在室温下进行,运用电池测试系统(内维尔电池测试系统)。
测试结果
Figure BDA0004080513880000071
C、将实施例1所得正极复合材料碳化后得到的杂原子掺杂单位点金属催化剂电镜图。将单位点催化剂进行研磨,分散在8mL乙醇超声,混合均匀后点入铜网,进行透射电子显微镜测试(TEM)。电镜型号为:高角环形暗场像扫描透射电子显微镜(HADDF-STEM,JEOLJEM-ARM200F),运行电压为200kV。
由图1可知,甲壳素衍生单位点镍正极复合材料拥有较高的载硫量利用率,提高了锂硫电池的质量容量,同时能保持极高的稳定性,大大地提升了生物质硬碳本征的快充速率。
以上所述,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。

Claims (10)

1.一种甲壳素衍生单位点镍正极复合材料的制备方法,其特征在于,包括以下步骤:
(1)将甲壳素在TEMPO溶剂中且在次氯酸盐、溴化盐的添加下被氧化,得到甲壳素纳米纤维溶液;
(2)使所述甲壳素纳米纤维溶液在造孔剂添加下与镍源反应,得到三维多孔材料,并由所述三维多孔材料形成甲壳素气凝胶;
(3)对甲壳素气凝胶煅烧,得到单位点镍纳米碳催化剂,并由所述单位点镍纳米碳催化剂负载硫形成正极复合材料。
2.根据权利要求1所述制备方法,其特征在于,步骤(1)中,所述氧化反应的pH为10~11。
3.根据权利要求1所述制备方法,其特征在于,步骤(1)中,TEMPO、甲壳素、溴化盐、次氯酸盐质量比为1:(10~100):(10:100):(20:100)。
4.根据权利要求1所述制备方法,其特征在于,步骤(1)中,所述甲壳素纳米纤维溶液浓度在1~5wt%,纤维长度为500nm~5μm,直径为10nm~50nm。
5.根据权利要求1所述制备方法,其特征在于,步骤(2)中,所述镍源为四水合醋酸镍。
6.根据权利要求1所述制备方法,其特征在于,步骤(2)中,所述造孔剂为硝酸锌。
7.根据权利要求1所述制备方法,其特征在于,步骤(2)中,形成甲壳素气凝胶的方式为冷冻干燥。
8.根据权利要求1所述制备方法,其特征在于,步骤(3)中,所述煅烧在惰性气氛中实施,所述煅烧的加热方式为恒定速率升温至930-970℃,煅烧的时间为1-3h。
9.根据权利要求1所述制备方法,其特征在于,步骤(3)中,所述单位点镍纳米碳催化剂负载硫的方式为,先在55-65℃加热4-8h,再在145-165℃保持10-14h。
10.一种锂硫电池,其特征在于,具有如权利要求1所述制备方法所得甲壳素衍生单位点镍正极复合材料。
CN202310122530.2A 2023-02-10 2023-02-10 甲壳素衍生单位点镍正极复合材料的制备方法及锂硫电池 Pending CN116072849A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310122530.2A CN116072849A (zh) 2023-02-10 2023-02-10 甲壳素衍生单位点镍正极复合材料的制备方法及锂硫电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310122530.2A CN116072849A (zh) 2023-02-10 2023-02-10 甲壳素衍生单位点镍正极复合材料的制备方法及锂硫电池

Publications (1)

Publication Number Publication Date
CN116072849A true CN116072849A (zh) 2023-05-05

Family

ID=86181849

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310122530.2A Pending CN116072849A (zh) 2023-02-10 2023-02-10 甲壳素衍生单位点镍正极复合材料的制备方法及锂硫电池

Country Status (1)

Country Link
CN (1) CN116072849A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112142034A (zh) * 2020-09-27 2020-12-29 武汉理工大学 一种硫/碳气凝胶复合材料的制备方法
CN114784257A (zh) * 2022-04-18 2022-07-22 武汉理工大学 一种锂硫电池正极材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112142034A (zh) * 2020-09-27 2020-12-29 武汉理工大学 一种硫/碳气凝胶复合材料的制备方法
CN114784257A (zh) * 2022-04-18 2022-07-22 武汉理工大学 一种锂硫电池正极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAN LI: "Engineering vacancy-defect atomic Ni si...r kinetics in lithium-sulfur batteries", 《ENERGY STORAGE MATERIALS》, vol. 54, 2 November 2022 (2022-11-02), pages 553 - 562 *

Similar Documents

Publication Publication Date Title
Aravindan et al. A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators
Lou et al. Facile fabrication of interconnected-mesoporous T-Nb2O5 nanofibers as anodes for lithium-ion batteries
Huang et al. Flexible free-standing sulfurized polyacrylonitrile electrode for stable Li/Na storage
KR101997968B1 (ko) 망간-코발트 금속산화물 나노입자를 포함하는 질소 담지된 탄소 나노선의 거미망 구조체 조성물, 이의 합성 방법 및 이차전지 음극 조성물
CN112499617B (zh) 一种n和s共掺杂的空心碳纳米立方体的制备方法及钾离子电池
Wang et al. Fabrication of boron-doped porous carbon with termite nest shape via natural macromolecule and borax to obtain lithium-sulfur/sodium-ion batteries with improved rate performance
Manoj et al. Sulfur-polyaniline coated mesoporous carbon composite in combination with carbon nanotubes interlayer as a superior cathode assembly for high capacity lithium-sulfur cells
Shao et al. Carbon nanotube-supported MoSe2 nanoflakes as an interlayer for lithium-sulfur batteries
Zhuang et al. Fabrication and electrochemical applications of the Co-embedded N&P-codoped hierarchical porous carbon host from yeast for Li-S batteries
Gong et al. Anchoring high-mass iodine to nanoporous carbon with large-volume micropores and rich pyridine-N sites for high-energy-density and long-life Zn-I2 aqueous battery
Pu et al. Multifunctional Ni/NiO heterostructure nanoparticles doped carbon nanorods modified separator for enhancing Li–S battery performance
Yang et al. Hollow MnO2 spheres/porous reduced graphene oxide as a cathode host for high-performance lithium-sulfur batteries
CN113629251A (zh) 一种锂离子电池负极用自支撑氮掺杂多孔碳包覆硅纳米纤维材料及其制备方法与应用
Wu et al. N-doped hollow carbon nanoparticles encapsulated fibers derived from ZIF-8 self-sacrificed template for advanced lithium–sulfur batteries
Gu et al. A Typha Angustifolia-like MoS2/carbon nanofiber composite for high performance Li-S batteries
Sui et al. Highly dispersive CoSe 2 nanoparticles encapsulated in carbon nanotube-grafted multichannel carbon fibers as advanced anodes for sodium-ion half/full batteries
Chen et al. Brush-like Ni/carbon nanofibers/carbon nanotubes multi-layer network for freestanding anode in lithium ion batteries
Zhang et al. Shaddock wadding created activated carbon as high sulfur content encapsulator for lithium-sulfur batteries
CN112736221B (zh) 一种新型Fe3C/N-CNF@RGO集成电极的制备方法
US20230050689A1 (en) A Method To Synthesize A Porous Carbon-Sulfur Composite Cathode For A Sodium-Sulfur Battery
CN113903891A (zh) 一种含准金属态锂的无定形碳基复合负极材料的制备方法和应用
Zhang et al. Horizontally aligned lamellar porous graphene/nickel composite for high volumetric capacity lithium-sulfur batteries
CN113611866B (zh) 一种柔性自支撑钠离子电池负极材料及其制备方法
CN113506862B (zh) 一种用于锂硫电池正极的纳米碳纤维复合材料及其制备方法与应用
CN116072849A (zh) 甲壳素衍生单位点镍正极复合材料的制备方法及锂硫电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination