CN116062130A - A Shallow Water Underwater Robot Based on Full Degrees of Freedom - Google Patents
A Shallow Water Underwater Robot Based on Full Degrees of Freedom Download PDFInfo
- Publication number
- CN116062130A CN116062130A CN202211639663.9A CN202211639663A CN116062130A CN 116062130 A CN116062130 A CN 116062130A CN 202211639663 A CN202211639663 A CN 202211639663A CN 116062130 A CN116062130 A CN 116062130A
- Authority
- CN
- China
- Prior art keywords
- fixedly connected
- propeller
- underwater robot
- wrist
- shallow water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 230000033001 locomotion Effects 0.000 claims abstract description 30
- 238000005096 rolling process Methods 0.000 claims abstract description 12
- 210000000707 wrist Anatomy 0.000 claims description 30
- 230000008859 change Effects 0.000 claims description 20
- 238000013461 design Methods 0.000 claims description 16
- 238000005286 illumination Methods 0.000 claims description 3
- 210000000245 forearm Anatomy 0.000 claims description 2
- 238000009434 installation Methods 0.000 abstract description 4
- 230000000630 rising effect Effects 0.000 abstract description 3
- 239000000463 material Substances 0.000 description 13
- 229910001069 Ti alloy Inorganic materials 0.000 description 7
- 230000000875 corresponding effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 210000000078 claw Anatomy 0.000 description 5
- 238000013519 translation Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000009189 diving Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63C—LAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
- B63C11/00—Equipment for dwelling or working underwater; Means for searching for underwater objects
- B63C11/52—Tools specially adapted for working underwater, not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G8/00—Underwater vessels, e.g. submarines; Equipment specially adapted therefor
- B63G8/001—Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G8/00—Underwater vessels, e.g. submarines; Equipment specially adapted therefor
- B63G8/14—Control of attitude or depth
- B63G8/16—Control of attitude or depth by direct use of propellers or jets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H5/00—Arrangements on vessels of propulsion elements directly acting on water
- B63H5/07—Arrangements on vessels of propulsion elements directly acting on water of propellers
- B63H5/08—Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G8/00—Underwater vessels, e.g. submarines; Equipment specially adapted therefor
- B63G8/001—Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
- B63G2008/002—Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
- B63G2008/005—Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned remotely controlled
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Manipulator (AREA)
Abstract
本发明公开了一种基于全自由度的浅水水下机器人,包括主体框架、底座、上壳、动力驱动系统、云台、观测和照明系统和机械臂;底座固定连接于主体框架下端,上壳固定连接于主体框架上端;云台通过安装槽板固定连接于主体框架内部;观测和照明系统通过安装板固定连接于主体框架一侧上端;机械臂通过连接板固定连接于主体框架的下端且位于观测和照明系统的下方设置;动力驱动系统包括第一推进器和第二推进器。本发明实现了水下机器人的全自由度运动,能够保证机器人实现上升、下沉、前进、后退、横移、横滚、俯仰、偏航等运动方式,保证了整体的稳固和便捷,高效提高了水下作业的效率。
The invention discloses a shallow water underwater robot based on full degrees of freedom, which comprises a main body frame, a base, an upper shell, a power drive system, a cloud platform, an observation and lighting system, and a mechanical arm; the base is fixedly connected to the lower end of the main frame, and the upper shell Fixedly connected to the upper end of the main frame; the pan-tilt is fixedly connected to the inside of the main frame through the installation groove plate; the observation and lighting system is fixedly connected to the upper end of one side of the main frame through the mounting plate; the mechanical arm is fixedly connected to the lower end of the main frame through the connecting plate and is located at The observation and lighting system is arranged below; the power drive system includes a first thruster and a second thruster. The invention realizes the full-degree-of-freedom movement of the underwater robot, and can ensure that the robot can realize movement modes such as rising, sinking, moving forward, retreating, laterally moving, rolling, pitching, and yawing, ensuring overall stability and convenience, and efficiently improving efficiency of underwater operations.
Description
技术领域technical field
本发明涉及潜水水域探测设备技术领域,更具体地说是涉及一种基于全自由度的浅水水下机器人。The invention relates to the technical field of diving water detection equipment, and more specifically relates to a shallow water underwater robot based on full degrees of freedom.
背景技术Background technique
现如今随着社会的进步,经济的发展,水下作业的设备也是达到了一定的高度。目前水下作业中出现了一种全自由度的水下机器人,此机器人是一种基于ROV系统的浅水水域机器人,所谓ROV就是一种通过缆线遥控操作的无人水下潜水器,该系统主要由甲板单元,绞车收放系统以及ROV本体组成。命令通过线缆将指令传递给机器人本体,本体对命令做出反应,再由各种传感器将运动参数反馈给操作人员。基于全自由度的水下机器人,可以根据指令在水域空间内做任何运动方式的转换。Nowadays, with the progress of society and the development of economy, the equipment for underwater operations has also reached a certain height. At present, a full-degree-of-freedom underwater robot has appeared in underwater operations. This robot is a shallow water robot based on the ROV system. The so-called ROV is an unmanned underwater vehicle that is remotely operated by cables. The system It is mainly composed of deck unit, winch retractable system and ROV body. The command is transmitted to the robot body through the cable, and the body responds to the command, and then the motion parameters are fed back to the operator by various sensors. An underwater robot based on full degrees of freedom can perform any movement mode conversion in the water space according to instructions.
但是目前对于全自由度的水下机器人所要实现的俯仰、横滚运动,并没有很好的解决方案,缺少对俯仰、横滚运动方式控制系统的实现方式。However, at present, there is no good solution for the pitching and rolling motions to be realized by the underwater robot with full degrees of freedom, and there is a lack of a way to realize the control system of the pitching and rolling motions.
因此,如何提供一种不但能够使得水下机器人能够实现俯仰、横滚运动方式控制,且能够有效提高工作量效率的基于全自由度的浅水水下机器人是本领域亟需解决的技术问题之一。Therefore, how to provide a full-degree-of-freedom-based shallow-water underwater robot that can not only enable the underwater robot to achieve pitch and roll motion control, but also effectively improve the workload efficiency is one of the technical problems that need to be solved urgently in this field. .
发明内容Contents of the invention
有鉴于此,本发明提供了一种基于全自由度的浅水水下机器人。目的就是为了解决上述之不足而提供。In view of this, the present invention provides a shallow water underwater robot based on full degrees of freedom. The purpose is provided in order to solve the above-mentioned deficiencies.
为解决上述技术问题,本发明采取了如下技术方案:In order to solve the problems of the technologies described above, the present invention adopts the following technical solutions:
分析此浅水水域机器人所要实现的功能,进行分步分块设计,建立运动学公式,分析动力装置的推力以及力矩,提出了螺旋桨推进器的布置方式,云台的设计充分考虑到水下机器人要实现俯仰,横滚这两种运动方式,提出了一种具有互相垂直的俯仰轴和横滚轴地平式T型结构的云台设计方式。然后逐步解决目前浅水水下机器人设计上的不足并针对性的提出改进方法。主要包括控制系统设计,动力驱动系统设计,机械结构设计,浮体材料的选择,以及最后的建模与仿真,证明了该机器人能够实现所要求的功能。具体包括:选用以ROV系统为设计模型的水下机器人。Analyze the functions to be realized by this shallow water robot, carry out step-by-step block design, establish kinematics formulas, analyze the thrust and moment of the power device, and propose the arrangement of propeller propellers. The design of the platform fully takes into account the requirements of underwater robots In order to realize the two motion modes of pitch and roll, a gimbal design method with a horizontal T-shaped structure with pitch axes and roll axes perpendicular to each other is proposed. Then gradually solve the shortcomings of the current shallow water underwater robot design and put forward targeted improvement methods. It mainly includes design of control system, design of power drive system, design of mechanical structure, selection of floating body material, and final modeling and simulation, which proves that the robot can realize the required functions. Specifically include: choose the underwater robot with ROV system as the design model.
具体的,一种基于全自由度的浅水水下机器人,包括主体框架、底座、上壳、动力驱动系统、云台、观测和照明系统和机械臂;所述底座固定连接于所述主体框架下端,所述上壳固定连接于所述主体框架上端;所述云台通过安装槽板固定连接于所述主体框架内部;所述观测和照明系统通过安装板固定连接于所述主体框架一侧上端;所述机械臂通过连接板固定连接于所述主体框架的下端且位于所述观测和照明系统的下方设置;Specifically, a shallow-water underwater robot based on full degrees of freedom includes a main frame, a base, an upper shell, a power drive system, a cloud platform, an observation and lighting system, and a mechanical arm; the base is fixedly connected to the lower end of the main frame , the upper shell is fixedly connected to the upper end of the main frame; the pan-tilt is fixedly connected to the inside of the main frame through a mounting groove plate; the observation and lighting system is fixedly connected to the upper end of one side of the main frame through a mounting plate ; The mechanical arm is fixedly connected to the lower end of the main body frame through a connecting plate and is located below the observation and lighting system;
所述动力驱动系统包括第一推进器和第二推进器;所述第一推进器固定设置于所述上壳内,所述第二推进器固定连接于所述主体框架上端下方。The power drive system includes a first propeller and a second propeller; the first propeller is fixedly arranged in the upper shell, and the second propeller is fixedly connected below the upper end of the main body frame.
优选地,所述第一推进器为采用双推平行布置方式布置的四个运动方向互相平行的螺旋桨推进器。Preferably, the first propeller is a propeller propeller with four directions of movement parallel to each other arranged in a double-thrust parallel arrangement.
优选地,所述第二推进器采用环形布置方式布置的四个螺旋桨推进器,且四个螺旋桨推进器可旋转角度;每个螺旋桨推进器均通过一个连接件固定连接于所述主体框架上端下方。Preferably, the second propeller adopts four propeller propellers arranged in a circular arrangement, and the four propeller propellers can rotate angles; each propeller propeller is fixedly connected below the upper end of the main frame through a connecting piece .
此方案的有益效果是:设计的可转动角度的螺旋桨推进器,能够让水下机器人在进行倾斜运动时,控制该螺旋桨推进器发生角度的变化,使得水下机器人可以恢复正常的水下运动方式。The beneficial effect of this scheme is: the designed rotatable propeller propeller can allow the underwater robot to control the angle change of the propeller propeller when the underwater robot is tilting, so that the underwater robot can return to the normal underwater movement mode .
优选地,所述云台采用的是地平式T型设计结构;所述云台包括微机械陀螺仪固定板、俯仰轴和横滚轴;所述横滚轴固定连接于所述安装槽板上;所述俯仰轴上端与所述横滚轴连接,其下端与所述微机械陀螺仪固定板活动连接;所述微机械陀螺仪固定板上设置有微机械陀螺仪,用于感知机器人本体位置及其角度的变化,并将位置改变产生信号传递给所述动力驱动系统的驱动电路板,来改变相应的方位。此时整个控制系统会将微机械陀螺仪现在偏转后的状态认为是与地面平行状态,而水下机器人本体方位是与地面倾斜的,为了重新调节回平行状态,驱动电路板会驱动水下机器人的中左、中右推进器运转,使整个水下机器人本体向右做横滚运动,进而实现机器人的横滚运动。Preferably, the platform adopts a ground-level T-shaped design structure; the platform includes a micromechanical gyroscope fixing plate, a pitch axis and a roll axis; the roll axis is fixedly connected to the installation groove plate The upper end of the pitch axis is connected to the roll axis, and the lower end is movably connected to the fixed plate of the micro-mechanical gyroscope; the fixed plate of the micro-mechanical gyroscope is provided with a micro-mechanical gyroscope for sensing the position of the robot body and the change of its angle, and transmit the position change generating signal to the drive circuit board of the power drive system to change the corresponding orientation. At this time, the entire control system will regard the deflected state of the micromechanical gyroscope as parallel to the ground, while the orientation of the underwater robot body is inclined to the ground. In order to readjust to the parallel state, the drive circuit board will drive the underwater robot. The center left and center right propellers operate, so that the whole underwater robot body does a rolling motion to the right, and then realizes the rolling motion of the robot.
优选地,所述横滚轴和所述俯仰轴垂直设置。Preferably, the roll axis and the pitch axis are arranged vertically.
上述技术方案的有益效果是:利用微机械陀螺仪的位置偏移和驱动电路板对螺旋桨的控制,可以实现横滚轴或者俯仰轴的转动,以此来达到控制水下机器人本体做出俯仰或者横滚这两个自由度的运动。The beneficial effect of the above technical solution is: the rotation of the roll axis or the pitch axis can be realized by using the position offset of the micromechanical gyroscope and the control of the drive circuit board to the propeller, so as to control the underwater robot body to make a pitch or Roll is a two-degree-of-freedom motion.
优选地,还包括超短基线,所述超短基线设置于所述上壳中部。Preferably, an ultra-short base line is also included, and the ultra-short base line is arranged in the middle of the upper shell.
优选地,所述机械臂包括肩部、大臂、小臂、腕部和手爪;所述肩部一端与所述连接板固定连接,另一端与所述大臂一端轴接连接;所述大臂另一端与所述小臂一端轴接连接;所述小臂另一端与所述腕部轴接连接;所述手爪活动连接于所述腕部的前端。Preferably, the mechanical arm includes a shoulder, a large arm, a small arm, a wrist and a gripper; one end of the shoulder is fixedly connected to the connecting plate, and the other end is pivotally connected to one end of the large arm; The other end of the big arm is pivotally connected to one end of the small arm; the other end of the small arm is pivotally connected to the wrist; and the claw is movably connected to the front end of the wrist.
优选地,所述手爪包括丝杆、手腕、2个手指连杆、移动螺母、2个手指拉杆和2个平动手指;所述丝杆一端与所述腕部固定连接,另一端穿过所述手腕并通过所述移动螺母连接;所述手腕的四周边通过导向光杆与所述腕部滑动连接;2个所述手指拉杆的一端分别轴接于所述移动螺母的两端侧;2个所述手指连杆的一端分别轴接于所述手腕的两端,中部分别与对应的1个所述手指拉杆的另一端铰接,2个所述手指连杆的另一端分别固定连接1个所述平动手指。Preferably, the gripper includes a screw rod, a wrist, 2 finger links, a moving nut, 2 finger rods and 2 translation fingers; one end of the screw rod is fixedly connected to the wrist, and the other end passes through the The wrist is also connected by the moving nut; the periphery of the wrist is slidably connected to the wrist by a light guide rod; one end of the two finger pull rods is respectively pivotally connected to the two ends of the moving nut; 2 One end of each of the finger links is pivotally connected to the two ends of the wrist, the middle part is respectively hinged to the other end of the corresponding one of the finger links, and the other ends of the two finger links are respectively fixedly connected to one The translation finger.
优选地,主体框架采用钛合金材料。主体框架要求能够满足水下机器人需要搭载各种的仪器设备的同时,又能够最大限度的减小水下机器人的总体重量,故综合比较分析,通过比较铝合金,钢材,钛合金等材料的弹性模量,质量密度,屈服力等参数,兼顾材料的强度和刚度以及材料质量对水下机器人整体稳定性的影响,选择了钛合金作为机器人的主体框架制作材料。对材料的选取完毕之后,还要进一步分析所选材料能否符合水下工作强度要求,通过SolidWorks仿真,证明了水下机器人的稳定性得到了良好的保证。Preferably, the main body frame is made of titanium alloy material. The main frame requirements can meet the needs of underwater robots to carry various instruments and equipment, and at the same time can minimize the overall weight of underwater robots, so comprehensive comparative analysis, by comparing the elasticity of aluminum alloy, steel, titanium alloy and other materials Modulus, mass density, yield force and other parameters, taking into account the strength and stiffness of the material and the influence of material quality on the overall stability of the underwater robot, titanium alloy was selected as the main frame of the robot. After the selection of materials, it is necessary to further analyze whether the selected materials can meet the requirements of underwater working strength. Through SolidWorks simulation, it is proved that the stability of the underwater robot is well guaranteed.
优选地,对于控制通信系统,采用的是线缆传输的方式实现人机的交互,岸上操作人员通过线缆向机器人本体传递各种指令,让水下机器人做出相应的动作;水下的各种情况通过摄像元器件,将视频图像信号通过线缆回传到主控制台;线缆在操作人员和水下机体之间架起了一座沟通的桥梁。Preferably, for the control communication system, cable transmission is used to realize human-machine interaction, and operators on the shore transmit various instructions to the robot body through cables, so that the underwater robot can make corresponding actions; In this case, through the camera components, the video image signal is returned to the main console through the cable; the cable builds a communication bridge between the operator and the underwater body.
本发明相对于现有技术取得了以下技术效果:Compared with the prior art, the present invention has achieved the following technical effects:
本发明可以实现水下机器人全自由度的动力驱动方式,能够保证机器人实现上升、下沉、前进、后退、横移、横滚、俯仰、偏航等运动方式,采用的基于ROV系统的浅水水下机器人的设计模型,保证了在结构和控制系统设计上的稳固和便捷。同时机体所采用的钛合金材料,既能大幅度降低水下机器人本身的重力之外,同时也能满足自己的机械强度。机械臂的使用,能够在水里进行抓取,打捞等一些可以代替人工的操作,远远提升了在水下作业的安全性和可靠性。放置在云台上的摄像机可以实时回传水下的情况给操作人员,以便于操作人员下达下一步的指令。对上述浅水水域机器人的使用,能提高水下作业的效率。The present invention can realize the power driving mode of the underwater robot with full degrees of freedom, and can ensure that the robot can realize the movement modes such as rising, sinking, advancing, retreating, swaying, rolling, pitching, and yawing. The design model of the robot ensures the stability and convenience of the structure and control system design. At the same time, the titanium alloy material used in the body can not only greatly reduce the gravity of the underwater robot itself, but also meet its own mechanical strength. The use of the robotic arm can replace manual operations such as grasping and salvage in the water, which greatly improves the safety and reliability of underwater operations. The camera placed on the pan/tilt can send back the underwater situation to the operator in real time, so that the operator can give the next step instructions. The use of the above-mentioned shallow water area robot can improve the efficiency of underwater operations.
附图说明Description of drawings
图1为本发明一种基于全自由度的浅水水下机器人的整体结构示意图;Fig. 1 is a schematic diagram of the overall structure of a shallow water underwater robot based on full degrees of freedom of the present invention;
图2、3为本发明一种基于全自由度的浅水水下机器人的内部结构示意图;2 and 3 are schematic diagrams of the internal structure of a shallow water underwater robot based on full degrees of freedom of the present invention;
图4为本发明的地平式T型结构云台设计图;Fig. 4 is the design diagram of the ground-level T-shaped structure cloud platform of the present invention;
图5为本发明的地平式T型结构云台的整体结构示意图;Fig. 5 is the overall structure schematic diagram of ground type T-shaped structure cloud platform of the present invention;
图6为本发明的动力驱动系统中螺旋桨分布图;Fig. 6 is a propeller distribution diagram in the power drive system of the present invention;
图7为本发明的机械臂的整体结构示意图;Fig. 7 is a schematic diagram of the overall structure of the mechanical arm of the present invention;
图8为本发明的手爪的整体结构示意图。Fig. 8 is a schematic diagram of the overall structure of the gripper of the present invention.
图中:1、主体框架;11、安装槽板;12、连接板;2、底座;3、上壳;4、超短基线;5、第一推进器;6第、二推进器;61、连接件;7、云台;71、微机械陀螺仪固定板;72、俯仰轴;73、横滚轴;8、观测和照明系统;9、机械臂;91、肩部;92、大臂;93、小臂;94、腕部;95、手爪;951、丝杠;952、手腕;953、手指连杆;954、移动螺母;955、手指拉杆;956、平动手指。In the figure: 1, the main frame; 11, the installation groove plate; 12, the connecting plate; 2, the base; 3, the upper shell; 4, the ultra-short baseline; 5, the first propeller; Connector; 7. Cloud platform; 71. Micromechanical gyroscope fixing plate; 72. Pitch axis; 73. Roll axis; 8. Observation and lighting system; 9. Mechanical arm; 91. Shoulder; 92. Big arm; 93, forearm; 94, wrist; 95, claw; 951, leading screw; 952, wrist; 953, finger connecting rod; 954, moving nut; 955, finger pull bar; 956, translation finger.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
实施例1Example 1
参照图1-8所示一种基于全自由度的浅水水下机器人,包括主体框架1、底座2、上壳3、超短基线4、动力驱动系统、云台7、观测和照明系统8和机械臂9;底座2固定连接于主体框架1下端,上壳3固定连接于主体框架1上端;云台7通过安装槽板11固定连接于主体框架1内部;观测和照明系统8通过安装板固定连接于主体框架1一侧上端;机械臂9通过连接板12固定连接于主体框架1的下端且位于观测和照明系统8的下方设置;超短基线4设置于上壳3中部;动力驱动系统包括第一推进器5和第二推进器6;第一推进器5固定设置于上壳3内,第二推进器6固定连接于主体框架1上端下方。第一推进器5为采用双推平行布置方式布置的四个运动方向互相平行的螺旋桨推进器。第二推进器6采用环形布置方式布置的四个螺旋桨推进器,且四个螺旋桨推进器可旋转角度;每个螺旋桨推进器均通过一个连接件61固定连接于主体框架1上端下方。Referring to Figure 1-8, a shallow-water underwater robot based on full degrees of freedom includes a
作为本实施例的优选或可选方式,云台7采用的是地平式T型设计结构;云台7包括微机械陀螺仪固定板71、俯仰轴72和横滚轴73;横滚轴73固定连接于安装槽板11上;俯仰轴72上端与横滚轴73连接,其下端与微机械陀螺仪固定板71活动连接;微机械陀螺仪固定板71上设置有微机械陀螺仪,用于感知机器人本体位置及其角度的变化,并将位置改变产生信号传递给动力驱动系统的驱动电路板,来改变相应的方位。As a preferred or optional mode of this embodiment, what the
作为本实施例的优选或可选方式,横滚轴73和俯仰轴72垂直设置。As a preferred or optional manner of this embodiment, the
作为本实施例的优选或可选方式,机械臂9包括肩部91、大臂92、小臂93、腕部94和手爪95;肩部91一端与连接板12固定连接,另一端与大臂92一端轴接连接;大臂92另一端与小臂93一端轴接连接;小臂93另一端与腕部94轴接连接;手爪95活动连接于腕部94的前端。手爪95包括丝杆951、手腕952、2个手指连杆953、移动螺母954、2个手指拉杆955和2个平动手指956;丝杆951一端与腕部94固定连接,另一端穿过手腕952并通过移动螺母954连接;手腕952的四周边通过导向光杆与腕部94滑动连接;2个手指拉杆955的一端分别轴接于移动螺母954的两端侧;2个手指连杆953的一端分别轴接于手腕952的两端,中部分别与对应的1个手指拉杆955的另一端铰接,2个手指连杆953的另一端分别固定连接1个平动手指956。As a preferred or optional mode of this embodiment, the mechanical arm 9 includes a
作为本实施例的优选或可选方式,主体框架1采用钛合金材料。主体框架1要求能够满足水下机器人需要搭载各种的仪器设备的同时,又能够最大限度的减小水下机器人的总体重量,故综合比较分析,通过比较铝合金,钢材,钛合金等材料的弹性模量,质量密度,屈服力等参数,兼顾材料的强度和刚度以及材料质量对水下机器人整体稳定性的影响,选择了钛合金作为机器人的主体框架1制作材料。对材料的选取完毕之后,还要进一步分析所选材料能否符合水下工作强度要求,通过SolidWorks仿真,证明了水下机器人的稳定性得到了良好的保证。As a preferred or optional mode of this embodiment, the
作为本实施例的优选或可选方式,对于控制通信系统,采用的是线缆传输的方式实现人机的交互,岸上操作人员通过线缆向机器人本体传递各种指令,让水下机器人做出相应的动作;水下的各种情况通过摄像元器件,将视频图像信号通过线缆回传到主控制台;线缆在操作人员和水下机体之间架起了一座沟通的桥梁。As a preferred or optional mode of this embodiment, for the control communication system, the way of cable transmission is adopted to realize human-machine interaction, and the operator on the shore transmits various instructions to the robot body through the cable, so that the underwater robot can make Corresponding actions; Various underwater situations pass through the camera components, and the video image signal is returned to the main console through the cable; the cable builds a communication bridge between the operator and the underwater body.
实施例2Example 2
对于动力驱动系统的改进是本发明的主要创新点,先是采用了采用环形布置方式的四个螺旋桨推进器和采用双推进器平行布置方式布置的运动方向互相平行的四个螺旋桨推进器,而采用环形布置方式的螺旋桨推进器可以实现一定角度的偏移,也就是说,这四个螺旋桨推进器并不是固定在主体框架1的,而是可以通过电机实现角度的旋转,这样也可以来改变水下机器人的运动方式。由于本机器人是要实现全自由度的水下运动,而针对机器人实现前进、后退、横移、偏航、上升、下潜的运动的技术比较成熟,而对于实现俯仰横滚这两种运动方式确没有很好的解决方法,所以提出了利用云台7控制系统来实现这两种运动方式。云台7就是放置固定摄像头的装置,把云台7设计成地平式T型结构,并且设计了互相垂直的横滚轴73和俯仰轴72,用来产生俯仰和横滚这两种运动方式,在云台7上放置可以感知方位变化的微机械陀螺仪和相应的姿态传感器,云台7上的控制器需要改变姿态传感器相关参数,控制云台7运动使微机械陀螺仪感知到方位的变化,来实现水下机器人的俯仰、横滚运动。例如,当水下机器人需要做出向前翻滚一点角度时,需提前改变姿态传感器的参数,向云台7电机传递电信号,使云台7的俯仰轴72向机器人前进方向旋转一定角度。这时微机械陀螺仪感知到本身方位的变化,并将电信号传递到驱动电路板中,从而控制水下机器人的中前推进器和中后推进器运转,使云台7的横滚轴73向右滚转一定的角度,微机械陀螺仪会随之向右偏转一定的角度,微机械陀螺仪在感知自身方位发生变化后,会将信号传递给驱动电路板,此时整个控制系统会将微机械陀螺仪现在偏转后的状态认为是与地面平行状态,而水下机器人本体方位是与地面倾斜的,为了重新调节回平行状态,驱动电路板会驱动水下机器人的中左、中右推进器运转,使整个水下机器人本体向右做横滚运动,进而实现机器人的横滚运动,同样的道理,也可以使机器人做俯仰运动。可偏转角度的螺旋桨推进器可以同过姿态传感器感知机器人方位的变化,然后控制螺旋桨推进器的电机工作,来改变螺旋桨的角度偏转,也可以实现对水下机器人运动方式的改变。整个动力推进装置的螺旋桨布置方式如图6所示。The improvement of the power drive system is the main innovation point of the present invention. First, four propeller propellers adopting a circular arrangement and four propeller propellers whose directions of motion are parallel to each other are adopted in a parallel arrangement of double propellers. The propeller propellers arranged in a ring can achieve a certain angle of offset, that is to say, the four propeller propellers are not fixed on the
实施例3Example 3
观测和照明系统8是利用摄像机和LED灯来实现,通过对云台7的转动,可以实现摄像机和LED灯在水下的视角。Observation and
实施例4Example 4
对于机械臂9,设计的机械臂9与机器人本体相连接,安装在机器人本体的外部,机械臂9与机器人本体共同组成了该浅水水下机器人。耐腐蚀性是机械臂9必须要考虑的因素,耐腐蚀性强的材料可以有效抵御水下环境对机械臂9的损坏,保障机械臂9可以正常运行,经过多方的对比和论证,最终选用6061铝合金作为机械臂9的主体材料。该机械臂9需要具备结构紧凑占用空间小、操控灵活性高、躲避障碍能力强、工作范围大的特点。结合以上要求综合考虑本文设计的机械臂9的结构形式选择为关节型坐标机械臂9如图7、8所示,机械臂9的驱动方式选取为电机驱动,电机驱动具有驱动效率高、工业机器人上广泛应用、驱动技术成熟完善的优点。For the mechanical arm 9, the designed mechanical arm 9 is connected with the robot body and installed outside the robot body, and the mechanical arm 9 and the robot body together form the shallow water underwater robot. Corrosion resistance is a factor that must be considered for the robotic arm 9. Materials with strong corrosion resistance can effectively resist damage to the robotic arm 9 in the underwater environment and ensure the normal operation of the robotic arm 9. After various comparisons and demonstrations, 6061 was finally selected. Aluminum alloy is used as the main body material of the mechanical arm 9 . The mechanical arm 9 needs to have the characteristics of compact structure, small space occupation, high maneuverability, strong ability to avoid obstacles, and large working range. Considering the above requirements, the structural form of the manipulator 9 designed in this paper is selected as the joint-type coordinate manipulator 9, as shown in Fig. It has the advantages of wide application in the world and mature and perfect driving technology.
实施例5Example 5
对于传感器系统,需要用到姿态传感器,它安装在云台上面,主要用于感知机器人方位的变化,并向驱动系统发出信号,控制螺旋桨推进器的工作。还有就是压力传感器,用于感知在水下工作时水压的变化,通过它,可以让操作人员知道机器人目前在水下的位置,以便下达下一步的指示操作,主要与机器人是否进行上升和下潜有关。温度传感器、高度计和超短基线4的设置,主要作用是为了帮助机器人确定自身位置以及周围环境,进而更加精准的控制水下机器人完成特定的工作任务。For the sensor system, an attitude sensor is needed. It is installed on the gimbal and is mainly used to sense the change of the robot's orientation and send a signal to the drive system to control the work of the propeller. There is also a pressure sensor, which is used to sense the change of water pressure when working underwater. Through it, the operator can know the current position of the robot underwater, so as to give instructions for the next step. It is mainly related to whether the robot is going up and down. About diving. The settings of temperature sensor, altimeter and
本发明所提出的新型的可以实现水下机器人全自由度的动力驱动方式,能够保证机器人实现上升、下沉、前进、后退、横移、横滚、俯仰、偏航等运动方式,采用的基于ROV系统的浅水水下机器人的设计模型,保证了在结构和控制系统设计上的稳固和便捷。同时机体所采用的钛合金材料,既能大幅度降低水下机器人本身的重力之外,同时也能满足自己的机械强度。机械臂的使用,能够在水里进行抓取,打捞等一些可以代替人工的操作,远远提升了在水下作业的安全性和可靠性。放置在云台上的摄像机可以实时回传水下的情况给操作人员,以便于操作人员下达下一步的指令。对上述浅水水域机器人的使用,能提高水下作业的效率。The new type of power drive mode proposed by the present invention can realize the full degree of freedom of the underwater robot, and can ensure that the robot can realize the movement modes such as rising, sinking, advancing, retreating, lateral movement, rolling, pitching, and yawing. The design model of the shallow-water underwater robot of the ROV system ensures the stability and convenience of the structure and control system design. At the same time, the titanium alloy material used in the body can not only greatly reduce the gravity of the underwater robot itself, but also meet its own mechanical strength. The use of the robotic arm can replace manual operations such as grasping and salvage in the water, which greatly improves the safety and reliability of underwater operations. The camera placed on the pan/tilt can send back the underwater situation to the operator in real time, so that the operator can give the next step instructions. The use of the above-mentioned shallow water area robot can improve the efficiency of underwater operations.
以上所述,仅是本发明较佳实施例而已,并非对本发明的技术范围作任何限制,故凡是依据本发明的技术实质对以上实施例所作的任何细微修改、等同变化与修饰,均仍属于本发明技术方案的范围内。The above are only preferred embodiments of the present invention, and do not limit the technical scope of the present invention in any way, so any minor modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention still belong to within the scope of the technical solutions of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211639663.9A CN116062130A (en) | 2022-12-20 | 2022-12-20 | A Shallow Water Underwater Robot Based on Full Degrees of Freedom |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211639663.9A CN116062130A (en) | 2022-12-20 | 2022-12-20 | A Shallow Water Underwater Robot Based on Full Degrees of Freedom |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116062130A true CN116062130A (en) | 2023-05-05 |
Family
ID=86177827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211639663.9A Pending CN116062130A (en) | 2022-12-20 | 2022-12-20 | A Shallow Water Underwater Robot Based on Full Degrees of Freedom |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116062130A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118025455A (en) * | 2024-01-31 | 2024-05-14 | 昆明理工大学 | Underwater ROV detection power device and control method thereof |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203485196U (en) * | 2013-07-30 | 2014-03-19 | 天津深之蓝海洋设备科技有限公司 | Clamping manipulator for underwater salvage |
CN104477359A (en) * | 2014-10-27 | 2015-04-01 | 中国船舶重工集团公司第七〇五研究所 | Underwater robot multi-degree-of-freedom vectored thrust layout method |
WO2016120071A1 (en) * | 2015-01-29 | 2016-08-04 | Norwegian University Of Science And Technology (Ntnu) | Underwater manipulator arm robot |
CN106369259A (en) * | 2016-11-30 | 2017-02-01 | 桂林智神信息技术有限公司 | Shooting tripod head easy to extend |
CN107226185A (en) * | 2016-10-20 | 2017-10-03 | 天津科技大学 | A kind of full free degree cable control underwater robot of microminiature |
CN107554732A (en) * | 2016-06-30 | 2018-01-09 | 天津广深科技有限公司 | Intelligent underwater robot |
CN107719623A (en) * | 2017-11-06 | 2018-02-23 | 郑州航空港飘天下物联网科技有限公司 | Helium outstanding float device and its control method manipulated with hip |
CN109018268A (en) * | 2018-09-06 | 2018-12-18 | 中国船舶工业系统工程研究院 | A kind of full electric drive operation type ROV platform of big depth |
WO2019148943A1 (en) * | 2018-02-02 | 2019-08-08 | 上海交通大学 | Suspendable crawler-type underwater operations robot for extremely soft ground |
CN210148118U (en) * | 2019-06-21 | 2020-03-17 | 昆山三智达自动化设备科技有限公司 | Pole robot tongs |
CN212074377U (en) * | 2019-12-26 | 2020-12-04 | 山东大学 | Underwater decontamination robot |
CN215043381U (en) * | 2021-03-29 | 2021-12-07 | 聂爱琴 | Balance car control system |
CN114248893A (en) * | 2022-02-28 | 2022-03-29 | 中国农业大学 | An operational underwater robot for sea cucumber fishing and its control method |
CN114408137A (en) * | 2022-03-08 | 2022-04-29 | 深圳深海智人机器人技术有限公司 | Electro-hydraulic hybrid crawler-type multifunctional operation-level underwater robot and system |
CN114455039A (en) * | 2022-02-25 | 2022-05-10 | 哈尔滨工程大学 | A turtle-like underwater shooting robot |
CN114535209A (en) * | 2022-02-25 | 2022-05-27 | 哈尔滨工程大学 | Multi-cleaning-disc type ocean net cage cleaning robot |
-
2022
- 2022-12-20 CN CN202211639663.9A patent/CN116062130A/en active Pending
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203485196U (en) * | 2013-07-30 | 2014-03-19 | 天津深之蓝海洋设备科技有限公司 | Clamping manipulator for underwater salvage |
CN104477359A (en) * | 2014-10-27 | 2015-04-01 | 中国船舶重工集团公司第七〇五研究所 | Underwater robot multi-degree-of-freedom vectored thrust layout method |
WO2016120071A1 (en) * | 2015-01-29 | 2016-08-04 | Norwegian University Of Science And Technology (Ntnu) | Underwater manipulator arm robot |
CN107554732A (en) * | 2016-06-30 | 2018-01-09 | 天津广深科技有限公司 | Intelligent underwater robot |
CN107226185A (en) * | 2016-10-20 | 2017-10-03 | 天津科技大学 | A kind of full free degree cable control underwater robot of microminiature |
CN106369259A (en) * | 2016-11-30 | 2017-02-01 | 桂林智神信息技术有限公司 | Shooting tripod head easy to extend |
CN107719623A (en) * | 2017-11-06 | 2018-02-23 | 郑州航空港飘天下物联网科技有限公司 | Helium outstanding float device and its control method manipulated with hip |
WO2019148943A1 (en) * | 2018-02-02 | 2019-08-08 | 上海交通大学 | Suspendable crawler-type underwater operations robot for extremely soft ground |
CN109018268A (en) * | 2018-09-06 | 2018-12-18 | 中国船舶工业系统工程研究院 | A kind of full electric drive operation type ROV platform of big depth |
CN210148118U (en) * | 2019-06-21 | 2020-03-17 | 昆山三智达自动化设备科技有限公司 | Pole robot tongs |
CN212074377U (en) * | 2019-12-26 | 2020-12-04 | 山东大学 | Underwater decontamination robot |
CN215043381U (en) * | 2021-03-29 | 2021-12-07 | 聂爱琴 | Balance car control system |
CN114455039A (en) * | 2022-02-25 | 2022-05-10 | 哈尔滨工程大学 | A turtle-like underwater shooting robot |
CN114535209A (en) * | 2022-02-25 | 2022-05-27 | 哈尔滨工程大学 | Multi-cleaning-disc type ocean net cage cleaning robot |
CN114248893A (en) * | 2022-02-28 | 2022-03-29 | 中国农业大学 | An operational underwater robot for sea cucumber fishing and its control method |
CN114408137A (en) * | 2022-03-08 | 2022-04-29 | 深圳深海智人机器人技术有限公司 | Electro-hydraulic hybrid crawler-type multifunctional operation-level underwater robot and system |
Non-Patent Citations (1)
Title |
---|
钱俊兵等: "警用多用途水下机器人动力结构设计", 《刑事技术》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118025455A (en) * | 2024-01-31 | 2024-05-14 | 昆明理工大学 | Underwater ROV detection power device and control method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106394815B (en) | A combined system of unmanned ship and unmanned submersible | |
CN204568029U (en) | One is unmanned cable man-controlled mobile robot under water | |
CN108860527B (en) | Underwater robot-underwater mechanical arm system | |
CN109178260B (en) | A kind of docking system and interconnection method of unmanned boat and AUV | |
CN108045532B (en) | Underwater electric mechanical arm operation nacelle and use method thereof | |
CN108519814B (en) | Man-machine interaction operating system | |
CN100413755C (en) | semi-autonomous submersible | |
CN112208717A (en) | Multifunctional intelligent salvage system on sea | |
JP2018505784A (en) | Underwater manipulator arm robot | |
CN107097238A (en) | The underwater operation robot and its control method of a kind of migration mixing | |
CN206307246U (en) | A kind of unmanned boat adds the combined system of unmanned submersible | |
CN116062130A (en) | A Shallow Water Underwater Robot Based on Full Degrees of Freedom | |
CN114291238A (en) | Underwater emergency rescue robot | |
CN204979195U (en) | Multi -functional fish anthropomorphic robot under water | |
CN114771772A (en) | Underwater fishing device integrating vision and force sense mechanical arm | |
CN213768912U (en) | Multifunctional intelligent salvage system on sea | |
CN115889946B (en) | Wheel type magnetic adsorption underwater welding system and welding operation method thereof | |
JPH0346359B2 (en) | ||
CN106477008B (en) | A kind of streamlined AUTONOMOUS TASK underwater robot platform of three bodies | |
CN113602047B (en) | Amphibious exploration robot and operation process for underground cave exploration | |
CN116619378A (en) | An underwater robot and its grasping method | |
Liang et al. | Experiment of robofish aided underwater archaeology | |
CN116175534A (en) | Multi-joint robot and its control method for working in narrow space in liquid environment | |
CN216185953U (en) | Deep sea omnidirectional robot | |
CN112530226B (en) | ROV simulation training system for auxiliary operation of turbid water area |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20230505 |
|
RJ01 | Rejection of invention patent application after publication |