CN116053136A - Method for manufacturing semiconductor memory device - Google Patents
Method for manufacturing semiconductor memory device Download PDFInfo
- Publication number
- CN116053136A CN116053136A CN202211305019.8A CN202211305019A CN116053136A CN 116053136 A CN116053136 A CN 116053136A CN 202211305019 A CN202211305019 A CN 202211305019A CN 116053136 A CN116053136 A CN 116053136A
- Authority
- CN
- China
- Prior art keywords
- active region
- bit line
- semiconductor substrate
- contact hole
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 74
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 51
- 125000006850 spacer group Chemical group 0.000 claims abstract description 18
- 238000003860 storage Methods 0.000 claims description 40
- 238000002955 isolation Methods 0.000 claims description 16
- 238000005530 etching Methods 0.000 claims description 12
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 239000010410 layer Substances 0.000 description 92
- 239000000463 material Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 7
- 229920005591 polysilicon Polymers 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 239000011229 interlayer Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 238000002513 implantation Methods 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 230000005641 tunneling Effects 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910021332 silicide Inorganic materials 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- -1 tungsten nitride Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/027—Manufacture or treatment of FETs having insulated gates [IGFET] of lateral single-gate IGFETs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76895—Local interconnects; Local pads, as exemplified by patent document EP0896365
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/481—Internal lead connections, e.g. via connections, feedthrough structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
技术领域technical field
本申请为发明名称为“半导体存储器件的制作方法”的分案申请,原申请日为2020年07月31日,申请号为202010760383.8。This application is a divisional application with an invention title of "Method for Manufacturing a Semiconductor Storage Device". The original application date is July 31, 2020, and the application number is 202010760383.8.
本发明公开的实施方式涉及一种半导体存储器件的制作方法,更具体来说,其涉及一种可改进埋入式字线部位的栅极诱导漏极漏电流(Gate Induced Drain Leakage,GIDL)问题的半导体存储器件制作方法。The embodiments disclosed in the present invention relate to a manufacturing method of a semiconductor memory device, more specifically, it relates to a method for improving the gate-induced drain leakage (Gate Induced Drain Leakage, GIDL) problem of buried word lines A method for fabricating a semiconductor memory device.
背景技术Background technique
栅极诱导漏极漏电流(Gate Induced Drain Leakage,简称GIDL)效应是MOSFET主要的断态漏电流。该效应起源于当MOSFET栅极关态(NM0S栅极接负电压,PMOS栅极接正电压)而漏区接电压(NM0S漏区接正电压,PMOS漏区接负电压)时,由于漏端杂质扩散层与栅极重叠部分靠近界面处的能带发生强烈的弯曲,导致表面形成反型层,而耗尽层非常窄,以致导带电子和价带孔穴发生能带-能带隧穿效应(Band-to-Band Tunneling),从而形成漏极漏电流。它是关态漏电流的主要来源,决定了栅氧化层薄氧化层的厚度下限。当MOS具备薄栅时,GIDL会造成空穴通过隧穿效应而对栅氧化层造成损伤或被薄栅所俘获,这些情况都会造成MOSFET性能退化可靠性降低。除了关态漏电流,栅极诱生漏极漏电流还可能造成其他不良后果,例如,会造成孔穴通过隧穿效应对栅氧化层造成损伤或者被栅氧化层俘获,从而导致MOSFET性能退化,及可靠性降低。The Gate Induced Drain Leakage (GIDL) effect is the main off-state leakage current of MOSFET. This effect originates from when the MOSFET gate is off (the NMOS gate is connected to a negative voltage, the PMOS gate is connected to a positive voltage) and the drain region is connected to a voltage (the NMOS drain region is connected to a positive voltage, and the PMOS drain region is connected to a negative voltage). The energy band near the interface of the overlapping portion of the impurity diffusion layer and the gate is strongly bent, resulting in the formation of an inversion layer on the surface, and the depletion layer is very narrow, so that the energy band-energy band tunneling effect of band electrons and valence band holes occurs (Band-to-Band Tunneling), thus forming a drain leakage current. It is the main source of off-state leakage current and determines the lower limit of gate oxide thin oxide thickness. When the MOS has a thin gate, the GIDL will cause holes to damage the gate oxide layer through the tunneling effect or be trapped by the thin gate, which will cause the performance degradation of the MOSFET and reduce the reliability. In addition to the off-state leakage current, the gate-induced drain leakage current may also cause other adverse consequences, for example, holes may cause damage to the gate oxide layer through the tunneling effect or be trapped by the gate oxide layer, resulting in degradation of MOSFET performance, and Reduced reliability.
传统抑制GIDL的方法,主要是通过增加栅极介电层的厚度或者使漏极端杂质扩散远离栅极,显然,在追求高集成度的半导体行业,这类方案并不利于器件进一步缩小,特别是在存储器件的微缩方面,也会引起其他寄生效应(如热载流子效应,hot carriereffect)等不良影响。故此,业界仍需积极开发其他能有效改善GIDL问题的方法。The traditional method of suppressing GIDL is mainly by increasing the thickness of the gate dielectric layer or diffusing the impurities at the drain terminal away from the gate. Obviously, in the semiconductor industry that pursues high integration, such solutions are not conducive to further shrinking devices, especially In terms of scaling of storage devices, it will also cause adverse effects such as other parasitic effects (such as hot carrier effect, hot carrier effect). Therefore, the industry still needs to actively develop other methods that can effectively improve GIDL problems.
发明内容Contents of the invention
有鉴于上述半导体器件容易遭遇的栅极诱导漏极漏电流(GIDL)问题,本发明于此提出了一种新颖的半导体存储器件的制作方法,其特征在于将原本在阱区注入工艺后进行的源极/漏极注入工艺改为在制作位线接触件之前以及存储节点接触件之前进行,如此可实现根据埋入式字符线的凹槽深度来连结注入工艺深度的功效,因而改善GIDL问题。In view of the gate-induced drain leakage (GIDL) problem that the above-mentioned semiconductor devices are prone to encounter, the present invention proposes a novel manufacturing method of a semiconductor storage device, which is characterized in that The source/drain implantation process is changed to be performed before the bit line contact and the storage node contact, so that the implantation process depth can be connected according to the buried word line groove depth, thereby improving the GIDL problem.
本发明的目的在于提出一种半导体存储器件的制作方法,其步骤包括提供一半导体基板、进行一第一掺杂工艺在所述半导体基板中形成阱区、在所述阱区形成之后,在所述半导体基板中形成字线、在所述字线形成之后,在所述半导体基板上形成位线接触孔露出第一有源区、对所述位线接触孔露出的所述第一有源区进行一第二掺杂工艺、在所述第二掺杂工艺之后,在所述半导体基板上形成位线接触件与位线,其中所述位线接触件与所述掺杂后的第一有源区连接、在所述位线之间形成间隔件,所述间隔件与所述位线在所述半导体基板上界定出存储单元接触孔并且露出第二有源区、对所述存储单元接触孔露出的所述第二有源区进行一第三掺杂工艺、以及在所述第三掺杂工艺之后,在所述存储单元接触孔中形成存储节点接触件,其中所述存储节点接触件与所述掺杂后的第二有源区连接。The object of the present invention is to provide a method for manufacturing a semiconductor storage device, the steps of which include providing a semiconductor substrate, performing a first doping process to form a well region in the semiconductor substrate, and after the formation of the well region, word lines are formed in the semiconductor substrate, after the word lines are formed, a bit line contact hole is formed on the semiconductor substrate to expose the first active region, the first active region exposed to the bit line contact hole performing a second doping process, and after the second doping process, forming a bit line contact and a bit line on the semiconductor substrate, wherein the bit line contact and the doped first active The source region is connected, a spacer is formed between the bit lines, the spacer and the bit line define a memory cell contact hole on the semiconductor substrate and expose a second active region, and the memory cell is contacted. A third doping process is performed on the second active region exposed by the hole, and after the third doping process, a storage node contact is formed in the memory cell contact hole, wherein the storage node contact connected with the doped second active region.
本发明的这类目的与其他目的在阅者读过下文中以多种图示与绘图来描述的较佳实施例之细节说明后应可变得更为明了显见。These and other objects of the present invention will become more apparent to the reader after reading the following detailed description of the preferred embodiment which is depicted in various drawings and drawings.
附图说明Description of drawings
本说明书含有附图并于文中构成了本说明书之一部分,俾使阅者对本发明实施例有进一步的了解。该些图示系描绘了本发明一些实施例并连同本文描述一起说明了其原理。在该些图示中:This specification contains drawings and constitutes a part of this specification, so that readers can have a further understanding of the embodiments of the present invention. The drawings depict some embodiments of the invention and together with the description herein explain its principles. In these diagrams:
图1绘示出根据本案较佳实施例中一半导体存储器件的平面图;Fig. 1 depicts a plan view of a semiconductor memory device according to a preferred embodiment of the present case;
图2至图8绘示出根据本案较佳实施例中一半导体存储器件在制作工艺期间的截面图;以及2 to 8 illustrate cross-sectional views of a semiconductor memory device during a manufacturing process according to a preferred embodiment of the present invention; and
图9绘示出根据本案较佳实施例中一半导体存储器件的制作工艺的流程图。FIG. 9 shows a flow chart of a manufacturing process of a semiconductor storage device according to a preferred embodiment of the present application.
需注意本说明书中的所有图示皆为图例性质,为了清楚与方便图示说明之故,图示中的各部件在尺寸与比例上可能会被夸大或缩小地呈现,一般而言,图中相同的参考符号会用来标示修改后或不同实施例中对应或类似的元件特征。It should be noted that all the illustrations in this manual are illustrations in nature. For the sake of clarity and convenience of illustration, the size and proportion of each component in the illustration may be exaggerated or reduced. Generally speaking, the The same reference symbols will be used to designate corresponding or similar component features in modified or different embodiments.
其中,附图标记说明如下:Wherein, the reference signs are explained as follows:
1a 第一有源区1a First active region
1b 第二有源区1b second active area
100 半导体基板100 semiconductor substrate
101 器件隔离层101 device isolation layer
103 位线接触孔103 bit line contact holes
105 存储单元区105 storage unit area
107 阱107 Wells
109 字线沟槽109 word line groove
111 栅绝缘层111 gate insulating layer
113 栅极顶盖层113 Grid top cover layer
115 绝缘夹层115 insulating interlayer
117 电介质层117 dielectric layer
119 硬掩膜层119 hard mask layer
121 位线接触件121 position wire contacts
125 硬掩膜图案125 Hard Mask Patterns
127 间隔壁127 Partition wall
129 绝缘层129 insulating layer
131 间隔件131 spacer
133 存储节点接触孔133 storage node contact hole
135 存储节点接触件135 storage node contacts
ACT 有源区ACT active area
BL 位线BL bit line
D1 第一方向D1 first direction
D2 第二方向D2 second direction
D3 第三方向D3 third direction
P1 第一掺杂工艺P1 first doping process
P2 第二掺杂工艺P2 second doping process
P3 第三掺杂工艺P3 third doping process
S1-S8 步骤S1-S8 steps
WL 字线WL word line
具体实施方式Detailed ways
现在下文将详细说明本发明的示例性实施例,其会参照附图标出所描述之特征以便阅者理解并实现技术效果。阅者将可理解文中之描述仅透过例示之方式来进行,而非意欲要限制本案。本案的各种实施例和实施例中彼此不冲突的各种特征可以以各种方式来加以组合或重新设置。在不脱离本发明的精神与范畴的情况下,对本案的修改、等同物或改进对于本领域技术人员来说是可以理解的,并且旨在包含在本案的范围内。Exemplary embodiments of the present invention will now be described in detail below, and the described features will be illustrated with reference to the accompanying drawings for readers to understand and achieve technical effects. Readers will understand that the description herein is by way of illustration only and is not intended to limit the present case. Various embodiments of the present application and various features that do not conflict with each other in the embodiments can be combined or rearranged in various ways. Without departing from the spirit and scope of the present invention, modifications, equivalents or improvements to the present invention will be understood by those skilled in the art and are intended to be included within the scope of the present invention.
阅者应能容易理解,本案中的「在…上」、「在…之上」和「在…上方」的含义应当以广义的方式被解读,以使得「在…上」不仅表示「直接在」某物「上」而且还包括在某物「上」且其间有居间特征或层的含义,并且「在…之上」或「在…上方」不仅表示「在」某物「之上」或「上方」的含义,而且还可以包括其「在」某物「之上」或「上方」且其间没有居间特征或层(即,直接在某物上)的含义。Readers should be able to easily understand that the meanings of "on", "on" and "above" in this case should be interpreted in a broad way so that "on" not only means "directly on "Something "on" also includes the meaning of "on" something with an intervening feature or layer in between, and "on" or "over" not only means "on" something or The meaning of "over" and may also include its meaning of "on" or "over" something without intervening features or layers in between (ie, directly on something).
此外,诸如「在…之下」、「在…下方」、「下部」、「在…之上」、「上部」等空间相关术语在本文中为了描述方便可以用于描述一个组件或特征与另一个或多个组件或特征的关系,如在附图中示出的。In addition, spatial relative terms such as "under", "beneath", "lower", "above", "upper", etc. may be used herein for convenience of description to describe the separation of one component or feature from another. The relationship of one or more components or features as shown in the drawings.
如本文中使用的,术语「基底」是指向其上增加后续材料的材料。可以对基底自身进行图案化。增加在基底的顶部上的材料可以被图案化或可以保持不被图案化。此外,基底可以包括广泛的半导体材料,例如硅、锗、砷化镓、磷化铟等。As used herein, the term "substrate" refers to a material onto which subsequent materials are added. The substrate itself can be patterned. The material added on top of the substrate may be patterned or may remain unpatterned. Additionally, the substrate may include a wide variety of semiconductor materials such as silicon, germanium, gallium arsenide, indium phosphide, and the like.
如本文中使用的,术语「层」是指包括具有厚度的区域的材料部分。层可以在下方或上方结构的整体之上延伸,或者可以具有小于下方或上方结构范围的范围。此外,层可以是厚度小于连续结构的厚度的均质或非均质连续结构的区域。例如,层可以位于在连续结构的顶表面和底表面之间或在顶表面和底表面处的任何水平面对之间。层可以水平、竖直和/或沿倾斜表面延伸。基底可以是层,其中可以包括一个或多个层,和/或可以在其上、其上方和/或其下方具有一个或多个层。层可以包括多个层。例如,互连层可以包括一个或多个导体和接触层(其中形成触点、互联机和/或通孔)和一个或多个介电层。As used herein, the term "layer" refers to a portion of material that includes regions having a thickness. A layer may extend over the entirety of the underlying or overlying structure, or may have an extent that is less than the extent of the underlying or overlying structure. Furthermore, a layer may be a region of a homogeneous or heterogeneous continuous structure with a thickness less than that of the continuous structure. For example, a layer may be located between the top and bottom surfaces of the continuous structure or between any horizontal faces at the top and bottom surfaces. Layers may extend horizontally, vertically and/or along inclined surfaces. A substrate can be a layer, can comprise one or more layers, and/or can have one or more layers thereon, above, and/or below. Layers may include multiple layers. For example, interconnect layers may include one or more conductor and contact layers (in which contacts, interconnects, and/or vias are formed) and one or more dielectric layers.
现在请先参照图1,其绘示出根据本案较佳实施例中一半导体存储器件基本的平面布局设置。本案的半导体存储器件是形成在一半导体基板100上。半导体基板100具有存储单元区以及位于存储单元区周围的外围区,存储单元区是用来设置半导体存储器件的存储单元,或称为存储节点。多个存储节点在存储单元区设置成矩阵型态并可存储电荷来产生具有区别性的存储态。外围区则是用来设置存储器件的外围电路,如栏译码器、列译码器、感应放大器、或是I/O控制模块等。由于本案的发明特征与外围区无关,故图中仅示出存储单元区中的部件与特征。Please refer now to FIG. 1 , which shows a basic layout arrangement of a semiconductor memory device according to a preferred embodiment of the present invention. The semiconductor memory device of this application is formed on a
半导体基板100上具有由器件隔离层101所界定出的多个有源区ACT。在示例中,有源区ACT是呈条形态样并具有往第三方向D3延伸的长轴。多个有源区ACT在整个基板平面上以交错排列的方式均匀地设置。每个有源区ACT的中间会形成一个位线接触孔103,后续的制作工艺将会在位线接触孔103中形成半导体存储器件的掺杂区与位线接触件。半导体基板100中还埋设有多条字线WL,其往第一方向D1延伸并彼此平行间隔排列,第一方向D1与第三方向D3之间的夹角较佳介于45度至90度之间。在示例中,字线WL会延伸穿过有源区ACT的位线接触孔103两侧,如此将每一个有源区ACT划分为一个位于有源区ACT中间的位线接触孔103区域以及位于有源区ACT两端的存储单元区105。后续的制作工艺将在存储单元区上形成掺杂区与存储节点接触件。半导体基板100上还形成有位线结构,其往与第一方向D1正交的第二方向D2延伸并彼此平行间隔排列,为了图示简明之故其于图1中将不示出。后续的实施例中将以图1中的线Ⅰ-Ⅰ’与线Ⅱ-Ⅱ’为截线来表示制作工艺期间半导体存储器件的截面结构与构成部件的相对位置与连接关系,其中线Ⅰ-Ⅰ’沿着第三方向D3切过有源区ACT的长轴,线Ⅱ-Ⅱ’沿着第一方向D1切过器件隔离层101以及多个有源区ACT的存储单元区105。The
在了解了半导体存储器件的基本平面布局后,现在下文的实施例将根据图9所示的流程图来说明本发明的半导体存储器件中相关部件的制作方法,其方法在各个不同的阶段与步骤可以分别从对应的图2至图8的截面结构来获得更清楚的细节与了解。After understanding the basic plane layout of the semiconductor storage device, the following embodiments will now illustrate the manufacturing method of the relevant components in the semiconductor storage device of the present invention according to the flow chart shown in Figure 9, and the method is in various stages and steps Clearer details and understanding can be obtained from the corresponding cross-sectional structures of FIGS. 2 to 8 , respectively.
首先请参照图2,本发明整个半导体存储器件工艺从一半导体基板100开始进行。例如硅基板、锗基板和/或硅锗基板等基板。在步骤S1中,半导体基板100会先进行一第一掺杂工艺P1,如离子注入工艺,在其内部形成各种阱107。在本发明中,阱107可做为埋入式通道阵列晶体管的通道区。半导体基板100中可能形成有不只一个阱107,其可能分布在基板的不同深度且具有不同的导电类型,例如p型阱与/或n型阱,图中将仅以一个阱107来表示。半导体基板100中界定有多个有源区ACT,如图1中所示条形态样的有源区ACT,各有源区ACT是由周遭的器件隔离层101所分隔而出。在工艺中,可以通过对半导体基板100进行一光刻工艺形成个别分离的有源区ACT,并在有源区ACT之间的凹部中填入隔离材料,如氧化硅等材料,来形成器件隔离层101。器件隔离层101的深度可以对应到阱107的尖峰浓度的深度。First, please refer to FIG. 2 , the entire process of the semiconductor storage device of the present invention starts from a
接下来请参照图3。须注意,为了更清楚表达特定部位之故,图3的截面结构是以图1中沿着有源区ACT长轴的线Ⅰ-Ⅰ’为截线所切出,以在后续工艺中表示出本发明半导体存储器件的字线、位线、以及掺杂区的相对关系。在前述步骤S1形成器件隔离层101并界定出有源区ACT之后,接着步骤S2就是在半导体基板100中制作出字线。字线的制作首先包含在半导体基板100中形成字线沟槽109。如图1所示,本发明半导体存储器件中预定形成的字线WL是沿着第一方向D1延伸穿过器件隔离层101与多个有源区ACT,故此,图3中有示出形成在有源区ACT中的字线沟槽109也有形成在器件隔离层101中的字线沟槽109。其中,由于一般相同的蚀刻工艺中对氧化硅材质的器件隔离层101的刻蚀速率会大于对硅质的有源区ACT的刻蚀速率,所以从图中来看形成在器件隔离层101中的字线沟槽109的深度会深于形成在有源区ACT中的字线沟槽109的深度。Please refer to Figure 3 next. It should be noted that, in order to express specific parts more clearly, the cross-sectional structure in Fig. 3 is cut with the line I-I' along the long axis of the active region ACT in Fig. The relative relationship between the word line, the bit line and the doped region of the semiconductor storage device of the present invention. After forming the
接下来请参照图4。在字线沟槽109形成后,接着就是在字线沟槽109形成字线结构。整个字线结构可包含一最外层的栅绝缘层111、位于中间的字线WL,以及位于栅绝缘层110与字线WL上方的栅极顶盖层113。栅绝缘层111可以共形地形成在字线沟槽109的表面,其材料可为氧化硅、氧化铪、或是氧化铝等。字线WL形成在栅绝缘层111上并透过栅绝缘层111与周围的有源区ACT电性绝缘。字线WL会填满字线沟槽109的内部空间,其材料可为金属,例如钨、铝、钛和/或钽等。栅极顶盖层113的材料可为氮化硅层,其填满栅绝缘层110与字线WL上方的空间且表面会与有源区ACT的表面齐平。半导体基板100的表面还可以形成一绝缘夹层115,以隔绝下方的有源区ACT与上方的部件。绝缘夹层115可以由单个绝缘层或者多个绝缘层形成,例如硅氮化物层、硅氮化物层和/或硅氮氧化物层等。Please refer to Figure 4 next. After the
接下来请参照图5。在前述步骤S2形成字线结构之后,接着在步骤S3中,在绝缘夹层115上依序形成一电介质层117与一硬掩膜层119,并以该硬掩膜层119为刻蚀掩膜进行一光刻工艺,以在有源区和绝缘夹层115中形成一位线接触孔103。在一示例中,位线接触孔103的形状可为椭圆形。此外,如图1所示,位线接触孔103在基板平面上以交错排列的方式均匀地设置。在一些实施例中,位线接触孔103可以通过各向异性刻蚀工艺形成。在这种情况下,部分的器件隔离层101以及栅极顶盖层113邻近位线接触孔103的部分会一起受到刻蚀。Please refer to Figure 5 next. After the word line structure is formed in step S2, then in step S3, a
复参照图5。在前述步骤S3形成位线接触孔103之后,接着在步骤S4中,在不移除电介质层117与硬掩膜层119的情况下,进行一第二掺杂工艺P2,如离子注入工艺,以在位线接触孔103下方的有源区ACT中形成一掺杂区,后文称为第一有源区1a。第二掺杂工艺P2可使用与有源区ACT的导电类型相反导电类型(即与第一掺杂工艺P1相反)的掺杂剂。第一有源区1a位于每个有源区ACT的中央,且其底表面可以定位在自有源区ACT的顶表面往下的预定深度处。须注意在本发明中,半导体存储器件的第一有源区1a是在字线WL之后形成的,有别于一般习知在字线WL之前形成,此作法可实现根据字线埋入的凹槽深度来连结注入工艺深度的功效,因而改善GIDL问题。Refer back to Figure 5. After forming the bit
接下来请参照图6。在前述步骤S4形成半导体存储器件的第一有源区1a之后,接着在步骤S5中,在第一有源区1a上形成位线结构。在本发明实施例中,位线结构由下而上依序包含位线接触件121、位线BL、硬掩膜图案125、以及位于两侧的间隔壁127等部位,其中位线接触件121与下方的第一有源区1a电连接。位线接触件121与位线BL之间可能还有一硅化物层存在。形成位线结构的步骤可以包括:移除电介质层117与硬掩膜层119、在半导体基板100上依序形成多晶硅层、金属层以及硬掩模层,其中多晶硅层会填满位线接触孔103并与下方的第一有源区1a接触,接着使用位线掩模图案作为刻蚀掩模依序地刻蚀硬掩模层、金属层以及多晶硅层,如此形成如图6中所示的位线结构。位线掩模图案可以在刻蚀工艺后去除。在本发明中,位线BL基本上沿着与字线WL垂直的第二方向D2延伸,一条位线BL会经过多个有源区ACT的第一有源区1a,并透过多个位线接触件121与对应的该些第一有源区1a电连接。Please refer to Figure 6 next. After forming the first active region 1a of the semiconductor memory device in the aforementioned step S4, then in step S5, a bit line structure is formed on the first active region 1a. In the embodiment of the present invention, the bit line structure includes a
在示例中,多晶硅层可为掺杂的多晶硅层,金属层可为钨层、铝层、钛层或钽层等。如此,每个位线结构由下而上可依序包含堆叠的多晶硅材质的位线接触件121、金属材质的位线BL、以及硬掩膜图案125。此外,位线接触孔103的最小宽度可以大于每条位线结构的宽度。位线结构的位线接触件121的侧壁可以与对应的位线接触孔103的侧壁隔开。之后,在每条位线结构的侧壁上形成绝缘性的间隔壁127,间隔壁127的材质可包括硅氧化物层、硅氮化物层和/或硅氮氧化物层,其会盖住整个位线结构的侧壁并填满剩余的位线接触孔103空间。如此即完成了位线结构的制作。此外,在位线结构制作完成后,可以在整个基板表面覆盖一层共形的绝缘层129。In an example, the polysilicon layer may be a doped polysilicon layer, and the metal layer may be a tungsten layer, an aluminum layer, a titanium layer, a tantalum layer, or the like. In this way, each bit line structure may include a stacked
接下来请参照图7。在前述步骤S5形成位线结构之后,接着在步骤S6中,在半导体基板100上形成多个间隔件131,以此在半导体基板100上界定出多个存储单元区105。间隔件131可以透过以下步骤来形成:(1)在绝缘层129上形成一牺牲层,如一硅氧化物层;(2)图案化该牺牲层以在该牺牲层中形成多个间隔件图案;(3)在该些间隔件图案中填入间隔件材料,如一硅氮化物,而形成多个间隔件131;(4)移除该牺牲层。由于上述间隔件131的制作方法为公知技术且非本发明的重点,故文中与图示中将不对其细部制作步骤做过多的说明与表示。在间隔件131形成后,接着可利用间隔件131与位线结构作为刻蚀掩模进行各向异性刻蚀来移除裸露的绝缘层129与绝缘夹层115,如此形成存储节点接触孔133,其裸露出下方的有源区ACT。此各向异性刻蚀也会移除部分的有源区ACT,使得存储节点接触孔133的底面低于有源区ACT的顶面。Please refer to Figure 7 next. After the bit line structure is formed in step S5 , then in step S6 , a plurality of
复参照图7。在前述步骤S6形成存储节点接触孔133并裸露出有源区ACT之后,接着在步骤S7中,进行一第三掺杂工艺P3,如离子注入工艺,以在存储节点接触孔133下方的有源区ACT中形成一掺杂区,后文称为第二有源区1b。与第二掺杂工艺P2相同,第三掺杂工艺P3可使用与有源区ACT的导电类型相反导电类型(即与第一掺杂工艺P1相反)的掺杂剂。第二有源区1b位于每个有源区ACT的两端,即图1所示的存储单元区105,且其底表面可以定位在自有源区ACT的顶表面往下的预定深度处。第一有源区1a的深度可比第二有源区1b的深度深。须注意在本发明中,半导体存储器件的第二有源区1b是在字线WL形成之后形成的,有别于一般习知在字线WL之前形成,此作法可实现根据埋入式字符线的凹槽深度来连结注入工艺深度的功效,因而改善GIDL问题。Refer back to Figure 7. After forming the storage
接下来请参照图8。在前述步骤S7形成半导体存储器件的第二有源区1b之后,接着在步骤S8中,在存储节点接触孔133中形成存储节点接触件135。在一示例中,存储节点接触件135的顶表面可以低于位线结构的硬掩模图案125的顶表面。存储节点接触件135可以透过下列工艺来形成:沉积一导电层以填充存储节点接触孔133、进行一平坦化工艺移除位于位线结构与间隔件131顶面上方的导电层、以及进行一回刻蚀工艺使导电层的顶表面凹入,如此形成存储节点接触件135。存储节点接触件135可以包括例如掺杂的半导体材料(例如掺杂的硅)、金属(例如钨、铝、钛和/或钽)、导电的金属氮化物(例如钛氮化物、钽氮化物和/或钨氮化物)和/或金属-半导体合金(例如金属硅化物)。在一些其他的实施例中,存储节点接触件135从下而上可依序包含一多晶硅层、金属硅化物层、以及一着陆焊盘,其上还会与个别对应的电容器连接,作为一个存储节点。由于上述该些部位并非本发明的重点,为了避免模糊发明焦点之故,文中将省略该些部位的细节说明。Please refer to Figure 8 next. After the formation of the second
在本发明中,从图8可以看到,字线WL将每一个有源区ACT划分为一个位于中间的第一有源区1a以及位于有源区ACT两端的第二有源区1b。字线WL作为半导体存储器件的埋入式栅极,其控制阵列晶体管通道区的开关,也就是有源区ACT中间的第一有源区1a到两端的第二有源区1b之间的开关。第一有源区1a会与位线接触件以及位线连接,第二有源区1b会与存储节点接触件135以及电容连接。In the present invention, it can be seen from FIG. 8 that the word line WL divides each active area ACT into a first active area 1a located in the middle and a second
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211305019.8A CN116053136A (en) | 2020-07-31 | 2020-07-31 | Method for manufacturing semiconductor memory device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010760383.8A CN111863727B (en) | 2020-07-31 | 2020-07-31 | Manufacturing method of semiconductor memory device |
CN202211305019.8A CN116053136A (en) | 2020-07-31 | 2020-07-31 | Method for manufacturing semiconductor memory device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010760383.8A Division CN111863727B (en) | 2020-07-31 | 2020-07-31 | Manufacturing method of semiconductor memory device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116053136A true CN116053136A (en) | 2023-05-02 |
Family
ID=72953951
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010760383.8A Active CN111863727B (en) | 2020-07-31 | 2020-07-31 | Manufacturing method of semiconductor memory device |
CN202211305019.8A Pending CN116053136A (en) | 2020-07-31 | 2020-07-31 | Method for manufacturing semiconductor memory device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010760383.8A Active CN111863727B (en) | 2020-07-31 | 2020-07-31 | Manufacturing method of semiconductor memory device |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN111863727B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230077033A (en) * | 2021-11-24 | 2023-06-01 | 삼성전자주식회사 | A semiconductor device and a method of fabricating of the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101119774B1 (en) * | 2009-08-11 | 2012-03-26 | 주식회사 하이닉스반도체 | Semiconductor device and method of fabricating the same |
KR102427397B1 (en) * | 2017-11-29 | 2022-08-02 | 삼성전자주식회사 | Semiconductor memory device and Method of fabricating the same |
-
2020
- 2020-07-31 CN CN202010760383.8A patent/CN111863727B/en active Active
- 2020-07-31 CN CN202211305019.8A patent/CN116053136A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN111863727A (en) | 2020-10-30 |
CN111863727B (en) | 2022-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101996950B (en) | Semiconductor device and method of fabricating the same | |
KR100843715B1 (en) | Contact structure of semiconductor device and method of forming the same | |
KR101645257B1 (en) | Semiconductor device having vertical channel transistor | |
US8716774B2 (en) | Semiconductor device having a buried gate type MOS transistor and method of manufacturing same | |
KR101412906B1 (en) | Structure and method for a field effect transistor | |
US9613967B1 (en) | Memory device and method of fabricating the same | |
US8558306B2 (en) | Semiconductor device and method of manufacturing the same | |
US9048293B2 (en) | Semiconductor device and method for manufacturing the same | |
US7189605B2 (en) | Method for fabricating semiconductor device | |
KR20180129122A (en) | Method of forming semiconductor device including enlarged contact hole and landing pad and related device | |
KR100924197B1 (en) | Semiconductor device and manufacturing method thereof | |
CN114420644A (en) | Semiconductor structure and method of making the same | |
KR20080113858A (en) | Method for manufacturing semiconductor device with vertical channel transistor | |
CN111696987A (en) | Dynamic random access memory cell and related process | |
JP2013168569A (en) | Semiconductor device and manufacturing method of the same | |
JP2011159760A (en) | Method of manufacturing semiconductor device, and the semiconductor device | |
CN106158751A (en) | The manufacture method of dynamic random access memory device | |
KR20070047069A (en) | Semiconductor device with vertical transistor and manufacturing method thereof | |
TWI471947B (en) | Transistor element and method of manufacturing same | |
KR20120128518A (en) | Method for manufacturing the semiconductor device | |
KR20230094338A (en) | Method of manufacturing semiconductor device | |
CN111863727B (en) | Manufacturing method of semiconductor memory device | |
JP2007067357A (en) | Semiconductor device and manufacturing method thereof | |
KR20040080235A (en) | A method for forming a semiconductor device | |
KR101016956B1 (en) | Method of forming vertical channel transistor of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |