CN116063090A - 一种钢包工作衬无碳刚玉尖晶石预制块及其制备方法 - Google Patents

一种钢包工作衬无碳刚玉尖晶石预制块及其制备方法 Download PDF

Info

Publication number
CN116063090A
CN116063090A CN202310090320.XA CN202310090320A CN116063090A CN 116063090 A CN116063090 A CN 116063090A CN 202310090320 A CN202310090320 A CN 202310090320A CN 116063090 A CN116063090 A CN 116063090A
Authority
CN
China
Prior art keywords
parts
working lining
corundum
ladle working
precast block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310090320.XA
Other languages
English (en)
Inventor
张川
刘永亮
崔高杨
李勇
王鹏
李兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anshan He Feng Refractory Material Co ltd
Original Assignee
Anshan He Feng Refractory Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anshan He Feng Refractory Material Co ltd filed Critical Anshan He Feng Refractory Material Co ltd
Priority to CN202310090320.XA priority Critical patent/CN116063090A/zh
Publication of CN116063090A publication Critical patent/CN116063090A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/02Linings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种钢包工作衬无碳刚玉尖晶石预制块及其的制备方法,是由下述重量份数的原料制备而成:10~20mm白刚玉5~15份、5<粒径≤10mm板状刚玉颗粒10~25份、3<粒径≤5mm板状刚玉颗粒10~20份、1<粒径≤3mm板状刚玉颗粒10~15份、粒径≤1mm板状刚玉颗粒10~20份、0.074mm板状刚玉粉末0~10份、0.074mm烧结铝镁尖晶石10~15份、2.5μm活性α‑Al2O3微粉2~5份、4.5μm煅烧α‑Al2O3微粉2~5份、氧化钇稳定型铝锆酸钡水泥5~15份、减水剂0.1~0.2份、防爆纤维0.05~0.1份。本发明抗熔渣侵蚀性能优异、热震性能优异、高温性能优异。

Description

一种钢包工作衬无碳刚玉尖晶石预制块及其制备方法
技术领域
本发明涉及冶金耐火材料领域,尤其涉及一种高性能钢包工作衬无碳刚玉尖晶石预制块及其制备方法。
背景技术
钢水包用于炼钢厂、铸造厂在平炉、电炉或转炉前承接钢水、炉外精炼、进行连铸浇注作业。钢包在钢铁冶金系统中占有非常重要的地位,钢包的使用寿命直接决定冶炼效率。
钢水包是炼钢生产中不可缺少的高温容器,它起着盛接钢水、对钢水进行二次精炼的作用。随着对低碳钢、超低碳钢等品种钢需求的增加,同时要求钢包工作衬具有良好的抗熔渣和抗钢水的侵蚀性能和不对钢水造成二次污染。
目前国内大中型精炼钢包工作衬基本采用3种方式。1.钢包包底工作衬、包壁工作衬采用铝镁碳和镁铝碳砖,渣线采用镁碳砖;2.钢包包底工作衬、包壁工作衬采用无碳刚玉尖晶石浇注料,渣线采用低碳镁碳砖。3.钢包包底工作衬、包壁工作衬采用无碳刚玉尖晶石预制块,渣线采用低碳镁碳砖。
精炼钢包的第1种方式:因为钢包工作衬砖的含碳量高,对钢水存在增碳作用,不利于低碳钢、超低碳钢等品种的冶炼,同时铝镁碳砖和镁铝碳砖高温体积稳定性差,使用中容易产生剥落,导致频繁拆包,影响钢厂的冶炼生产节奏。
精炼钢包的第2种方式:因为采取现场浇注钢包包底工作衬和包壁工作衬的方式,要求钢包无碳工作衬浇注料具有良好的流动性和具备良好的脱模强度,所以浇注料中要加入一定比例4-6%的纯铝酸钙水泥。加入纯铝酸钙水泥后,钢包工作衬浇注料会带入一定量的CaO。钢包工作衬浇注料使用温度>1600℃,水泥中的CaO会形成钙黄长石等一系列低熔相,同时在1100以上的温度下,CaO会使材料中Mgo*Al203尖晶石分解,生成12Cao*7Al203和3Cao*Al203等低熔相,形成网状通道,造成钢包工作衬浇注料的加速侵蚀和结构剥落。另外,现场浇注钢包工作衬浇注料的加水量、搅拌时间、震动时间、烘烤等存在很多不可控因素,造成钢包工作衬的质量存在很大的波动。造成频繁拆包,影响钢厂的冶炼生产节奏。
精炼钢包的第3种方式:因为采取厂内制作钢包包底工作衬和包壁工作衬无碳刚玉尖晶石预制块的方式,避免了第2种方式中现场浇注钢包工作衬浇注料的加水量、搅拌时间、震动时间、烘烤等很多不可控因素,在国内大中型精炼钢包工作衬基本采用无碳刚玉尖晶石预制块的砌筑方式。目前国内钢包工作衬无碳刚玉尖晶石预制块采取2种结合方式:1.采用纯铝酸钙水泥结合。其中纯铝酸钙水泥会带入一定量的CaO,带入CaO的缺点已在精炼钢包的第2种方式中讲述。2.采用ρ-Al203微粉的无水泥结合。因ρ-Al203微粉是氧化铝微粉中唯一具有水化功能的晶型,ρ-Al203微粉本身的生产工艺就决定了其水化具有不稳定性,对温度变化很敏感,凝结时间时长时短,造成制品成型不稳定且气孔分布不均。因ρ-Al203微粉水化后的强度不如纯铝酸钙水泥,为保证预制块常温下的脱模强度,会加入一定比例3-5%的微硅粉做助结剂。钢包工作衬使用温度>1600℃,因加入微硅粉带入一定量的Si02,会使钢包工作衬无碳刚玉尖晶石预制块材料中硅酸盐低熔相比例增加,从而促使在无碳刚玉尖晶石预制块材料内部形成相互连接的网状硅酸盐低温相,具有这种显微结构的Al203-Mgo*Al203系耐火材料会妨碍其固-固结合,使材料高温强度下降,会降低无碳刚玉尖晶石预制块材料的抗热震性能,同时因内部形成相互连接的网状硅酸盐低温相,形成熔渣侵蚀通道进一步降低刚玉尖晶石预制块材料的抗熔渣侵蚀性能,造成钢包工作衬无碳刚玉尖晶石预制块的加速侵蚀和结构剥落。造成频繁拆包,影响钢厂的冶炼生产节奏。
发明内容
本发明提供了一种钢包工作衬无碳刚玉尖晶石预制块及其的制备方法,目的是提供一种抗熔渣侵蚀性能优异、热震性能优异、高温性能优异的钢包工作衬无碳刚玉尖晶石预制块。
为了达到上述目的,本发明采用以下技术方案实现:
一种钢包工作衬无碳刚玉尖晶石预制块,是由下述重量份数的原料制备而成:10~20mm白刚玉5~15份、5<粒径≤10mm板状刚玉颗粒10~25份、3<粒径≤5mm板状刚玉颗粒10~20份、1<粒径≤3mm板状刚玉颗粒10~15份、粒径≤1mm板状刚玉颗粒10~20份、0.074mm板状刚玉粉末0~10份、0.074mm烧结铝镁尖晶石10~15份、2.5μm活性α-Al2O3微粉2~5份、4.5μm煅烧α-Al2O3微粉2~5份、氧化钇稳定型铝锆酸钡水泥5~15份、减水剂0.1~0.2份、防爆纤维0.05~0.1份。
所述的白刚玉中Al2O3含量>98wt%、Si02含量<0.2wt%;所述板状刚玉中Al2O3含量>99wt%、Si02含量<0.2wt%。
所述的烧结铝镁尖晶石,其中Al2O3含量为76%~78%,MgO含量为18%~22%。
所述的活性α-Al2O3微粉中Al2O3含量>99%;煅烧α-Al2O3微粉中Al2O3含量>99%。
氧化钇稳定型铝锆酸钡水泥,其化学指标如下:Zr02含量为24%~28%,BaO含量为55%~60%,Al203含量为12%~17%,Y203含量为2%~3%;所述氧化钇稳定型铝锆酸钡水泥中其主要成分BaO·Al2O3(BA)与BaO·Zr02(BZ)的质量比为2:3。
所述氧化钇稳定型铝锆酸钡水泥的制备方法包括:
1)湿法共磨:将氧化铝微粉、硫酸钡、氧化锆微粉、氧化钇细粉加入内壁砌筑高纯氧化铝衬砖及高纯氧化铝研磨球的球磨机中加水共磨20~30min,均化成浆;
2)压滤脱水:将均化后的泥浆进行压滤脱水;
3)成型干燥:将脱水后的泥浆进行挤压成5-10mm的椭圆球,然后在箱式干燥器中进行干燥,温度80~110℃,时间>8h,使物料充分脱水;
4)高温煅烧:将干燥好的泥料在回转窑进行高温煅烧,温度:1550~1600℃,时间:4~6h;
5)球磨磨粉:将煅烧后熟料,采用内壁砌筑高纯氧化铝衬砖及高纯氧化铝研磨球的球磨机干法磨粉后即制得氧化钇稳定型铝锆酸钡水泥。
所述的氧化铝微粉,其中Al2O3含量>99%,粒径5~10μm;所述的硫酸钡,其中BaSO4含量>98%,粒径600~800目;所述的氧化锆微粉,其中Zr203>95%,粒径1~2μm;所述的氧化钇细粉,其中Y2O3>99%,粒径325目。
所述减水剂为FS10。
所述防爆纤维,熔点<105℃,长度:2~4mm。
一种钢包工作衬无碳刚玉尖晶石预制块的制备方法,方法包括:
1)混练:将原料进行预混,将混好的混合料投入湿混搅拌机内,搅拌2min以上,加入清水,然后再搅拌5min以上,流动值要求控制在150-180mm;
2)震动成型:将湿混料加入到模具内,进行振动,振动频率30-40赫兹,直至预制块表面无气泡产生时停止振动;
3)模内养生:将已振动好的产品装入养护房进行养护,养护温度控制在25-35℃,湿度控制在60-70%,养护时间≥48h;
4)模后养生:将脱模后的预制块进行养生,养护温度控制在25-35℃,湿度控制在60-70%,养护时间≥72h;
5)干燥:将预制块进行干燥,最高干燥温度300℃,干燥时间≥80h。
与现有技术相比,本发明的有益效果是:
1)本发明使用氧化钇稳定型铝锆酸钡水泥做结合剂,改善了ρ-Al203微粉结合钢包工作衬无碳刚玉尖晶石预制块的施工稳定性。在BaO-Al203-ZrO2系统中,铝酸盐BaO*Al203和3BaO*Al2O3具有水化凝结作用性能,但是单铝酸钡水泥,因为在合成3BaO*Al2O3时,通常有游离的BaO出现,它导致水泥体积不稳定,容易使水泥石组织结构遭受破坏。除此之外,3Bao*Al2O3具有较大的水化活性,致使结合剂迅速凝结。向铝酸钡中掺加锆酸钡,能促进水泥水化过程的活化性,除了单铝酸钡水化物BaO*Al203*6H2O和BaO*Al2O3*7H2O以外,由于有锆铝酸钡的参与,还生成了钡含量高的水化物,可保证水泥石有更高的强度和较低的软化性能。随着这些化合物的出现,降低了泥料中结合水的比例,在降低加水量的同时保证了泥料的混练状态和施工浇注时间。由于氧化锆晶型转变伴随着体积的变化,在加热过程中在1170℃,m-Zr2O3(单斜晶相)→t-Zr2O3(四方晶相)晶相转变伴随着约3%的体积收缩。在冷却过程中在1000~800℃,t-Zr2O3(四方晶相)→m-Zr2O3(单斜晶相)晶型转变会伴随着约5%的体积膨胀。氧化锆的晶型转变为可逆过程,会造成如下影响:1.在煅烧制备水泥的过程中,升温和冷却过程氧化锆会产生收缩和膨胀会严重影响水泥的煅烧过程,从而影响水泥质量的稳定性。2.钢包在盛装钢水转运及连铸时温度>1600℃,钢包在空包运转时温度在500~600℃,在使用过程中氧化锆的晶相转变产生的反复体积效应会造成制品开裂。加入氧化钇后,氧化钇作为氧化锆的稳定剂使其形成稳定的立方型固溶体结构,没有可逆的晶体转变,没有体积效应,可避免因体积效应在水泥煅烧制备过程中和作为结合剂在成品预制块在使用过程的上述问题,提高水泥及成品的稳定性。
2)本发明使用氧化钇稳定型铝锆酸钡水泥做结合剂,改善了纯铝酸钙水泥、ρ-Al203微粉结合钢包工作衬无碳刚玉尖晶石预制块的高温性能。根据有关文献数据,铝酸钡的熔化温度为1815℃,锆酸钡的熔化温度为2600℃,均为高温物质。在使用铝锆酸钡水泥做结合剂生产刚玉尖晶预制块时,高温使用时避免了纯铝酸钙水泥结合剂带入CaO和ρ-Al203微粉结合剂带入Si02的一系列低温液相,增强了无碳刚玉尖晶石预制块材料的固-固结合。从而,使用铝锆酸钡水泥做结合剂的钢包工作衬无碳刚玉尖晶石预制块比纯铝酸钙水泥、ρ-Al203微粉结合钢包工作衬无碳刚玉尖晶石预制块有这更好的高温性能。
3)本发明使用氧化钇稳定型铝锆酸钡水泥做结合剂,改善了纯铝酸钙水泥、ρ-Al203微粉结合钢包工作衬无碳刚玉尖晶石预制块的抗熔渣侵蚀性能。根据有关文献数据,铝酸钡的熔化温度为1815℃,锆酸钡的熔化温度为2600℃,均为高温物质。在使用铝锆酸钡水泥做结合剂生产钢包工作衬无碳刚玉尖晶预制块时,高温下避免了纯铝酸钙水泥结合剂带入Cao和ρ-Al203微粉结合剂带入Si02的一系列低温液相,无碳刚玉尖晶石预制块材料中不存在低温液相网状结构,无法形成熔渣的侵蚀通道。另外,铝锆酸钡水泥中含有ZrO2,氧化锆在高温下与侵入渣中的Cao反应生成高熔点固相Cao*Zr02(熔点2345℃)并形成层带结构,保护Mgo*Al203(尖晶石)不被Cao所分解,充分发挥了主成分刚玉、尖晶石的有益作用。从而,使用铝锆酸钡水泥做结合剂的钢包工作衬无碳刚玉尖晶石预制块比纯铝酸钙水泥、ρ-Al203微粉结合钢包工作衬无碳刚玉尖晶石预制块有这更好的抗熔渣侵蚀性能。
4)本发明使用氧化钇稳定型铝锆酸钡水泥做结合剂,改善了纯铝酸钙水泥、ρ-Al203微粉结合钢包工作衬无碳刚玉尖晶石预制块的热震性能。根据有关文献数据,铝酸钡的熔化温度为1815℃,锆酸钡的熔化温度为2600℃,均为高温物质。在使用铝锆酸钡水泥做结合剂生产钢包工作衬无碳刚玉尖晶预制块时,高温下避免了纯铝酸钙水泥结合剂带入Cao和ρ-Al203微粉结合剂带入Si02的一系列低温液相,钢包工作衬无碳刚玉尖晶石预制块材料中不存在低温液相网状结构,增强了刚玉尖晶石预制块材料的固-固结合。另外,铝锆酸钡水泥中含有ZrO2,ZrO2和MgO*Al2O3混晶(连晶)与Al2O3之间存在热膨胀失配效应,所以在钢包使用过程中急冷急热条件下,钢包工作衬无碳刚玉尖晶石预制块材料具“等轴化”的“宏观裂开”的显微裂隙的应力-消除结构时,裂纹扩展即会被抑制。从而,使用铝锆酸钡水泥做结合剂的钢包工作衬无碳刚玉尖晶石预制块比纯铝酸钙水泥、ρ-Al203微粉结合钢包工作衬无碳刚玉尖晶石预制块有这更好的抗熔渣侵蚀性能。
5)本发明制备的钢包工作衬无碳刚玉尖晶石预制块经检测:1600℃静态坩埚法抗渣实验侵蚀指数为5%-8%,渗透指数为7-12%。现有纯铝酸钙水泥结合的钢包工作衬无碳刚玉尖晶石预制块经检测:1600℃静态坩埚法抗渣实验侵蚀指数为18%-25%,渗透指数为28%-35%。现有ρ-Al2O3结合的钢包工作衬无碳刚玉尖晶石预制块经检测:1600℃静态坩埚法抗渣实验侵蚀指数为15%-20%,渗透指数为25%-30%。
6)本发明制备的钢包工作衬无碳刚玉尖晶石预制块经检测:1400℃*30min热态下抗折强度:25-35Mpa。现有纯铝酸钙水泥结合的钢包工作衬无碳刚玉尖晶石预制块:1400℃*30min热态下抗折强度:15-20Mpa。现有ρ-Al2O3结合的钢包工作衬无碳刚玉尖晶石预制块:1400℃*30min热态下抗折强度:8-12Mpa。
7)本发明制备的钢包工作衬无碳刚玉尖晶石预制块经检测:1100℃*20min水冷12次,残余抗折强度:75-80Mpa。现有纯铝酸钙水泥结合的钢包工作衬无碳刚玉尖晶石预制块:1100℃*20min水冷12次,残余抗折强度:60-65Mpa。现有ρ-Al2O3结合的钢包工作衬无碳刚玉尖晶石预制块:1100℃*20min水冷12次,残余抗折强度:35-40Mpa。
8)因此,本发明的钢包工作衬无碳刚玉尖晶石预制块对比现有技术的钢包工作衬无碳刚玉尖晶石预制块,具有优异耐熔渣侵蚀、优异的热震性能、优异的高温性能。所制得钢包工作衬无碳刚玉尖晶石预制块在鞍钢某分厂100吨钢包进行实际应用平均寿命150次,现有技术方案的钢包工作衬无碳刚玉尖晶石预制块平均使用寿命在110次,寿命明显高于现有技术方案的钢包工作衬无碳刚玉尖晶石预制块。提高了钢包使率,降低了钢包的平均成本。
具体实施方式
下面结合实施例对本发明的具体实施方式作进一步说明:
实施例1-3的组分及配比见表1,实施例1-3成品的性能见表2。
表1:实施例1-3的组分及配比
Figure BDA0004070081940000061
Figure BDA0004070081940000071
实施例1-3制备方法如下:
1)称量:按照各种原料的重量份数和配料总量,进行各种原料的称量,称好的原料待混料;
2)预混:将称好的原料中的颗粒料倒入预混机,混料3min以上,然后倒入称好的粉料、添加剂和防爆纤维,再混料5min以上,然后出料装入吨袋待用;
3)混练:将混好的混合料投入湿混搅拌机内,搅拌2min以上,加入清水,然后再搅拌5min以上,流动值要求控制在150-180mm;
4)震动成型:将产品模具吊至振动平台,开启电磁吸盘,待模具吸附于振动平台并启动振动电机,振动平台的振动频率一直保持在30-40赫兹;在振动平台振动过程中将混炼完的浇注料分3次放入模具中,每次放入模具1/3体积物料,间隔振动时间为30-50秒,总振动时间保持6分钟以上,其最终振动效果保证模具内浇注料表面无气泡上浮且表面平整无缺陷;
5)模内养生:将已振动好的产品装入养护房进行养护,养护温度控制在25-35℃,湿度控制在60-70%,养护时间≥48h;
6)脱模:将符合脱模条件养护好的产品吊出养护房,放置在平整的地面上,松开模具的紧固螺丝,使用皮锤轻轻敲击预制块,脱模后装入专用窑车;
7)模后养生:将装有脱模后预制块的窑车推入养生窑内进行养生,养护温度控制在25-35℃,湿度控制在60-70%,养护时间≥72h;
8)干燥:将符合模后养生条件的预制块连窑车一起推入到干燥窑内进行干燥,最高干燥温度300℃,干燥时间≥80h;
9)包装、检选、入库:将烘烤后制得的预制块,进行检验后,将符合标准的预制块产品按要求包装入库。热态抗折强度(Mpa)检测按GB/T 3002-2004进行检测;抗渣侵蚀检测按GB/T 8931-2007进行检测;热震性能检测按GB/T 376.1-1995进行检测。
表2:实施例1-3成品钢包工作衬无碳刚玉尖晶石预制块的性能检验
Figure BDA0004070081940000072
Figure BDA0004070081940000081
选择上述实施例3的组分配比在鞍钢某分厂100吨钢包进行实际应用试验。其各组份均按实施例3的组份,进行称量→预混→混练→振动成型→模内养生→脱模→模后养生→干燥→检选、包装、入库。
钢包工作衬无碳刚玉尖晶石预制块施工:将钢包工作衬预制块砖按层数、位置的要求砌筑在钢包永久衬上。其中钢包包壁工作衬预制块每隔10块砖竖缝相错放置1张1mm黄板纸。
渣线和包沿砖施工:将渣线砖和包沿砖按层数、位置的要求砌筑在钢包工作衬预制块上,罐沿部位使用浇注料打结。
烘烤:根据钢厂烘烤的火焰长度分为小火24小时-中火24小时-大火24小时,共计72小时后上线使用。
本实施例所制得钢包工作衬无碳刚玉尖晶石预制块在鞍钢某分厂100吨钢包进行实际应用平均寿命在150次。现有技术方案的钢包工作衬无碳刚玉尖晶石预制块平均使用寿命110次。寿命明显高于现有技术方案的钢包工作衬无碳刚玉尖晶石预制块方案。

Claims (10)

1.一种钢包工作衬无碳刚玉尖晶石预制块,其特征在于,是由下述重量份数的原料制备而成:10~20mm白刚玉5~15份、5<粒径≤10mm板状刚玉颗粒10~25份、3<粒径≤5mm板状刚玉颗粒10~20份、1<粒径≤3mm板状刚玉颗粒10~15份、粒径≤1mm板状刚玉颗粒10~20份、0.074mm板状刚玉粉末0~10份、0.074mm烧结铝镁尖晶石10~15份、2.5μm活性α-Al2O3微粉2~5份、4.5μm煅烧α-Al2O3微粉2~5份、氧化钇稳定型铝锆酸钡水泥5~15份、减水剂0.1~0.2份、防爆纤维0.05~0.1份。
2.根据权利要求1所述的一种钢包工作衬无碳刚玉尖晶石预制块,其特征在于,所述的白刚玉中Al2O3含量>98wt%、Si02含量<0.2wt%;所述板状刚玉中Al2O3含量>99wt%、Si02含量<0.2wt%。
3.根据权利要求1所述的一种钢包工作衬无碳刚玉尖晶石预制块,其特征在于,所述的烧结铝镁尖晶石,其中Al2O3含量为76%~78%,MgO含量为18%~22%。
4.根据权利要求1所述的一种钢包工作衬无碳刚玉尖晶石预制块,其特征在于,所述的活性α-Al2O3微粉中Al2O3含量>99%;煅烧α-Al2O3微粉中Al2O3含量>99%。
5.根据权利要求1所述的一种钢包工作衬无碳刚玉尖晶石预制块,其特征在于,所述氧化钇稳定型铝锆酸钡水泥,其中BaO·Al2O3与BaO·Zr02的质量比为2:3。
6.根据权利要求5所述的一种钢包工作衬无碳刚玉尖晶石预制块,其特征在于,所述氧化钇稳定型铝锆酸钡水泥的制备方法包括:
1)湿法共磨:将氧化铝微粉、硫酸钡、氧化锆微粉、氧化钇细粉加入球磨机中加水共磨20~30min,均化成浆;
2)压滤脱水:将均化后的泥浆进行压滤脱水;
3)成型干燥:将脱水后的泥浆进行挤压成5-10mm的椭圆球,然后在箱式干燥器中进行干燥,温度80~110℃,时间>8h,使物料充分脱水;
4)高温煅烧:将干燥好的泥料在回转窑进行高温煅烧,温度:1550~1600℃,时间:4~6h;
5)球磨磨粉:将煅烧后熟料,采用球磨机干法磨粉后即制得氧化钇稳定型铝锆酸钡水泥。
7.根据权利要求6所述的一种钢包工作衬无碳刚玉尖晶石预制块,其特征在于,所述的氧化铝微粉,其中Al2O3含量>99%,粒径5~10μm;所述的硫酸钡,其中BaSO4含量>98%,粒径600~800目;所述的氧化锆微粉,其中Zr203>95%,粒径1~2μm;所述的氧化钇细粉,其中Y2O3>99%,粒径325目。
8.根据权利要求1所述的一种钢包工作衬无碳刚玉尖晶石预制块,其特征在于,所述减水剂为FS10。
9.根据权利要求1所述的一种钢包工作衬无碳刚玉尖晶石预制块,其特征在于,所述防爆纤维,熔点<105℃,长度:2~4mm。
10.一种如权利要求1-9其中任意一项所述的钢包工作衬无碳刚玉尖晶石预制块的制备方法,其特征在于,方法包括:
1)混练:将原料进行预混,将混好的混合料投入湿混搅拌机内,搅拌2min以上,加入清水,然后再搅拌5min以上,流动值要求控制在150-180mm;
2)震动成型:将湿混料加入到模具内,进行振动,振动频率30-40赫兹,直至预制块表面无气泡产生时停止振动;
3)模内养生:将已振动好的产品装入养护房进行养护,养护温度控制在25-35℃,湿度控制在60-70%,养护时间≥48h;
4)模后养生:将脱模后的预制块进行养生,养护温度控制在25-35℃,湿度控制在60-70%,养护时间≥72h;
5)干燥:将预制块进行干燥,最高干燥温度300℃,干燥时间≥80h。
CN202310090320.XA 2023-02-09 2023-02-09 一种钢包工作衬无碳刚玉尖晶石预制块及其制备方法 Pending CN116063090A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310090320.XA CN116063090A (zh) 2023-02-09 2023-02-09 一种钢包工作衬无碳刚玉尖晶石预制块及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310090320.XA CN116063090A (zh) 2023-02-09 2023-02-09 一种钢包工作衬无碳刚玉尖晶石预制块及其制备方法

Publications (1)

Publication Number Publication Date
CN116063090A true CN116063090A (zh) 2023-05-05

Family

ID=86174658

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310090320.XA Pending CN116063090A (zh) 2023-02-09 2023-02-09 一种钢包工作衬无碳刚玉尖晶石预制块及其制备方法

Country Status (1)

Country Link
CN (1) CN116063090A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1590346A (zh) * 2003-09-02 2005-03-09 北京瑞泰高温材料科技股份有限公司 一种含有氧化钡的耐火材料
CN103539467A (zh) * 2013-10-16 2014-01-29 马鞍山利尔开元新材料有限公司 一种机压无碳刚玉尖晶石钢包衬砖及其制备方法
CN106946578A (zh) * 2017-03-23 2017-07-14 浙江华尔耐科技股份有限公司 一种石灰窑用永久稳固型隔热砖
CN111187090A (zh) * 2020-03-10 2020-05-22 北京利尔高温材料股份有限公司 一种钢包用尖晶石微粉浇注料和由该浇注料制备预制件的方法
CN112960974A (zh) * 2021-04-20 2021-06-15 武汉钢铁集团耐火材料有限责任公司 无碳钢包工作衬用刚玉尖晶石质修补料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1590346A (zh) * 2003-09-02 2005-03-09 北京瑞泰高温材料科技股份有限公司 一种含有氧化钡的耐火材料
CN103539467A (zh) * 2013-10-16 2014-01-29 马鞍山利尔开元新材料有限公司 一种机压无碳刚玉尖晶石钢包衬砖及其制备方法
CN106946578A (zh) * 2017-03-23 2017-07-14 浙江华尔耐科技股份有限公司 一种石灰窑用永久稳固型隔热砖
CN111187090A (zh) * 2020-03-10 2020-05-22 北京利尔高温材料股份有限公司 一种钢包用尖晶石微粉浇注料和由该浇注料制备预制件的方法
CN112960974A (zh) * 2021-04-20 2021-06-15 武汉钢铁集团耐火材料有限责任公司 无碳钢包工作衬用刚玉尖晶石质修补料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
李小雷等: "《高性能可喷射耐火混凝土及其质量控制系统》", 煤炭工业出版社, pages: 122 - 123 *
詹益兴等: "《现代化工小商品制法大全 第2集》", 31 August 1999, 湖南大学出版社, pages: 127 *
郑志侠等: "《环保公益性行业科研专项经费项目系列丛书 水泥行业污染物综合控制技术》", 31 July 2015, 中国环境科学出版社, pages: 122 - 123 *

Similar Documents

Publication Publication Date Title
CN100357692C (zh) 一种工业反应炉工作衬浇注材料及炉衬衬砌方法
CN103588492B (zh) 一种精炼钢包衬用优质无碳铝镁尖晶石砖及其制备方法
CN102230742A (zh) 结构隔热一体化复合砖及制备方法
CN109851374A (zh) 防爆裂、长寿命锡槽底砖及其制备方法
CN106495712A (zh) 镁凝胶结合刚玉尖晶石机压免烧钢包衬砖及其制备方法
CN102757251A (zh) 一种含纳米材料的钢包底吹氩透气砖及其制备工艺
CN102295460A (zh) 钢包用高强度铝镁尖晶石浇注料的制法
US8821633B2 (en) Cast bodies, castable compositions, and methods for their production
CN112679201B (zh) 一种以铝铬渣为主要原料的无水泥铝镁铬浇注料及其制备方法与应用
CN102898168B (zh) 铜冶炼中间包用复合镁铝铬耐火浇注料
CN104193370B (zh) 一种钢包无碳预制块的制备方法
CN101786891A (zh) 一种连铸中间包用自硬型散装料及制备方法
CN101254535B (zh) 一种浇注钢水用定径水口及其制造工艺
US3008842A (en) Basic refractory insulating shapes
CN106396699B (zh) 一种添加ZrN-SiAlON的抗铝液渗透浇注料及其制备方法
WO2011153932A1 (zh) 结构隔热一体化复合砖及其制备方法
CN112500135A (zh) 一种镁钙质中间包干式工作衬料及其制备方法
CN109095902B (zh) 一种玻璃窑炉用铺面砖及其生产工艺
CN116063090A (zh) 一种钢包工作衬无碳刚玉尖晶石预制块及其制备方法
CN112759381B (zh) 一种无碳钢包下水口及其制备方法
CN110028313B (zh) 一种刚玉坩埚及其制备方法
CN110642610A (zh) 一种中间包受钢口用耐火砖及其制备方法
CN114262232A (zh) 一种精炼钢包工作衬用加入有石墨原料的无碳浇注料制备方法
CN101830714A (zh) 一种大型水泥窑用矾土-氮化硅铁复合耐磨砖及其制造方法
CN116396063B (zh) 一种用于低氧铜杆生产中抵抗铜液侵蚀与剥落的99浇注料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination