CN116035006B - 甲硫氨酸在提高植物耐盐能力中的应用及方法 - Google Patents

甲硫氨酸在提高植物耐盐能力中的应用及方法 Download PDF

Info

Publication number
CN116035006B
CN116035006B CN202310095467.8A CN202310095467A CN116035006B CN 116035006 B CN116035006 B CN 116035006B CN 202310095467 A CN202310095467 A CN 202310095467A CN 116035006 B CN116035006 B CN 116035006B
Authority
CN
China
Prior art keywords
methionine
plants
abscisic acid
improving
salt tolerance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310095467.8A
Other languages
English (en)
Other versions
CN116035006A (zh
Inventor
丁兆军
田会玉
李科
史本慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202310095467.8A priority Critical patent/CN116035006B/zh
Publication of CN116035006A publication Critical patent/CN116035006A/zh
Application granted granted Critical
Publication of CN116035006B publication Critical patent/CN116035006B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/44Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G13/00Protecting plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/06Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P21/00Plant growth regulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Botany (AREA)
  • Health & Medical Sciences (AREA)
  • Forests & Forestry (AREA)
  • General Health & Medical Sciences (AREA)
  • Ecology (AREA)
  • Zoology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Dentistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明属于农业技术领域,涉及甲硫氨酸在提高植物耐盐能力中的应用及方法。利用甲硫氨酸提高植物耐盐能力的方法,将甲硫氨酸的水溶液喷洒在植物的表面,或通过灌溉的方式作用于植物的根系。本发明发现甲硫氨酸能快速激活脱落酸合成、转运和信号转导相关基因的表达,甲硫氨酸能显著提高植物内源脱落酸的含量,提高植物对脱落酸的敏感性,因此可作为脱落酸激动剂应用于大田生产活动中,对于提高植物抗逆能力和消除外源植物激素对食品安全的潜在影响具有重要作用。

Description

甲硫氨酸在提高植物耐盐能力中的应用及方法
技术领域
本发明属于农业技术领域,涉及甲硫氨酸在提高植物耐盐能力中的应用及方法。
背景技术
土壤盐碱化是限制农业生产的主要非生物胁迫。我国盐碱土地分布广泛,在沿海地区有大面积的盐碱土地尚待开发利用,研究植物抗盐的分子机理和发现一种简单、高效的提高植物抗盐能力的方法,对增加我国耕地生产面积、实现农业可持续发展和保障我国粮食安全具有重要意义。植物激素在调控植物生长和抗逆反应中发挥重要作用,被广泛的应用在农业生产活动中。但是,随着人民生活水平和食品安全意识的提高,植物激素在农业生产中的大量使用越来越引发人们对其安全性的担忧。脱落酸在提高植物抗逆能力(尤其是在提高抗盐能力方面)发挥重要作用,但是由于其价格昂贵和保存条件严格,进一步限制了脱落酸在农业生产活动中的应用。
甲硫氨酸是含硫必需氨基酸,生物体必须将D-型在体内转化为L-型才能被机体利用,与生物体内各种含硫化合物的代谢密切相关。甲硫氨酸作为营养增补剂在食品领域用作食品添加剂、调味剂或香料。另外,在医药领域,甲硫氨酸具有肝脏保护、心肌保护、抗抑郁、降血压、防毒袪毒等作用,发挥了其医药功能。而甲硫氨酸在农业领域的用途和作用尚未有相关报道和研究。
本发明在研究过程中发现甲硫氨酸能快速激活脱落酸合成、转运和信号转导相关基因的表达,并且甲硫氨酸能显著提高植物内源脱落酸的含量,提高植物对ABA的敏感性,提示其可作为脱落酸激动剂应用于大田生产活动中,对于提高植物抗逆能力和消除外源植物激素对食品安全的潜在影响具有重要作用。
发明内容
为了解决现有土壤盐碱化带来的问题以及现有提高抗盐技术中存在的问题,本发明提供了甲硫氨酸在提高植物耐盐能力中的应用和利用甲硫氨酸提高植物耐盐能力大方法。
为了解决其技术问题,一方面,本发明提供了甲硫氨酸在提高植物耐盐能力中的应用。
进一步地,所述甲硫氨酸在植物生长过程中或果实采摘后的应用。
进一步地,所述甲硫氨酸的使用浓度为0.5mM~10mM。
另一方面,本发明还提供了一种利用甲硫氨酸提高植物耐盐能力的方法:将甲硫氨酸的水溶液喷洒在植物的表面,或通过灌溉的方式作用于植物的根系。
进一步地,甲硫氨酸水溶液的浓度为0.5mM~10mM。
在本发明的其他方面还提供了一种提高植物耐盐能力的制剂,该制剂中包含所述的甲硫氨酸。
本发明进一步提供一种脱落酸激动剂,该激动剂为甲硫氨酸。
与现有技术相比,本发明的有益效果和显著优点在于:
1、本发明所使用的外源施加甲硫氨酸的方法,能够简单、有效的提高植物在高盐环境中的存活,可大规模应用在盐碱土地的生产中。
2、本发明研究发现甲硫氨酸能快速激活脱落酸合成、转运和信号转导相关基因的表达,能显著提高植物内源脱落酸的含量,因此,可作为植物激素脱落酸的替代物,提高植物的耐盐能力,应用在大田生产活动中。
附图说明
图1为外源甲硫氨酸处理显著提高拟南芥的抗盐性。
图2为外源甲硫氨酸处理显著提高大豆和水稻的抗盐性。
图3为甲硫氨酸能激活脱落酸合成、转运和信号转导。
图4为甲硫氨酸提高植物对脱落酸的敏感性。
具体实施方式
下面将结合本发明的实施例和附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,绝不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:外源甲硫氨酸处理显著提高拟南芥的抗盐性
将拟南芥种子点种在正常1/2MS培养基、含有不同浓度盐的1/2MS培养基和含有不同浓度盐并添加甲硫氨酸的1/2MS培养基中,观察萌发后6天内的萌发表型,并统计萌发率;继续生长观察子叶绿表型,并统计子叶绿比例和地上部鲜重。
结果如图1中A、B所示,甲硫氨酸显著提高盐胁迫下种子的萌发率;C、D、E所示,甲硫氨酸显著提高盐胁迫子叶绿比例和地上部鲜重。
实施例2:外源甲硫氨酸处理显著提高水稻和大豆的抗盐性。
将生长14天的水稻和大豆幼苗分别使用200mM NaCl和200mM NaCl添加1mM甲硫氨酸水溶液进行处理,观测叶绿表型,并进行鲜重统计。
如图2中A、C所示,在同样盐胁迫条件下,经甲硫氨酸水溶液处理的水稻和大豆,生长的更好,植株明显比未经处理的粗壮、高大,叶片肥厚,表现出耐盐胁迫增加的表型,表明外源甲硫氨酸能提高植物的耐盐性。而B、D所示的鲜重统计结果也进一步验证了上述结论。
实施例3:外源甲硫氨酸能激活脱落酸合成、转运和信号转导。
对外源甲硫氨酸处理的转录组进行分子生物学分析。甲硫氨酸和脱落酸(ABA)处理共同上调的基因如图3中A所示,甲硫氨酸和脱落酸处理共同下调的基因如图3中B所示,甲硫氨酸处理后植物内源脱落酸含量提高,如图3中C所示,甲硫氨酸处理激活脱落酸信号合成、转运和信号转导相关基因的表达,如图3中D所示。
结果表明,26%的甲硫氨酸激活基因与脱落酸激活的基因重合,22.5%的甲硫氨酸抑制基因与脱落酸抑制的基因重合。甲硫氨酸处理后能提高植物内源脱落酸的含量,同时,甲硫氨酸处理能激活脱落酸信号合成、转运和信号转导相关基因的表达,表明甲硫氨酸能激活脱落酸合成、转运和信号转导。
实施例4:甲硫氨酸提高植物对脱落酸的敏感性
将拟南芥种子点种在正常1/2MS培养基、含有不同浓度脱落酸的1/2MS培养基和含有不同浓度脱落酸并添加甲硫氨酸的1/2MS培养基中,观察萌发后6天内的表型、并统计子叶绿比例、和鲜重,观察主根生长的表型、并统计主根的长度。
结果如图4中A-E所示,甲硫氨酸和脱落酸共处理后种子的萌发率显著低于脱落酸单独处理。甲硫氨酸和脱落酸共处理后主根的长度显著低于脱落酸单独处理,表明甲硫氨酸能提高植物对脱落酸的敏感性。

Claims (3)

1.甲硫氨酸作为脱落酸激动剂在提高植物耐盐能力中的应用,其特征在于:所述的应用为使用外源甲硫氨酸激活植物脱落酸合成、转运和信号转导,提高植物对脱落酸的敏感性;所述植物为拟南芥。
2.根据权利要求1所述的应用,其特征在于:所述甲硫氨酸应用在植物生长过程中。
3.根据权利要求1所述的应用,其特征在于:所述甲硫氨酸通过植物表面喷洒或根系灌溉的方式作用于植物。
CN202310095467.8A 2023-02-10 2023-02-10 甲硫氨酸在提高植物耐盐能力中的应用及方法 Active CN116035006B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310095467.8A CN116035006B (zh) 2023-02-10 2023-02-10 甲硫氨酸在提高植物耐盐能力中的应用及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310095467.8A CN116035006B (zh) 2023-02-10 2023-02-10 甲硫氨酸在提高植物耐盐能力中的应用及方法

Publications (2)

Publication Number Publication Date
CN116035006A CN116035006A (zh) 2023-05-02
CN116035006B true CN116035006B (zh) 2024-05-28

Family

ID=86118091

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310095467.8A Active CN116035006B (zh) 2023-02-10 2023-02-10 甲硫氨酸在提高植物耐盐能力中的应用及方法

Country Status (1)

Country Link
CN (1) CN116035006B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2217896A1 (de) * 1971-12-29 1973-07-05 Nippon Soda Co Mittel zur regulierung des pflanzenwachstums
US5240901A (en) * 1988-11-18 1993-08-31 Reanal Finomvegyeszergyar Method and composition for protecting plants against stress and/or for increasing their yield
US5661111A (en) * 1994-11-28 1997-08-26 Cosmo Research Institute Method for improving plant salt-tolerance
US6492302B1 (en) * 1998-06-17 2002-12-10 Jean Morelle Compositions for the protection of plants against the stress of oxidation
JP2017128564A (ja) * 2016-01-18 2017-07-27 国立研究開発法人理化学研究所 植物の耐塩性向上剤

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10524471B2 (en) * 2016-01-21 2020-01-07 King Abdullah University Of Science And Technology Compositions and methods for increasing salt tolerance in plants

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2217896A1 (de) * 1971-12-29 1973-07-05 Nippon Soda Co Mittel zur regulierung des pflanzenwachstums
FR2165831A1 (en) * 1971-12-29 1973-08-10 Nippon Soda Co Methionine, its esters and salts - as plant growth regulators
US5240901A (en) * 1988-11-18 1993-08-31 Reanal Finomvegyeszergyar Method and composition for protecting plants against stress and/or for increasing their yield
US5661111A (en) * 1994-11-28 1997-08-26 Cosmo Research Institute Method for improving plant salt-tolerance
US6492302B1 (en) * 1998-06-17 2002-12-10 Jean Morelle Compositions for the protection of plants against the stress of oxidation
JP2017128564A (ja) * 2016-01-18 2017-07-27 国立研究開発法人理化学研究所 植物の耐塩性向上剤

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Exogenous Application of Methionine and Phenylalanine Confers Salinity Tolerance in Tomato by Concerted Regulation of Metabolites and Antioxidants;Hafiza Iqra Almas 等;Journal of Soil Science and Plant Nutrition;20210825(第21期);3051-3064 *
METHIONINE-INDUCED CHANGES IN GROWTH, GLYCINEBETAINE, ASCORBIC ACID, TOTAL SOLUBLE PROTEINS AND ANTHOCYANIN CONTENTS OF TWO Zea mays L. VARIETIES UNDER SALT STRESS;S. Perveen 等;The Journal of Animal & Plant Sciences;20200826;第31卷(第1期);131-142 *
Methionine-Induced Regulation of Secondary Metabolites and Antioxidants in Maize (Zeamays L.) Subjected to Salinity Stress;Sadia Shahid 等;Gesunde Pflanzen;20221129(第75期);1143-1155 *
碳酸盐及甲硫氨酸对抗盐碱水稻根系发育的影响;刘献;孙宇哲;杨丹;苍晶;刘会;郝再彬;;核农学报;20061020(第05期);429-432 *

Also Published As

Publication number Publication date
CN116035006A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
Zodape Seaweeds as a biofertilizer
Lisiecka et al. The effect on animal protein hydrolysate on quantity and quality of strawberry daughter plants cv.'Elsanta'
CN108849984B (zh) 一种小麦耐旱抗逆复合调节剂及其应用
Ebrahimi et al. Effect of humic acid on seed germination and seedling growth of Borago officinalis and Cichorium intybus
KR20010051171A (ko) 벼과 식물의 고사 방지 및 속효적 영양 보급제
Al-madhagi Effect of humic acid and yeast on the yield of greenhouse cucumber
Mazhar et al. Zinc-aspartate-mediated drought amelioration in maize promises better growth and agronomic parameters than zinc sulfate and L-aspartate.
Orabi et al. Influence of hydrogen peroxide on growth, yield and biochemical constituents of canola plants grown under different irrigation intervals
Hozayn et al. Influence of magnetic water on French basil (Ocimum basilicum L. var. Grandvert) plant grown under water stress conditions
TW201509302A (zh) 用於改良植物性能之化合物及方法
Singh et al. Studies on the effect of foliar spray of Zn, Cu and B on growth, yield and fruit quality of sweet orange (Citrus sinensis L.) cv. Mosambi
RU2670061C2 (ru) Способ обогащения овощных культур семейства тыквенные (Cucurbitaceae) микроэлементами
US8247349B2 (en) Enhanced abscisic acid analog and fertilizer performance
CN116035006B (zh) 甲硫氨酸在提高植物耐盐能力中的应用及方法
Somtrakoon et al. Effect of Salicylic Acid and Calcium Chloride on Growth of Corn Under Water Stress Condition.
CN111187119A (zh) 一种提高烤烟抗病性的叶面肥
Shalaby et al. Effect of seed soaking and foliar spraying with selenium on the growth and yield of lettuce under saline stress
Farhangi-Abriz et al. Polyamines, affected the nitrogen partitioning, protein accumulation and amino acid composition of mung bean under water stress
CN105218263A (zh) 一种氨基酸液肥
CN115152558A (zh) 一种花生增油富硒的种植方法
Batool et al. Physiological implication of moringa extracts applications for osmolytes production in maize crop under heat stress
Hamid et al. Effect of arginine on growth and yield of tomato plant (Lycopersicon esculentum) under drought stress.
Balakumbahan et al. Effect of biostimulants on leaf yield and quality of annual moringa (Moringa oleifera. Lam) Var. PKM-1
Hayat et al. Response of Brassica juncea to 28-homobrassinolide grown from the seeds exposed to salt stress
CN104649828A (zh) 含有壳聚糖与氨基酸的增效组合物及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant