CN116071929A - 基于卡口车牌识别数据的实时路况监测系统及其方法 - Google Patents

基于卡口车牌识别数据的实时路况监测系统及其方法 Download PDF

Info

Publication number
CN116071929A
CN116071929A CN202310202367.0A CN202310202367A CN116071929A CN 116071929 A CN116071929 A CN 116071929A CN 202310202367 A CN202310202367 A CN 202310202367A CN 116071929 A CN116071929 A CN 116071929A
Authority
CN
China
Prior art keywords
road
bayonet
time
bayonets
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310202367.0A
Other languages
English (en)
Other versions
CN116071929B (zh
Inventor
张晓春
吕锴超
丘建栋
刘星
庄蔚群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Urban Transport Planning Center Co Ltd
Original Assignee
Shenzhen Urban Transport Planning Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Urban Transport Planning Center Co Ltd filed Critical Shenzhen Urban Transport Planning Center Co Ltd
Priority to CN202310202367.0A priority Critical patent/CN116071929B/zh
Publication of CN116071929A publication Critical patent/CN116071929A/zh
Application granted granted Critical
Publication of CN116071929B publication Critical patent/CN116071929B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/62Text, e.g. of license plates, overlay texts or captions on TV images
    • G06V20/625License plates
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0116Measuring and analyzing of parameters relative to traffic conditions based on the source of data from roadside infrastructure, e.g. beacons
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/017Detecting movement of traffic to be counted or controlled identifying vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Traffic Control Systems (AREA)

Abstract

基于卡口车牌识别数据的实时路况监测系统及其方法,属于智慧交通领域。为解决实时路况监测精度不够的问题。本发明基于路网地理信息图层文件数据将路网构建为路网图,然后进行卡口点位与路网拓扑关联路段构建和校核,对采集的卡口车牌识别数据进行车辆短时行程识别,采用图搜索的KSP方法搜索卡口间的行驶路径,计算最优行驶路径,基于得到的最优行驶路径,依据卡口点位和路网拓扑关联路段计算车辆行程从开始卡口到结束卡口的实际行驶距离,计算车辆在行程内的运行速度,然后统计途径路段的所有车辆得到路段实际流量,对途径路段的所有车辆运行速度取均值得到路段运行速度。本发明达到监测精度高、实时性强、高效计算目的。

Description

基于卡口车牌识别数据的实时路况监测系统及其方法
技术领域
本发明属于智慧交通领域,具体涉及基于卡口车牌识别数据的实时路况监测系统及其方法。
背景技术
随着经济的发展、公路交通出行日益繁忙,高速公路成为城市间货物运输、人员流动的主要运输通道。随之而来,平安、高效出行的要求使得对高速实时运行状况精细化监测的需求越来越高,实时监测、定位准确、快速响应是未来高速发展和管理的重要方向,也是智能交通时代显著特点。
然而,路网规模的不断扩大,车流量的增加,高速公路的运行管理难度提高。定点监测设备布设成本高、覆盖范围有限,由于出行数据敏感车载GPS不适用社会车辆等问题,给高速公路的精细化监测造成了一定的阻碍。
现有技术包括:
基于车载数据采集设备的路网运行流量监测及溯源方法
车载数据采集设备通常采集车辆运行过程中的GPS点位和数据采集时间,通常包括浮动车(FCD)数据、网约车数据和手机导航数据。这些数据经过清洗处理后,将GPS点位与路网进行地图匹配后得到车辆在路网的运行轨迹,从而获得道路运行流量和速度。该方法在应用时存在以下问题:首先在地图匹配时需要对每辆车的GPS点位计算其行驶轨迹,计算压力较大;其次在道路运行监测时,样本数据为有偏样本,浮动车和网约车大多为社会公共出行的车辆,需要实时手机导航的车辆也非全量样本,其对路网流量监测结果只是部分流量,非全网流量。在实际应用中发现,受限于有偏样本和数据规模问题,实时路网监测结果无法完全覆盖全网道路,低等级路段监测结果缺失严重。
基于物联网射频技术的城市道路流量监测及溯源方法(地磁数据)
基于物联网射频技术的城市路况监测方法通过在监测区域内的路网中部署大量用于路况监测的传感器,同时配合车载传感器,当车辆经过路侧传感器时,车载传感器和路侧传感器通过射频技术完成通讯,识别并转发车辆信息。该方法获得的数据定位准确度高,其路网监测精度随着安装车载传感器的车辆数量增多而提高,但是受限于射频传感器布设规模大、成本高,以及私家车辆出行数据敏感、普通人拒绝安装车载传感器等因素,该方法难以大规模使用。
基于手机信令的高速出行流量监测方法
基于手机信令分析的路况监测系统,将通信运营商的手机信令作为信息源,通过数学建模分析产生手机信令的手机终端在移动通信网络中的空间分布和移动规律,融合交通行业现有的与公路网运行相关的数据源,通过多源数据融合分析获得公路网的实时交通状态。受限于手机信令定位数据为基站位置,而非手机实际位置,手机信令数据的定位精度低于车载GPS数据,点位数据更新频率较低,无法应用在实时性高和空间粒度小的路况流量监测和流量溯源场景中。
由以上介绍可知,现有的实时路况监测方法主要的不足为:
现有技术(1)和(2),均需要车载数据采集设备,完成车辆位置数据采集工作。车载数据采集方案受限于传感器布设成本高、私家车辆出行数据敏感,数据采集车辆非全网运行车辆的问题,其天生带有流量监测不全的问题。
现有技术(3)中手机信令数据由于其定位精度不够,只能应用于高速路网等长距离出行的路网运行监测,其监测的实时性和空间粒度精细化程度不够,在复杂场景下难以应用。
发明内容
本发明针对现有技术受限于数据采集成本、数据精度和数据敏感性等因素造成的实时路况监测精度不够的问题,提出基于卡口车牌识别数据的实时路况监测系统及其方法。
为实现上述目的,本发明通过以下技术方案实现:
一种基于卡口车牌识别数据的实时路况监测方法,包括如下步骤:
S1、构建路网图:基于路网地理信息图层文件数据将路网构建为路网图,路网图中的节点表示路段交叉口,路网图中的有向边表示路段,有向边的方向表示路段行驶方向,有向边的权重表示路段的长度,最终将路网图保存为二维矩阵;
S2、卡口点位与路网拓扑关联路段构建和校核:采集卡口基础信息地理数据,卡口车牌识别数据,将采集卡口基础信息地理数据形成卡口点位数据,然后基于步骤S1构建的路网图、卡口点位数据、卡口车牌识别数据构建卡口点位与路网拓扑关联路段,并进行校核;
S3、车辆短时行程识别:对采集的卡口车牌识别数据进行车辆短时行程识别;
S4、路径还原:基于步骤S3得到的车辆短时行程,采用图搜索的KSP方法搜索卡口间的行驶路径,计算最优行驶路径;
S5、计算行驶距离:基于步骤S4得到的最优行驶路径,依据步骤S2的卡口点位和路网拓扑关联路段计算车辆行程从开始卡口到结束卡口的实际行驶距离;
S6、实时路况计算:基于步骤S5得到的实际行驶距离和行驶时间,计算车辆在行程内的运行速度,然后统计途径路段的所有车辆得到路段实际流量,对途径路段的所有车辆运行速度取均值得到路段运行速度。
进一步的,步骤S1的具体实现方法包括如下步骤:
S1.1、设置路网地理信息图层文件数据中的字段名称和字段含义为:link_id表示路段编号,from_node表示路段拓扑起点编号,to_node表示路段拓扑终点编号,dir表示路段方向,length表示路段长度,geomtery表示地理坐标;
S1.2、设置路段方向为拓扑正向的路段,from_node字段和to_node字段内容保持不变,路段方向为拓扑反向的路段,对from_node字段和to_node字段内容进行互换,路段方向为拓扑双向的路段,将其设置为拓扑正向和拓扑反向两个路段,设置为拓扑正向的路段,from_node字段和to_node字段内容保持不变,设置为拓扑反向的路段,对from_node字段和to_node字段内容进行互换;
S1.3、将from_node字段作为二维矩阵的行序,to_node字段作为二维矩阵的列序,路段长度length作为二维矩阵的行序和列序位置的值,将路网图保存为二维矩阵。
进一步的,步骤S2的具体构建方法包括如下步骤:
S2.1、检查卡口点位数据和路网地理信息图层文件数据是否在同一坐标系下,不在同一坐标系下的转换到WGS84坐标系;
S2.2、基于同一坐标系下的卡口点位数据和路网地理信息图层文件数据,进行筛选卡口关联路段的候选路段;
S2.3、基于采集的卡口车牌识别数据、步骤S1构建的路网图,利用图路径搜索方法判断车辆在连续经过的卡口的候选路段是否存在连通路径,判断为是则标记存在连通路径的卡口的候选路段为卡口的关联路段,判断为否则标记不存在连通路径的卡口为点位异常卡口;
S2.4、基于路网地理信息图层文件数据中的路段拓扑方向和卡口点位数据的属性信息人工校核步骤S2.3标记的点位异常卡口;
S2.5、选择不同的卡口车牌识别数据重复步骤S2.3和S2.4,直至点位异常卡口的个数为0。
进一步的,步骤S2.2的具体实现方法包括如下步骤:
S2.2.1、在WGS84坐标系下,设置两点的经纬度坐标为(x1,y1),(x2,y2),地球半径R为6371km,两点间距离 d基于半正矢公式进行计算,将两点间距离 d的计算公式标记为 f(x1,y1,x2,y2),则计算公式为:
其中,a为半正矢公式中间计算结果;
S2.2.2、选取卡口WGS84坐标系附近500米范围的所有路段作为备选路段,设置备选路段 l的空间坐标由 n个经纬度坐标表示,则第i个备选路段,i为n中的任意一个,设置卡口的经纬度坐标为( x 0 ,y 0),则卡口到第i个备选路段间的距离的计算公式为:
则得到卡口到备选路段 l的最短距离的计算公式为:
S2.2.3、基于步骤S2.2.2计算的卡口和所有备选路段的距离及卡口到备选路段 l的最短距离,筛选距离卡口最近的前 k个路段作为卡口关联路段的候选路段,并按照距离升序排列后记为{ l 1l 2,…, l k },其中 k<10;
S2.2.4、对所有卡口重复步骤S2.2.1-S2.2.3,获得所有卡口的关联路段的候选路段。
进一步的,步骤S2.3的具体实现方法包括如下步骤:
S2.3.1、将采集的卡口车牌识别数据,按照车牌分组;
S2.3.2、设置同一辆车连续经过的两个卡口为卡口 c和卡口 d,设置卡口c的候选路段为为卡口c的第i个候选路段,卡口 d的候选路段为为卡口 d的第j个候选路段;
S2.3.3、依次选择作为开始路段和结束路段,基于图路径搜索方法在步骤S1中构建的路网图上确认开始路段和结束路段是否连通,如果路段连通,则将路段作为卡口c的关联路段,将路段作为卡口d的关联路段;如果所有的候选路段之间不存在连通路径,则标记卡口c和d为点位异常卡口。
进一步的,步骤S3的具体实现方法包括如下步骤:
S3.1、数据清洗:对时间异常、车牌异常、重复记录的卡口车牌识别数据进行删除,得到数据清洗后的卡口车牌识别数据;
S3.2、动态统计卡口间的标准行程时间:基于一段时间内的卡口车牌识别数据,统计卡口间的行程时间,设置m个车辆经过卡口c和卡口d的行程时间记为,将卡口c和卡口d的行程时间的中位数作为卡口c和卡口d的标准行程时间,统计所有卡口间的标准行程时间,对于城市按高峰时段卡口数据和平峰时段卡口数据分别统计卡口间的标准行程时间;
S3.3、短时行程分割:将所有车辆的车牌记录按照车牌分组处理,对单辆车的所有记录,按记录时间排序后计算两个连续卡口之的行程时间,若单辆车在两个连续卡口间的行程时间小于卡口间的标准行程时间的1.10-1.20倍,则以开始卡口、开始时间、结束卡口和结束时间为标记数据记录该辆车该段行程为有效行程,否则记录该辆车在该时间段内存在非正常行驶状态,该辆车该段行程为无效行程,不予记录;
S3.4、实时数据的车辆短时行程处理:设置卡口路况监测以15min作为一个时间片,用时间片切分实时数据,当出现车辆通过的连续两个卡口切分到不同时间片时,采集车辆在上一时间片内的通过卡口记录,判断上一时间片的通过卡口和当前时间片的通过卡口之间的行程否为有效行程,行程有效时合并上一时间片卡口记录到当前时间片。
进一步的,步骤S4的具体实现方法包括如下步骤:
S4.1、车辆行程路径匹配:基于步骤S3得到的车辆行程的卡口点位数据,通过步骤S2得到的卡口点位与路网拓扑关联关系确定车辆行程起始路段和结束路段,通过图搜索的KSP方法在步骤S1得到的路网图上搜索行驶路线;
S4.2、利用图搜索的KSP方法搜索出的距离最短的前 m条路径,计算路径的选择概率,然后将选择概率最大的路径作为最优行驶路径,路径的选择概率的计算公式为:
其中, cost i 是路径 i的选择成本, m为KSP算法搜索出的路径个数, n为路径 i中的路段总数量,是路径 i中路段 j的等级系数,在高速路、快速路和主干路分别取值为1.0、1.2、1.4,其余道路取值为1.5, length ij 为路径 i中路段 j的长度; p i i路径的选择概率, θ为路径选择成本系数,选择 p i 最大的路径作为最优行驶路径。
进一步的,步骤S5中车辆行程从开始卡口到结束卡口的行驶距离计算方法为:
S5.1、设置步骤S4中输出的最优车辆行驶路径为,其中为开始路段,
为结束路段,车辆行程开始卡口坐标为( x begin y begin ),结束坐标为( x end y end );
S5.2、车辆在开始卡口和结束卡口之间实际行驶距离的计算公式为:
其中, length begin 为开始路段实际行驶距离,  length end 为结束路段实际行驶距离, length i 为中间路段的实际行驶距离,( x 1q ,y 1q )为开始卡口和路段 l 1中距离最近的坐标点,( x pq ,y pq )为结束卡口和路段 l p 中距离最近的坐标点。
基于卡口车牌识别数据的实时路况监测系统,包括存储器和处理器,存储器存储有计算机程序,所述处理器执行所述计算机程序时实现所述的基于卡口车牌识别数据的实时路况监测方法的步骤。
本发明的有益效果:
本发明所述的一种基于卡口车牌识别数据的实时路况监测方法,综合考量了现有的数据采集方案和路网监测需求,提出了基于车牌识别数据(卡口电警数据/高速ETC数据)的道路运行路况监测方案,依托路网现有车牌识别数据,同路网数据进行融合,综合考虑监测精度和计算压力,以达到监测精度高、实时性强、高效计算目的。
本发明所述的一种基于卡口车牌识别数据的实时路况监测方法,基于卡口车牌识别数据,结合短时行程识别、路径匹配技术和道路实时路况指标计算技术,提出了一种道路实时路况监测框架,包括完整的自动化路况计算方法,并在甘肃高速路网上进行了实证分析,验证了实时路况监测效果和系统性能。
本发明所述的一种基于卡口车牌识别数据的实时路况监测方法,依托于道路现有卡口基础设施,无需新增数据采集方案,路网运行监测成本低;所需数据明确,参数含义明确,支持标准化部署到实际应用场景。
附图说明
图1为本发明所述的基于卡口车牌识别数据的实时路况监测方法的流程图;
图2为本发明所述的基于卡口车牌识别数据的实时路况监测方法中图搜索的KSP方法路径搜索示意图;
图3为本发明所述的所述的基于卡口车牌识别数据的实时路况监测方法的计算行驶距离方法的示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施方式,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施方式仅用以解释本发明,并不用于限定本发明,即所描述的具体实施方式仅仅是本发明一部分实施方式,而不是全部的具体实施方式。通常在此处附图中描述和展示的本发明具体实施方式的组件可以以各种不同的配置来布置和设计,本发明还可以具有其他实施方式。
因此,以下对在附图中提供的本发明的具体实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定具体实施方式。基于本发明的具体实施方式,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他具体实施方式,都属于本发明保护的范围。
为能进一步了解本发明的发明内容、特点及功效,兹例举以下具体实施方式,并配合附图1-附图3详细说明如下 :
具体实施方式一:
一种基于卡口车牌识别数据的实时路况监测方法,包括如下步骤:
S1、构建路网图:基于路网地理信息图层文件数据将路网构建为路网图,路网图中的节点表示路段交叉口,路网图中的有向边表示路段,有向边的方向表示路段行驶方向,有向边的权重表示路段的长度,最终将路网图保存为二维矩阵;
进一步的,步骤S1的具体实现方法包括如下步骤:
S1.1、设置路网地理信息图层文件数据中的字段名称和字段含义为:link_id表示路段编号,from_node表示路段拓扑起点编号,to_node表示路段拓扑终点编号,dir表示路段方向,length表示路段长度,geomtery表示地理坐标;
S1.2、设置路段方向为拓扑正向的路段,from_node字段和to_node字段内容保持不变,路段方向为拓扑反向的路段,对from_node字段和to_node字段内容进行互换,路段方向为拓扑双向的路段,将其设置为拓扑正向和拓扑反向两个路段,设置为拓扑正向的路段,from_node字段和to_node字段内容保持不变,设置为拓扑反向的路段,对from_node字段和to_node字段内容进行互换;
S1.3、将from_node字段作为二维矩阵的行序,to_node字段作为二维矩阵的列序,路段长度length作为二维矩阵的行序和列序位置的值,将路网图保存为二维矩阵;
进一步的,路网地理信息图层文件数据样例如表1所示:
表1路网地理信息图层文件数据样例
S2、卡口点位与路网拓扑关联路段构建和校核:采集卡口基础信息地理数据,卡口车牌识别数据,将采集卡口基础信息地理数据形成卡口点位数据,然后基于步骤S1构建的路网图、卡口点位数据、卡口车牌识别数据构建卡口点位与路网拓扑关联路段,并进行校核;
进一步的,步骤S2的具体构建方法包括如下步骤:
S2.1、检查卡口点位数据和路网地理信息图层文件数据是否在同一坐标系下,不在同一坐标系下的转换到WGS84坐标系;
S2.2、基于同一坐标系下的卡口点位数据和路网地理信息图层文件数据,进行筛选卡口关联路段的候选路段;
进一步的,道路建设和相关基础设施建设完成后,会采集路网和卡口基础地理信息数据,形成卡口点位和路网地理信息图层文件。由于基础设施建设不同步和信息管理更新的不完善,往往出现通过卡口记录的点位无法定位到卡口所在的真实路段,需要对卡口点位与路网拓扑关系进行重新构建和校核,确保每个卡口能够关联到真实路段,卡口点位数据样例如表2所示:
表2卡口点位数据样例
进一步的,步骤S2.2的具体实现方法包括如下步骤:
S2.2.1、在WGS84坐标系下,设置两点的经纬度坐标为(x1,y1),(x2,y2),地球半径R为6371km,两点间距离 d基于半正矢公式进行计算,将两点间距离 d的计算公式标记为 f(x1,y1,x2,y2),则计算公式为:
其中,a为半正矢公式中间计算结果;
S2.2.2、选取卡口WGS84坐标系附近500米范围的所有路段作为备选路段,设置备选路段 l的空间坐标由 n个经纬度坐标表示,则第i个备选路段,i为n中的任意一个,设置卡口的经纬度坐标为( x 0 ,y 0),则卡口到第i个备选路段间的距离
的计算公式为:
则得到卡口到备选路段 l的最短距离的计算公式为:
S2.2.3、基于步骤S2.2.2计算的卡口和所有备选路段的距离及卡口到备选路段 l的最短距离,筛选距离卡口最近的前 k个路段作为卡口关联路段的候选路段,并按照距离升序排列后记为{ l 1l 2,…, l k },其中 k<10;
S2.2.4、对所有卡口重复步骤S2.2.1-S2.2.3,获得所有卡口的关联路段的候选路段;
S2.3、基于采集的卡口车牌识别数据、步骤S1构建的路网图,利用图路径搜索方法判断车辆在连续经过的卡口的候选路段是否存在连通路径,判断为是则标记存在连通路径的卡口的候选路段为卡口的关联路段,判断为否则标记不存在连通路径的卡口为点位异常卡口;
进一步的,步骤S2.3的具体实现方法包括如下步骤:
S2.3.1、将采集的卡口车牌识别数据,按照车牌分组;
S2.3.2、设置同一辆车连续经过的两个卡口为卡口 c和卡口 d,设置卡口c的候选路段为为卡口c的第i个候选路段,卡口 d的候选路段为为卡口 d的第j个候选路段;
S2.3.3、依次选择作为开始路段和结束路段,基于图路径搜索方法在步骤S1中构建的路网图上确认开始路段和结束路段是否连通,如果路段连通,则将路段作为卡口c的关联路段,将路段作为卡口d的关联路段;如果所有的候选路段之间不存在连通路径,则标记卡口c和d为点位异常卡口;
S2.4、基于路网地理信息图层文件数据中的路段拓扑方向和卡口点位数据的属性信息人工校核步骤S2.3标记的点位异常卡口;
S2.5、选择不同的卡口车牌识别数据重复步骤S2.3和S2.4,直至点位异常卡口的个数为0;
进一步的,卡口点位与路网拓扑关联关系数据样例如表3所示
表3 构建卡口点位与路网拓扑关联关系数据样例
S3、车辆短时行程识别:对采集的卡口车牌识别数据进行车辆短时行程识别;
进一步的,步骤S3的具体实现方法包括如下步骤:
S3.1、数据清洗:对时间异常、车牌异常、重复记录的卡口车牌识别数据进行删除,得到数据清洗后的卡口车牌识别数据;
S3.2、动态统计卡口间的标准行程时间:基于一段时间内的卡口车牌识别数据,统计卡口间的行程时间,设置m个车辆经过卡口c和卡口d的行程时间记为,将卡口c和卡口d的行程时间的中位数作为卡口c和卡口d的标准行程时间,统计所有卡口间的标准行程时间,对于城市按高峰时段卡口数据和平峰时段卡口数据分别统计卡口间的标准行程时间;
S3.3、短时行程分割:将所有车辆的车牌记录按照车牌分组处理,对单辆车的所有记录,按记录时间排序后计算两个连续卡口之的行程时间,若单辆车在两个连续卡口间的行程时间小于卡口间的标准行程时间的1.10-1.20倍,则以开始卡口、开始时间、结束卡口和结束时间为标记数据记录该辆车该段行程为有效行程,否则记录该辆车在该时间段内存在非正常行驶状态,该辆车该段行程为无效行程,不予记录;
S3.4、实时数据的车辆短时行程处理:设置卡口路况监测以15min作为一个时间片,用时间片切分实时数据,当出现车辆通过的连续两个卡口切分到不同时间片时,采集车辆在上一时间片内的通过卡口记录,判断上一时间片的通过卡口和当前时间片的通过卡口之间的行程否为有效行程,行程有效时合并上一时间片卡口记录到当前时间片;
进一步的,车辆短时行程识别数据样例如表4所示:
表4 车辆短时行程识别数据样例
S4、路径还原:基于步骤S3得到的车辆短时行程,采用图搜索的KSP方法搜索卡口间的行驶路径,计算最优行驶路径;
进一步的,步骤S4的具体实现方法包括如下步骤:
S4.1、车辆行程路径匹配:基于步骤S3得到的车辆行程的卡口点位数据,通过步骤S2得到的卡口点位与路网拓扑关联关系确定车辆行程起始路段和结束路段,通过图搜索的KSP方法在步骤S1得到的路网图上搜索行驶路线;
S4.2、利用图搜索的KSP方法搜索出的距离最短的前 m条路径,计算路径的选择概率,然后将选择概率最大的路径作为最优行驶路径,路径的选择概率的计算公式为:
其中, cost i 是路径 i的选择成本, m为KSP算法搜索出的路径个数, n为路径 i中的路段总数量,是路径 i中路段 j的等级系数,在高速路、快速路和主干路分别取值为1.0、1.2、1.4,其余道路取值为1.5, length ij 为路径 i中路段 j的长度; p i i路径的选择概率, θ为路径选择成本系数,选择 p i 最大的路径作为最优行驶路径;
S5、计算行驶距离:基于步骤S4得到的最优行驶路径,依据步骤S2的卡口点位和路网拓扑关联路段计算车辆行程从开始卡口到结束卡口的实际行驶距离;
进一步的,步骤S5中车辆行程从开始卡口到结束卡口的行驶距离计算方法为:
S5.1、设置步骤S4中输出的最优车辆行驶路径为,其中为开始路段,
为结束路段,车辆行程开始卡口坐标为( x begin y begin ),结束坐标为( x end y end );
S5.2、车辆在开始卡口和结束卡口之间实际行驶距离的计算公式为:
其中, length begin 为开始路段实际行驶距离,  length end 为结束路段实际行驶距离, length i 为中间路段的实际行驶距离,( x 1q ,y 1q )为开始卡口和路段 l 1中距离最近的坐标点,( x pq ,y pq )为结束卡口和路段 l p 中距离最近的坐标点;
S6、实时路况计算:基于步骤S5得到的实际行驶距离和行驶时间,计算车辆在行程内的运行速度,然后统计途径路段的所有车辆得到路段实际流量,对途径路段的所有车辆运行速度取均值得到路段运行速度。
进一步的,实时路况监测结果如表5所示:
表5 实时路况监测结果样例
具体实施方式二:
基于卡口车牌识别数据的实时路况监测系统,包括存储器和处理器,存储器存储有计算机程序,所述处理器执行所述计算机程序时实现具体实施方式一所述的基于卡口车牌识别数据的实时路况监测方法的步骤。
本发明的计算机装置可以是包括有处理器以及存储器等装置,例如包含中央处理器的单片机等。并且,处理器用于执行存储器中存储的计算机程序时实现上述的基于CREO软件的可修改由关系驱动的推荐数据的推荐方法的步骤。
所称处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器 (Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列 (Field-Programmable Gate Array,FPGA) 或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card, SMC),安全数字(Secure Digital, SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
本发明的关键技术点和欲保护点
(1)节点位置准确性检测技术;
(2)卡口间行程识别技术(动态行程时间预估技术);
(3)卡口间路径搜索技术(路径搜索算法)。
需要说明的是,术语“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
虽然在上文中已经参考具体实施方式对本申请进行了描述,然而在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,本申请所披露的具体实施方式中的各项特征均可通过任意方式相互结合起来使用,在本说明书中未对这些组合的情况进行穷举性的描述仅仅是出于省略篇幅和节约资源的考虑。因此,本申请并不局限于文中公开的特定具体实施方式,而是包括落入权利要求的范围内的所有技术方案。

Claims (9)

1.一种基于卡口车牌识别数据的实时路况监测方法,其特征在于:包括如下步骤:
S1、构建路网图:基于路网地理信息图层文件数据将路网构建为路网图,路网图中的节点表示路段交叉口,路网图中的有向边表示路段,有向边的方向表示路段行驶方向,有向边的权重表示路段的长度,最终将路网图保存为二维矩阵;
S2、卡口点位与路网拓扑关联路段构建和校核:采集卡口基础信息地理数据,卡口车牌识别数据,将采集卡口基础信息地理数据形成卡口点位数据,然后基于步骤S1构建的路网图、卡口点位数据、卡口车牌识别数据构建卡口点位与路网拓扑关联路段,并进行校核;
S3、车辆短时行程识别:对采集的卡口车牌识别数据进行车辆短时行程识别;
S4、路径还原:基于步骤S3得到的车辆短时行程,采用图搜索的KSP方法搜索卡口间的行驶路径,计算最优行驶路径;
S5、计算行驶距离:基于步骤S4得到的最优行驶路径,依据步骤S2的卡口点位和路网拓扑关联路段计算车辆行程从开始卡口到结束卡口的实际行驶距离;
S6、实时路况计算:基于步骤S5得到的实际行驶距离和行驶时间,计算车辆在行程内的运行速度,然后统计途径路段的所有车辆得到路段实际流量,对途径路段的所有车辆运行速度取均值得到路段运行速度。
2.根据权利要求1所述的一种基于卡口车牌识别数据的实时路况监测方法,其特征在于:步骤S1的具体实现方法包括如下步骤:
S1.1、设置路网地理信息图层文件数据中的字段名称和字段含义为:link_id表示路段编号,from_node表示路段拓扑起点编号,to_node表示路段拓扑终点编号,dir表示路段方向,length表示路段长度,geomtery表示地理坐标;
S1.2、设置路段方向为拓扑正向的路段,from_node字段和to_node字段内容保持不变,路段方向为拓扑反向的路段,对from_node字段和to_node字段内容进行互换,路段方向为拓扑双向的路段,将其设置为拓扑正向和拓扑反向两个路段,设置为拓扑正向的路段,from_node字段和to_node字段内容保持不变,设置为拓扑反向的路段,对from_node字段和to_node字段内容进行互换;
S1.3、将from_node字段作为二维矩阵的行序,to_node字段作为二维矩阵的列序,路段长度length作为二维矩阵的行序和列序位置的值,将路网图保存为二维矩阵。
3.根据权利要求2所述的一种基于卡口车牌识别数据的实时路况监测方法,其特征在于,步骤S2的具体构建方法包括如下步骤:
S2.1、检查卡口点位数据和路网地理信息图层文件数据是否在同一坐标系下,不在同一坐标系下的转换到WGS84坐标系;
S2.2、基于同一坐标系下的卡口点位数据和路网地理信息图层文件数据,进行筛选卡口关联路段的候选路段;
S2.3、基于采集的卡口车牌识别数据、步骤S1构建的路网图,利用图路径搜索方法判断车辆在连续经过的卡口的候选路段是否存在连通路径,判断为是则标记存在连通路径的卡口的候选路段为卡口的关联路段,判断为否则标记不存在连通路径的卡口为点位异常卡口;
S2.4、基于路网地理信息图层文件数据中的路段拓扑方向和卡口点位数据的属性信息人工校核步骤S2.3标记的点位异常卡口;
S2.5、选择不同的卡口车牌识别数据重复步骤S2.3和S2.4,直至点位异常卡口的个数为0。
4.根据权利要求3所述的一种基于卡口车牌识别数据的实时路况监测方法,其特征在于,步骤S2.2的具体实现方法包括如下步骤:
S2.2.1、在WGS84坐标系下,设置两点的经纬度坐标为(x1,y1),(x2,y2),地球半径R为6371km,两点间距离d基于半正矢公式进行计算,将两点间距离d的计算公式标记为f(x1,y1,x2,y2),则计算公式为:
其中,a为半正矢公式中间计算结果;
S2.2.2、选取卡口WGS84坐标系附近500米范围的所有路段作为备选路段,设置备选路段l的空间坐标由n个经纬度坐标表示,则第i个备选路段,i为n中的任意一个,设置卡口的经纬度坐标为(x 0 ,y 0),则卡口到第i个备选路段间的距离的计算公式为:
则得到卡口到备选路段l的最短距离的计算公式为:
S2.2.3、基于步骤S2.2.2计算的卡口和所有备选路段的距离及卡口到备选路段l的最短距离,筛选距离卡口最近的前k个路段作为卡口关联路段的候选路段,并按照距离升序排列后记为,其中k<10;
S2.2.4、对所有卡口重复步骤S2.2.1-S2.2.3,获得所有卡口的关联路段的候选路段。
5.根据权利要求4所述的一种基于卡口车牌识别数据的实时路况监测方法,其特征在于,步骤S2.3的具体实现方法包括如下步骤:
S2.3.1、将采集的卡口车牌识别数据,按照车牌分组;
S2.3.2、设置同一辆车连续经过的两个卡口为卡口c和卡口d,设置卡口c的候选路段为为卡口c的第i个候选路段,卡口d的候选路段为为卡口d的第j个候选路段;
S2.3.3、依次选择作为开始路段和结束路段,基于图路径搜索方法在步骤S1中构建的路网图上确认开始路段和结束路段是否连通,如果路段连通,则将路段作为卡口c的关联路段,将路段作为卡口d的关联路段;如果所有的候选路段之间不存在连通路径,则标记卡口c和d为点位异常卡口。
6.根据权利要求5所述的一种基于卡口车牌识别数据的实时路况监测方法,其特征在于:步骤S3的具体实现方法包括如下步骤:
S3.1、数据清洗:对时间异常、车牌异常、重复记录的卡口车牌识别数据进行删除,得到数据清洗后的卡口车牌识别数据;
S3.2、动态统计卡口间的标准行程时间:基于一段时间内的卡口车牌识别数据,统计卡口间的行程时间,设置m个车辆经过卡口c和卡口d的行程时间记为,将卡口c和卡口d的行程时间的中位数作为卡口c和卡口d的标准行程时间,统计所有卡口间的标准行程时间,对于城市按高峰时段卡口数据和平峰时段卡口数据分别统计卡口间的标准行程时间;
S3.3、短时行程分割:将所有车辆的车牌记录按照车牌分组处理,对单辆车的所有记录,按记录时间排序后计算两个连续卡口之的行程时间,若单辆车在两个连续卡口间的行程时间小于卡口间的标准行程时间的1.10-1.20倍,则以开始卡口、开始时间、结束卡口和结束时间为标记数据记录该辆车该段行程为有效行程,否则记录该辆车在该时间段内存在非正常行驶状态,该辆车该段行程为无效行程,不予记录;
S3.4、实时数据的车辆短时行程处理:设置卡口路况监测以15min作为一个时间片,用时间片切分实时数据,当出现车辆通过的连续两个卡口切分到不同时间片时,采集车辆在上一时间片内的通过卡口记录,判断上一时间片的通过卡口和当前时间片的通过卡口之间的行程否为有效行程,行程有效时合并上一时间片卡口记录到当前时间片。
7.根据权利要求6所述的一种基于卡口车牌识别数据的实时路况监测方法,其特征在于:步骤S4的具体实现方法包括如下步骤:
S4.1、车辆行程路径匹配:基于步骤S3得到的车辆行程的卡口点位数据,通过步骤S2得到的卡口点位与路网拓扑关联关系确定车辆行程起始路段和结束路段,通过图搜索的KSP方法在步骤S1得到的路网图上搜索行驶路线;
S4.2、利用图搜索的KSP方法搜索出的距离最短的前m条路径,计算路径的选择概率,然后将选择概率最大的路径作为最优行驶路径,路径的选择概率的计算公式为:
其中,cost i 是路径i的选择成本,m为KSP算法搜索出的路径个数,n为路径i中的路段总数量,是路径i中路段j的等级系数,在高速路、快速路和主干路分别取值为1.0、1.2、1.4,其余道路取值为1.5,为路径i中路段j的长度;p i i路径的选择概率,θ为路径选择成本系数,选择p i 最大的路径作为最优行驶路径。
8.根据权利要求7所述的一种基于卡口车牌识别数据的实时路况监测方法,其特征在于:步骤S5中车辆行程从开始卡口到结束卡口的行驶距离计算方法为:
S5.1、设置步骤S4中输出的最优车辆行驶路径为,其中为开始路段,
为结束路段,车辆行程开始卡口坐标为,结束坐标为
S5.2、车辆在开始卡口和结束卡口之间实际行驶距离的计算公式为:
其中,length begin 为开始路段实际行驶距离,length end 为结束路段实际行驶距离,length i 为中间路段的实际行驶距离,(x 1q ,y 1q )为开始卡口和路段l 1中距离最近的坐标点,(x pq ,y pq )为结束卡口和路段l p 中距离最近的坐标点。
9.基于卡口车牌识别数据的实时路况监测系统,其特征在于:包括存储器和处理器,存储器存储有计算机程序,所述处理器执行所述计算机程序时实现权利要求1-8任一项所述的基于卡口车牌识别数据的实时路况监测方法的步骤。
CN202310202367.0A 2023-03-06 2023-03-06 基于卡口车牌识别数据的实时路况监测系统及其方法 Active CN116071929B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310202367.0A CN116071929B (zh) 2023-03-06 2023-03-06 基于卡口车牌识别数据的实时路况监测系统及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310202367.0A CN116071929B (zh) 2023-03-06 2023-03-06 基于卡口车牌识别数据的实时路况监测系统及其方法

Publications (2)

Publication Number Publication Date
CN116071929A true CN116071929A (zh) 2023-05-05
CN116071929B CN116071929B (zh) 2023-08-01

Family

ID=86171593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310202367.0A Active CN116071929B (zh) 2023-03-06 2023-03-06 基于卡口车牌识别数据的实时路况监测系统及其方法

Country Status (1)

Country Link
CN (1) CN116071929B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116224844A (zh) * 2023-05-08 2023-06-06 四川磊蒙机械设备有限公司 一种智能装车系统
CN117928566A (zh) * 2024-03-21 2024-04-26 华南农业大学 一种农机行驶的路径规划方法、设备、介质及产品

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004295682A (ja) * 2003-03-27 2004-10-21 Sumitomo Electric Ind Ltd リンク旅行時間算出方法及び装置
US20090138497A1 (en) * 2007-11-06 2009-05-28 Walter Bruno Zavoli Method and system for the use of probe data from multiple vehicles to detect real world changes for use in updating a map
CN103473609A (zh) * 2013-09-04 2013-12-25 银江股份有限公司 一种相邻卡口间od实时行车时间的获取方法
CN104062671A (zh) * 2014-07-08 2014-09-24 中国石油大学(华东) 曲率约束的gnss浮动车地图匹配方法及装置
CN106571037A (zh) * 2016-11-15 2017-04-19 同济大学 一种基于卡口检测技术的高速公路实时路况监测方法
CN110766938A (zh) * 2019-09-18 2020-02-07 平安科技(深圳)有限公司 路网拓扑结构的构建方法、装置、计算机设备及存储介质
CN111243277A (zh) * 2020-03-09 2020-06-05 山东大学 基于车牌识别数据的通勤车辆时空轨迹重构方法及系统
CN111768619A (zh) * 2020-06-16 2020-10-13 苏州大学 一种基于卡口数据的快速路车辆od点确定方法
CN112820105A (zh) * 2020-12-31 2021-05-18 银江股份有限公司 路网异常区域处理的方法及系统
CN113706875A (zh) * 2021-10-29 2021-11-26 深圳市城市交通规划设计研究中心股份有限公司 一种道路功能研判方法
CN113868492A (zh) * 2021-08-04 2021-12-31 北京一通智能科技有限公司 一种基于电警、卡口数据的可视化od分析方法及应用
CN114139251A (zh) * 2021-11-14 2022-03-04 深圳市规划国土发展研究中心 一种边境地区陆路口岸整体布局方法
CN114186410A (zh) * 2021-12-09 2022-03-15 王彬 随机gis网络驱动的交通最短可靠路径方法
CN114333292A (zh) * 2021-11-22 2022-04-12 上海电科智能系统股份有限公司 一种基于轨迹重构技术的流量修复方法
CN115077552A (zh) * 2022-06-13 2022-09-20 山东大学 一种基于最短路径的监管环境安全巡检规划方法及系统
CN115329030A (zh) * 2022-10-17 2022-11-11 深圳市城市交通规划设计研究中心股份有限公司 一种校核道路网络模型参数的方法、电子设备及存储介质
CN115512543A (zh) * 2022-09-21 2022-12-23 浙江大学 一种基于深度逆向强化学习的车辆路径链重构方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004295682A (ja) * 2003-03-27 2004-10-21 Sumitomo Electric Ind Ltd リンク旅行時間算出方法及び装置
US20090138497A1 (en) * 2007-11-06 2009-05-28 Walter Bruno Zavoli Method and system for the use of probe data from multiple vehicles to detect real world changes for use in updating a map
CN103473609A (zh) * 2013-09-04 2013-12-25 银江股份有限公司 一种相邻卡口间od实时行车时间的获取方法
CN104062671A (zh) * 2014-07-08 2014-09-24 中国石油大学(华东) 曲率约束的gnss浮动车地图匹配方法及装置
CN106571037A (zh) * 2016-11-15 2017-04-19 同济大学 一种基于卡口检测技术的高速公路实时路况监测方法
WO2021051568A1 (zh) * 2019-09-18 2021-03-25 平安科技(深圳)有限公司 路网拓扑结构的构建方法、装置、计算机设备及存储介质
CN110766938A (zh) * 2019-09-18 2020-02-07 平安科技(深圳)有限公司 路网拓扑结构的构建方法、装置、计算机设备及存储介质
CN111243277A (zh) * 2020-03-09 2020-06-05 山东大学 基于车牌识别数据的通勤车辆时空轨迹重构方法及系统
CN111768619A (zh) * 2020-06-16 2020-10-13 苏州大学 一种基于卡口数据的快速路车辆od点确定方法
CN112820105A (zh) * 2020-12-31 2021-05-18 银江股份有限公司 路网异常区域处理的方法及系统
CN113868492A (zh) * 2021-08-04 2021-12-31 北京一通智能科技有限公司 一种基于电警、卡口数据的可视化od分析方法及应用
CN113706875A (zh) * 2021-10-29 2021-11-26 深圳市城市交通规划设计研究中心股份有限公司 一种道路功能研判方法
CN114139251A (zh) * 2021-11-14 2022-03-04 深圳市规划国土发展研究中心 一种边境地区陆路口岸整体布局方法
CN114333292A (zh) * 2021-11-22 2022-04-12 上海电科智能系统股份有限公司 一种基于轨迹重构技术的流量修复方法
CN114186410A (zh) * 2021-12-09 2022-03-15 王彬 随机gis网络驱动的交通最短可靠路径方法
CN115077552A (zh) * 2022-06-13 2022-09-20 山东大学 一种基于最短路径的监管环境安全巡检规划方法及系统
CN115512543A (zh) * 2022-09-21 2022-12-23 浙江大学 一种基于深度逆向强化学习的车辆路径链重构方法
CN115329030A (zh) * 2022-10-17 2022-11-11 深圳市城市交通规划设计研究中心股份有限公司 一种校核道路网络模型参数的方法、电子设备及存储介质

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
BINGJIAN YANG等: "Vehicle Trajectory Extraction Method Research for Intersection Bayonet Data", 9TH INTERNATIONAL CONFERENCE ON GREEN INTELLIGENT TRANSPORTATION SYSTEMS AND SAFETY, pages 1239 - 1252 *
LIANG XU等: "An Origin-Destination Demands-Based Multipath-Band Approach to Time-Varying Arterial Coordination", IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, vol. 23, no. 10, pages 17784, XP011922922, DOI: 10.1109/TITS.2022.3150977 *
付媛;朱礼军;韩红旗;: "K最短路径算法与应用分析", 情报工程, no. 01, pages 113 - 120 *
刘聪;李娟;马丽;王进展;许翔华;曲大义;: "基于卡口系统车牌识别数据的交通状态判别方法", 青岛理工大学学报, no. 02, pages 90 - 99 *
唐代旻等: "面向交通微观仿真的道路网络模型", 南京师大学报(自然科学版), no. 04, pages 38 - 43 *
张治华: "基于GPS轨迹的出行信息提取研究", 中国博士学位论文全文数据库(基础科学辑), no. 11, pages 008 - 1 *
徐建闽;魏鑫;林永杰;卢凯;: "基于梯度提升决策树的城市车辆路径链重构", 华南理工大学学报(自然科学版), no. 07, pages 59 - 68 *
李晓莉等: "行程时间异常值处理方法研究", 武汉理工大学学报(交通科学与工程版), vol. 36, no. 1, pages 116 - 119 *
杨帅: "基于高快速路卡口数据的车辆出行特征分析", 创新驱动与智慧发展——2018年中国城市交通规划年会论文集, pages 42 - 54 *
王晶: "Web服务组合QoS建模与属性验证研究", 中国优秀硕士学位论文全文数据库 (信息科技辑), pages 139 - 253 *
罗月童等: "基于历史行车轨迹集的车辆行为可视分析方法", 计算机科学, pages 86 - 94 *
阮树斌;王福建;马东方;金盛;王殿海;: "基于车牌识别数据的机动车出行轨迹提取算法", 浙江大学学报(工学版), no. 05, pages 23 - 31 *
韩国华等: "基于车牌识别数据的出行特征研究", 黑龙江交通科技, pages 213 - 214 *
马柱;吴寻;陈福临;: "基于卡口车牌数据的交通拥堵改善方案研究", 城市交通, no. 04, pages 34 - 41 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116224844A (zh) * 2023-05-08 2023-06-06 四川磊蒙机械设备有限公司 一种智能装车系统
CN116224844B (zh) * 2023-05-08 2023-08-25 四川磊蒙机械设备有限公司 一种智能装车系统
CN117928566A (zh) * 2024-03-21 2024-04-26 华南农业大学 一种农机行驶的路径规划方法、设备、介质及产品

Also Published As

Publication number Publication date
CN116071929B (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
CN116071929B (zh) 基于卡口车牌识别数据的实时路况监测系统及其方法
CN104050817B (zh) 限速信息库生成、限速信息检测的方法和系统
EP3410348A1 (en) Method and apparatus for building a parking occupancy model
WO2021082464A1 (zh) 预测车辆的目的地的方法和装置
Ganti et al. Inferring human mobility patterns from taxicab location traces
US11049390B2 (en) Method, apparatus, and system for combining discontinuous road closures detected in a road network
US11062154B2 (en) Non-transitory storage medium storing image transmission program, image transmission device, and image transmission method
CN111739323B (zh) 一种路口信息的采集方法及装置
WO2021036290A1 (zh) 识别车辆的营运行为的方法、装置及计算设备
CN113570864B (zh) 一种电动自行车行驶路径匹配方法、设备及存储介质
Guo et al. Urban link travel speed dataset from a megacity road network
CN113259900B (zh) 一种分布式多源异构交通数据融合方法及装置
CN115168529B (zh) 一种基于手机定位数据的枢纽客流溯源方法
Paul et al. RFID based vehicular networks for smart cities
CN106940929B (zh) 交通数据预测方法及装置
CN112036757A (zh) 基于手机信令和浮动车数据的停车换乘停车场的选址方法
US20200035097A1 (en) Parking lot information management system, parking lot guidance system, parking lot information management program, and parking lot guidance program
Qaddoura et al. Temporal prediction of traffic characteristics on real road scenarios in Amman
US11238291B2 (en) Method, apparatus, and computer program product for determining if probe data points have been map-matched
CN116307318B (zh) 一种基于卡口车牌识别数据的道路流量溯源系统及其方法
CN114550452B (zh) 一种道路网结构问题位置识别方法、装置和电子设备
Habtie et al. Cellular network based real-time urban road traffic state estimation framework using neural network model estimation
Efentakis et al. Crowdsourcing turning restrictions for OpenStreetMap.
EP3671127B1 (en) Method and apparatus for mining pedestrian probe data from mix-mode probe data
KR102302486B1 (ko) 도시 도로의 운행 속도 처리 방법, 도시 도로의 운행 속도 처리 장치, 기기 및 비휘발성 컴퓨터 저장 매체

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant