CN116043128B - 一种460e级特厚钢板及其生产方法 - Google Patents

一种460e级特厚钢板及其生产方法 Download PDF

Info

Publication number
CN116043128B
CN116043128B CN202211587713.3A CN202211587713A CN116043128B CN 116043128 B CN116043128 B CN 116043128B CN 202211587713 A CN202211587713 A CN 202211587713A CN 116043128 B CN116043128 B CN 116043128B
Authority
CN
China
Prior art keywords
equal
steel plate
less
temperature
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211587713.3A
Other languages
English (en)
Other versions
CN116043128A (zh
Inventor
于青
周文浩
罗登
肖大恒
王洪涛
张勇伟
史术华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Valin Xiangtan Iron and Steel Co Ltd
Original Assignee
Hunan Valin Xiangtan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Valin Xiangtan Iron and Steel Co Ltd filed Critical Hunan Valin Xiangtan Iron and Steel Co Ltd
Priority to CN202211587713.3A priority Critical patent/CN116043128B/zh
Publication of CN116043128A publication Critical patent/CN116043128A/zh
Application granted granted Critical
Publication of CN116043128B publication Critical patent/CN116043128B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种460E级特厚钢板及其生产方法。钢的化学成分质量百分比为C=0.04%~0.07%,Si=0.15%~0.35%,Mn=1.75%~1.95%,P≤0.0152%,S≤0.003%,Nb=0.02%~0.03%,Ti=0.008%~0.02%,Al=0.015%~0.05%,Ceq=[C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15]≤0.38,其余为Fe和不可避免的杂质,钢板组织为先共析铁素体+低碳贝氏体+退化珠光体和少量MA组元的多相组织,其中铁素体的体积分数为15%~30%,贝氏体的体积分数为70%~85%,其余为退化珠光体和少量MA组元。采用低碳高锰的成分设计,用连铸坯生产出最大厚度可达150mm的Q460E特厚钢板,集高强度、高韧性和高焊接性能于一体。

Description

一种460E级特厚钢板及其生产方法
技术领域
本发明属于冶金技术领域,涉及一种460E级特厚钢板及其生产方法。
背景技术
特厚钢板一般是指厚度在60mm以上的钢板。在公知的技术中, TMCP工艺一般只能用于轧制60mm以下的有-40℃冲击要求的高韧性钢板,对于特厚板由于压缩比的限制,若采用TMCP工艺生产,原始的奥氏体晶粒在轧制过程中得不到充分的再结晶和细化,组织一般较粗大,韧性变差。特别是对于Q460E这种级别的特厚结构钢板,由于强度和韧性要求都比较高,目前国内已有技术最大厚度只做到120mm,而且一般采用模铸工艺进行生产,为保证钢板的强度在采用高C、高Mn含量的同时,在钢中加入大量的Cr、Mo、Ni、V等元素,通过提高钢板的淬透性以及追加调质热处理工艺,来保证特厚板的强韧性匹配,这样即增加了生产成本和能耗,也延长了生产和交货周期,同时钢板的碳当量Ceq较高,不利于焊接。
中国专利CN201510153521.5公开了“一种厚度超过120mm的Q460E钢板及其制造方法”,其发明内容为通过DQ+正火工艺生产特厚Q460E钢板,生产工序复杂,合金成本较高,Ceq较高,不利于后续使用。
中国专利CN201110176678.1公开了“一种高强韧性结构钢Q460E厚板及其生产方法”,采用传统TMCP工艺生产特厚钢板Q460E,通过粗轧阶段奥氏体的再结晶和精轧阶段晶粒压扁拉长的方式来细化晶粒,该方法无法摆脱压缩比的限制,即使严格坚持“高温、低速、大压下”的轧制理念,也只能生产100mm以下的钢板,同时Ceq≤0.48的控制太高。
中国专利CN201310329673.7公开了“大单重特厚Q460级别高强度结构钢板及制造方法”,也是通过传统轧制方式,无法摆脱压缩比的限制,利用400mm厚的连铸坯也只能生产最大厚度120mm的Q460D特厚产品。
发明内容
本发明的目的是提供一种460E级特厚钢板及其制备方法,该方法克服现有TMCP工艺技术的不足,用300mm厚的连铸坯生产150mm的Q460E产品,Ceq≤0.38。
本发明的技术方案:
一种460E级特厚钢板,钢的化学成分质量百分比为C=0.04%~0.07%,Si=0.15%~0.35%,Mn=1.75%~1.95 %,P≤0.012%,S≤0.003%,Nb=0.02%~0.03%,Ti=0.008%~0.02%,Al=0.015%~0.05%, Ceq= [C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15]≤0.38,其余为Fe和不可避免的杂质,所述钢板组织为先共析铁素体+低碳贝氏体+退化珠光体和少量MA组元的多相组织,其中铁素体的体积分数为15%~30%,贝氏体的体积分数为70%~85%,其余为退化珠光体和少量MA组元。
一种460E级特厚钢板的生产方法,工艺步骤如下:
(1)冶炼:将冶炼原料依次经KR铁水预处理、转炉冶炼、LF精炼、RH真空精炼和连铸,制造出满足化学成分要求,厚度≥300mm的连铸坯,控制铸坯中心偏析C类≤0.5级,中心疏松度≤0.5级;
(2)一次加热:将连铸坯加热至1200℃±50℃,均热时间20~30min,出炉后立刻采用Mulpic摆动冷却至室温,制成二火坯;
(3)二次加热:将二火坯加热至900℃±30℃,均热时间20~30min;
(4)轧制:出炉后进行精轧,精轧开轧温度700~760℃,终轧温度控制在690~750℃;
(5)弛豫:轧后钢板弛豫至再结晶温度Ar3以下10~20℃,弛豫时间控制在铁素体相变20%左右;
(6)冷却:采用Mulpic的DQ快速冷却,冷却速率3~10℃/s,冷却后的返红温度250~350℃。
所述的Ar3是指冷却时奥氏体向铁素体相变的开始温度,
Ar3={1670-558×[C+(Mn+Mo)÷3.875+Cu÷15.5+Cr÷20.67+Ni÷5.636 ]+16×[ (FPT÷25.4)-0.315 ]-32}×5÷9,其中FPT为成品钢板厚度(mm),Ar3单位为℃。
本发明所添加合金元素的作用:
C含量的提高,虽然能够提高强度和降低Ar3温度,但恶化钢的低温韧性和焊接性能,同时低C的成分能抑制高温铁素体转变时珠光体的形成,促进贝氏体的转变,对于组织调控非常有利,因此控制C含量在0.04%~0.07%。
Mn是弱碳化物形成元素,它可以降低奥氏体转变温度,细化铁素体晶粒,对提高钢板强度和韧性有益,同时Mn还能固溶强化铁素体,增加钢板的淬透性,促进贝氏体的形成。但Mn含量过高时,易形成偏析,且钢板硬化,延展性变坏,因此本发明的Mn含量设计为1.75%~1.95 %。
Nb也可以提高淬透性,在低碳钢中降低转变温度促使贝氏体组织的形成,且随着钢中的固溶铌含量增大,形成贝氏体的趋势也增大。同时形变诱导析出的 Nb(C,N) 对奥氏体晶界具有钉扎作用,可有效地抑制形变奥氏体的再结晶,但由于本发明轧制过程中压缩比较小,抑制再结晶的效果将被弱化,因此,考虑节约成本,铌不宜多加,应控制在0.02%~0.03%的范围内。
Ti是固氮元素,钛的氮化物颗粒可阻止钢坯在加热、轧制、焊接过程中晶粒的长大,改善母材和焊接热影响区的韧性。对于本发明,由于压缩比较小,原始晶粒的尺寸过大也会影响后期相变时的组织调控效果,因此Ti的加入很有必要,但过多的钛含量会引起钛的氮化物的粗化,对低温韧性不利,故将本发明中钛含量定为0.008%~0.02%。
工艺技术原理:本发明的固态相变过程是在轧制过程中,通过精轧阶段在Ar3点(约720℃左右)以上完成终轧,进入弛豫待温阶段,先共析铁素体会在奥氏体晶界附近优先转变,当转变的铁素体的体积分数达到20%左右,进入Mulpic进行快速冷却,未转变的过冷的奥氏体会迅速进入贝氏体转变区间,通过控制冷却速度在3~10℃/S,过冷奥氏体逐渐转变为针铁、粒贝和板贝等低碳贝氏体组织,同时与先共析铁素体一起完成对粗大的原始奥氏体晶粒的切割,形成细小的晶粒,改善钢板的韧性。剩余未转变的过冷奥氏体则随着温度的进一步降低进入马氏体转变区间而变成MA岛组元,并通过控制钢板的返红至250~350℃,使部分MA岛组元在自回火过程中完成分解,转变为退化珠光体,最终形成以先共析铁素体+低碳贝氏体为主,残余奥氏体和退化珠光体为辅的混合多相组织。
本发明的突出特点和显著效果主要体现在:(1)本发明利用连铸坯生产低温冲击要求-40℃以上的高韧性钢板,最大厚度可达到150mm,在保证产品质量的同时,碳当量(Ceq)控制在0.38以内;(2)本发明突破传统TMCP工艺轧制特厚板压缩比限制,通过组织调控技术细化晶粒,改善特厚规格钢板的心部组织性能,不需追加热处理,工序简单,降低合金和生产成本,成材率高;(3)本发明可利用钢厂现有设备和工艺条件实现,不需增加投资和设备改造,提高了生产效率,缩短交货周期,节能减耗;(4)本发明方法生产的是一种节约型、低碳环保钢材新品种,还可广泛应用于造船、海工、风电、桥梁、建筑及工程机械等多个领域厚板的制造。
附图说明
图1为本发明实施例3钢板厚度方向1/2位置的金相组织图。
具体实施方式
一组实施例:
一种460E级特厚钢板的生产。按照化学成分范围,连铸成300mm×1870mm×L的连铸坯,在宽厚板生产线上分别进行厚度60mm、100mm和150mm钢板的生产。关键工艺步骤如下:
(1)冶炼:将冶炼原料依次经KR铁水预处理、转炉冶炼、LF精炼、RH真空精炼和连铸,制造出满足化学成分要求,厚度≥300mm的连铸坯,控制铸坯中心偏析C类≤0.5级,中心疏松度≤0.5级;
(2)一次加热:将连铸坯加热至1200℃±50℃,均热时间20~30min,出炉后立刻采用Mulpic摆动冷却至室温,制成二火坯;
(3)二次加热:将二火坯加热至900℃±30℃,均热时间20~30min;
(4)轧制:出炉后进行精轧,精轧开轧温度700~760℃,终轧温度控制在690~750℃;
(5)弛豫:轧后钢板弛豫至再结晶温度Ar3以下10~20℃,弛豫时间控制在铁素体相变20%左右;
(6)冷却:采用Mulpic的DQ快速冷却,冷却速率3~10℃/s,冷却后的返红温度250~350℃。
实施例钢的化学成分如表1所示,生产工艺参数如表2所示,产品性能检测结果如表3所示。
表1 实施例460E级特厚板的化学成分(%)
表2 实施例460E级特厚板的生产工艺参数
表3 实施例460E级特厚板的实物性能
从以上实施例可以看出,采用本发明的方法生产的钢板达到Q460E级,屈服强度440~500MPa,抗拉强度550~620Mpa,低温-40℃心部冲击韧性达到100J以上,厚度方向性能良好,碳当量Ceq≤0.38,集高强度、高韧性和高焊接性能于一体。

Claims (1)

1.一种460E级特厚钢板的生产方法,其特征在于:钢的化学成分质量百分比为C=0.04%~0.07%,Si=0.15%~0.35%,Mn=1.75%~1.95 %,P≤0.012%,S≤0.003%,Nb=0.02%~0.03%,Ti=0.008%~0.02%,Al=0.015%~0.05%,其余为Fe和不可避免的杂质,Ceq= [C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15]≤0.38;所述钢板组织为先共析铁素体+低碳贝氏体+退化珠光体和少量MA组元的多相组织,其中铁素体的体积分数为15%~30%,贝氏体的体积分数为70%~85%,其余为退化珠光体和少量MA组元;工艺步骤如下:
(1)冶炼:将冶炼原料依次经KR铁水预处理、转炉冶炼、LF精炼、RH真空精炼和连铸,制造出满足化学成分要求,厚度≥300mm的连铸坯,控制铸坯中心偏析C类≤0.5级,中心疏松度≤0.5级;
(2)一次加热:将连铸坯加热至1200℃±50℃,均热时间20~30min,出炉后立刻采用Mulpic摆动冷却至室温,制成二火坯;
(3)二次加热:将二火坯加热至900℃±30℃,均热时间20~30min;
(4)轧制:出炉后进行精轧,精轧开轧温度700~760℃,终轧温度控制在690~750℃;
(5)弛豫:轧后钢板弛豫至再结晶温度Ar3以下10~20℃,弛豫时间控制在铁素体相变20%;
(6)冷却:采用Mulpic的DQ快速冷却,冷却速率3~10℃/s,冷却后的返红温度250~350℃。
CN202211587713.3A 2022-12-12 2022-12-12 一种460e级特厚钢板及其生产方法 Active CN116043128B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211587713.3A CN116043128B (zh) 2022-12-12 2022-12-12 一种460e级特厚钢板及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211587713.3A CN116043128B (zh) 2022-12-12 2022-12-12 一种460e级特厚钢板及其生产方法

Publications (2)

Publication Number Publication Date
CN116043128A CN116043128A (zh) 2023-05-02
CN116043128B true CN116043128B (zh) 2023-12-01

Family

ID=86124641

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211587713.3A Active CN116043128B (zh) 2022-12-12 2022-12-12 一种460e级特厚钢板及其生产方法

Country Status (1)

Country Link
CN (1) CN116043128B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182702A (zh) * 2018-11-22 2019-01-11 湖南华菱湘潭钢铁有限公司 一种多相组织高韧性船板钢eh40的生产方法
CN109182919A (zh) * 2018-11-22 2019-01-11 湖南华菱湘潭钢铁有限公司 一种多相组织高韧性船板钢eh47的生产方法
CN109680223A (zh) * 2019-03-08 2019-04-26 东北大学 一种易切削高强度复相非调质钢制备方法
CN109722601A (zh) * 2019-03-17 2019-05-07 湖南华菱湘潭钢铁有限公司 一种低碳当量的特厚钢板q420e的生产方法
CN109972033A (zh) * 2019-03-17 2019-07-05 湖南华菱湘潭钢铁有限公司 一种低碳当量的特厚钢板q460e的生产方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182702A (zh) * 2018-11-22 2019-01-11 湖南华菱湘潭钢铁有限公司 一种多相组织高韧性船板钢eh40的生产方法
CN109182919A (zh) * 2018-11-22 2019-01-11 湖南华菱湘潭钢铁有限公司 一种多相组织高韧性船板钢eh47的生产方法
CN109680223A (zh) * 2019-03-08 2019-04-26 东北大学 一种易切削高强度复相非调质钢制备方法
CN109722601A (zh) * 2019-03-17 2019-05-07 湖南华菱湘潭钢铁有限公司 一种低碳当量的特厚钢板q420e的生产方法
CN109972033A (zh) * 2019-03-17 2019-07-05 湖南华菱湘潭钢铁有限公司 一种低碳当量的特厚钢板q460e的生产方法

Also Published As

Publication number Publication date
CN116043128A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
CN111172465B (zh) 一种低碳当量大厚度q390gj建筑结构用钢板及其制造方法
CN109182919B (zh) 一种多相组织高韧性船板钢eh47的生产方法
KR101563929B1 (ko) 낮은 용접 크렉 감도와 800MPa의 항복 강도를 갖는 강판 및 그 제조 방법
CN112553530B (zh) 一种低屈强比700MPa高强度桥梁钢及其制造方法
CN110484827B (zh) 一种抗拉强度600MPa级低屈强比热轧酸洗钢板
CN109536846B (zh) 屈服强度700MPa级高韧性热轧钢板及其制造方法
CN109972033A (zh) 一种低碳当量的特厚钢板q460e的生产方法
WO2019218657A1 (zh) 一种屈服强度460MPa级热轧高韧性耐低温H型钢及其制备方法
CN110735085A (zh) 一种薄规格Q345qE、Q370qE钢板的制造方法
CN109722601A (zh) 一种低碳当量的特厚钢板q420e的生产方法
CN112226673A (zh) 一种抗拉强度650MPa级热轧钢板及其制造方法
CN104073731B (zh) 一种采用直接淬火工艺的超高强船板的生产方法
CN113430454A (zh) 一种屈服强度≥1200MPa的焊接钢及生产方法
CN102191430A (zh) 屈服强度550MPa易焊接高强韧钢板及其制造方法
CN113802060A (zh) 一种低成本工程结构用钢板及其制造方法
CN111979499A (zh) 一种低成本q460c厚规格钢板生产方法
CN115572901B (zh) 一种630MPa级高调质稳定性低碳低合金钢板及其制造方法
CN116590611A (zh) 一种韧性高强桥梁钢板及其制造方法
CN110629001A (zh) 一种特厚管线钢用钢板的制造方法
CN113604736B (zh) 一种屈服强度800MPa级高强度中厚板及其制备方法
CN110952040B (zh) EH460级150-200mm特厚钢板的生产方法
CN116043128B (zh) 一种460e级特厚钢板及其生产方法
CN114277307B (zh) 一种1100MPa级工程机械用高强钢及其生产方法
CN111440991B (zh) 一种屈服强度800MPa级热轧钢板及其制造方法
CN115838902B (zh) 一种tmcp工艺特厚钢板及其生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant