CN116018849A - 无线通信系统中用于初始小区接入的方法、装置和系统 - Google Patents

无线通信系统中用于初始小区接入的方法、装置和系统 Download PDF

Info

Publication number
CN116018849A
CN116018849A CN202180054544.4A CN202180054544A CN116018849A CN 116018849 A CN116018849 A CN 116018849A CN 202180054544 A CN202180054544 A CN 202180054544A CN 116018849 A CN116018849 A CN 116018849A
Authority
CN
China
Prior art keywords
bwp
symbols
information
symbol
coreset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180054544.4A
Other languages
English (en)
Inventor
崔庚俊
卢珉锡
石根永
郭真三
孙周亨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wilus Institute of Standards and Technology Inc
Original Assignee
Wilus Institute of Standards and Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wilus Institute of Standards and Technology Inc filed Critical Wilus Institute of Standards and Technology Inc
Publication of CN116018849A publication Critical patent/CN116018849A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0076Acquisition of secondary synchronisation channel, e.g. detection of cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本说明书涉及一种用于无线通信系统中的初始小区接入的方法、装置和系统。本说明书公开了降低能力的用户设备(UE),包括:通信模块,被配置为接收用于配置将用于初始接入过程的第一下行链路带宽部分(DL BWP)和第一上行链路带宽部分(BWP)的配置信息,接收指示传统类型第二用户设备的第二UL BWP和第二DL BWP中的第一用户设备的BWP接入禁止的指示符,并且基于该指示符经由第一DL BWP、第一UL BWP、第二DL BWP以及第二UL BWP中的至少一个执行初始接入过程;以及处理器,控制配置信息的接收、初始接入过程的执行以及指示符的接收。RedCap用户设备可以平滑地执行初始小区接入,可以执行随机接入过程而不与现有的传统类型的用户设备冲突,并且可以基于各种类型的跳频设计来执行通信。

Description

无线通信系统中用于初始小区接入的方法、装置和系统
技术领域
本公开涉及无线通信系统,具体地,涉及无线通信系统中的初始小区接入方法、装置和系统,以及使用其的装置。
背景技术
在第四代(4G)通信系统的商业化之后,为了满足对无线数据业务的越来越多的需求,正在努力开发新的第五代(5G)通信系统。5G通信系统被称作为超4G网络通信系统、后LTE系统或新无线电(NR)系统。为了实现高数据传输速率,5G通信系统包括使用6GHz或更高的毫米波(mmWave)频带来操作的系统,并且在确保覆盖范围方面包括使用6GHz或更低的频带来操作的通信系统,使得基站和终端中的实现方式在考虑中。
第三代合作伙伴计划(3GPP)NR系统提高了网络的频谱效率并且使得通信提供商能够在给定带宽上提供更多的数据和语音服务。因此,3GPP NR系统被设计成除了支持大量语音之外还满足对高速数据和媒体传输的需求。NR系统的优点是在相同平台上具有更高的吞吐量和更低的延迟,支持频分双工(FDD)和时分双工(TDD),以及因增强的最终用户环境和简单架构而具有低运营成本。
为了更高效的数据处理,NR系统的动态TDD可以使用用于根据小区用户的数据业务方向来改变可以被用在上行链路和下行链路中的正交频分复用(OFDM)符号的数目的方法。例如,当小区的下行链路业务大于上行链路业务时,基站可以给时隙(或子帧)分配多个下行链路OFDM符号。应该向终端发送关于时隙配置的信息。
为了减轻无线电波的路径损耗并且增加mmWave频带中的无线电波的传输距离,在5G通信系统中,讨论了波束成形、大规模多输入/输出(大规模MIMO)、全维MIMO(FD-MIMO)、阵列天线、模拟波束成形、组合了模拟波束成形和数字波束成形的混合波束成形以及大规模天线技术。此外,为了系统的网络改进,在5G通信系统中,正在进行与演进型小小区、高级小小区、云无线电接入网络(云RAN)、超密集网络、设备到设备通信(D2D)、车辆到一切通信(V2X)、无线回程、非陆地网络通信(NTN)、移动网络、协作通信、协调多点(CoMP)、干扰消除等有关的技术开发。此外,在5G系统中,正在开发作为高级编码调制(ACM)方案的混合FSK与QAM调制(FQAM)和滑动窗口叠加编码(SWSC)以及作为高级连接技术的滤波器组多载波(FBMC)、非正交多址(NOMA)和稀疏码多址(SCMA)。
在人类生成并消费信息的以人类为中心的连接网络中,因特网已经演进成物联网(IoT)网络,该IoT网络在诸如物体的分布式组件之间交换信息。通过与云服务器的连接将IoT技术与大数据处理技术组合的万物互联(IoE)技术也正在兴起。为了实现IoT,需要诸如感测技术、有线/无线通信和网络基础设施、服务接口技术及安全技术的技术要素,使得近年来,已经研究了诸如传感器网络、机器到机器(M2M)和机器类型通信(MTC)的技术以在物体之间进行连接。在IoT环境中,能够提供智能互联网技术(IT)服务,该智能IT服务收集并分析从所联网的物体生成的数据以在人类生活中创造新价值。通过现有信息技术(IT)和各个行业的融合和混合,能够将IoT应用于诸如智能家居、智能建筑、智能城市、智能汽车或联网汽车、智能电网、医疗保健、智能家电和高级医疗服务的领域。
已经进行了各种尝试以将5G通信系统应用于IoT网络。例如,诸如传感器网络、机器对机器(M2M)通信和机器类型通信(MTC)的技术通过诸如均为5G通信技术的波束成形、MIMO和阵列天线的技术来实现。作为上述大数据处理技术的云无线电接入网络(云RAN)的应用也可以被认为是5G技术和IoT技术的融合的示例。通常,已经开发了移动通信系统以在确保用户活动的同时提供语音服务。
在关于“对IMT-2020提交的自我评估”的3GPP研究中,识别出NB IoT和LTE M满足用于mMTC的IMT-2020要求,使得NB IoT和LTE M能够被认证为5G技术。对于URLLC支持,在Rel-15中已经针对LTE和NR两者引入了URLLC功能,并且已经进一步推进Rel-16中改进的URLLC(增强型URLLC(eURLLC))以及工业IoT工作项中的NR系统的URLLC。Rel-16还引入了5G集成支持和时间敏感网络(TSN)以供TSC使用。
5G的首要目标之一是实现互联行业。5G连接充当下一代工业创新和数字化的催化剂,以便提高灵活性、提高生产率和效率、降低维护成本并提高操作安全性。对于这种环境中的设备,期望将例如压力传感器、湿度传感器、温度计、运动传感器、加速度计和致动器连接到5G无线电接入和核心网络。大规模工业无线传感器网络的用例和要求包括具有非常高要求的URLLC服务,以及具有小设备格式要求的相对便宜的服务。这些服务应该通过使用电池无线地可用多年。服务的示例包括工业无线传感器、视频监控和可穿戴设备等。这些服务具有比低功率广域(LPWA)(即,LTE-M/NB-IoT)更高但比URLLC和eMBB更低的要求。
发明内容
技术问题
本公开的技术任务是提供无线通信系统中(特别是蜂窝无线通信系统中)的初始小区接入方法和设备。
本公开的另一技术任务是提供一种用于无线通信系统中(特别是蜂窝无线通信系统中)的上行链路数据传输的跳频的方法和设备。
技术方案
根据本公开的方面,在无线通信系统中提供具有降低的性能的第一UE(降低能力UE)。所述第一UE可以包括:通信模块,所述通信模块被配置为接收用于配置在初始接入过程中使用的第一下行链路带宽部分(DL BWP)和第一上行链路带宽部分(上行链路BWP)的配置信息,接收指示用于传统类型的第二UE的第二UL BWP和第二DL BWP中的所述第一UE的BWP接入禁止的指示符,并且基于所述指示符,经由所述第一DL BWP、所述第一UL BWP、所述第二DL BWP和所述第二UL BWP中的至少一个执行所述初始接入过程;以及处理器,所述处理器被配置为控制所述配置信息的接收、所述初始接入过程的执行以及所述指示符的接收,其中,单独地配置所述第一UL BWP和所述第二UL BWP中的每一个,所述初始接入过程包括随机接入过程,所述第一UL BWP包括用于所述第一UE的随机接入过程的第一资源,以及所述第一资源与用于所述第二UE的所述第二UL BWP上的随机接入过程的第二资源相同。
在一方面,所述通信模块可以被配置为从与所述第二UE有关的第二同步信号块(SSB)获取关于基本控制资源集(CORESET)的信息。
在另一方面,所述通信模块可以被配置成经由系统信息块(系统信息块1(SIB1)),接收关于用于所述第一UE的CORESET的信息,用于所述第一UE的CORESET与用于所述第二UE的CORESET分开地定义。
在另一方面,所述通信模块可以被配置为接收用于所述第二UE的SIB1,其中,所述SIB1包括用于执行所述第一UE的所述初始接入过程的关于系统信息的调度信息。
在另一方面,所述调度信息可以包括关于为执行所述第一UE的所述初始接入过程而激活的所述第一DL BWP的起始物理资源块(PRB)的信息。
在另一方面,所述通信模块可以被配置为接收用于所述第二UE的SIB1,其中,所述SIB1包括用于所述第一UE的初始接入的随机接入过程的配置信息。
在另一方面,所述通信模块可以被配置成经由与关于所述第二UE的第二SSB分开地定义的第一SSB来获取关于用于所述第一UE的CORESET的信息。
在另一方面,关于所述基本CORESET的所述信息可以包括8比特,并且关于所述基本CORESET的信息的4比特可以指示关于配置所述基本CORESET的频域的信息,并且剩余的4比特可以指示关于用于监视所述基本CORESET的符号的信息。
在另一方面,构成关于所述基本CORESET的信息的8比特可以被所述第一UE和所述第二UE中的每一个识别为不同的信息。
在另一方面,所述通信模块可以从基站接收指示用于所述第一UE的所述第一资源的信息。
在另一方面,由基站提供的小区中可用的随机接入前导序列中的一些随机接入前导序列可以被用于所述第一UE,并且剩余的随机接入前导序列可以被用于所述第二UE。
在另一方面,所述通信模块可以基于关于所述基本CORESET的所述信息来获取关于用于所述第一UE的CORESET的信息。
在另一方面,在所述基本CORESET中,用于所述第一UE的第一PDCCH候选可以与用于所述第二UE的第二PDCCH候选分开地定义,以及所述通信模块可以被配置成监视所述基本CORESET中的所述第一PDCCH候选。
根据本公开的另一方面,提供一种在无线通信系统中具有降低的性能的第一UE(降低能力UE)的操作方法。所述方法可以包括:接收用于配置在初始接入过程中使用的第一下行链路带宽部分(DL BWP)和第一上行链路带宽部分(上行链路BWP)的配置信息;接收指示用于传统类型的第二UE的第二UL BWP和第二DL BWP中的所述第一UE的BWP接入禁止的指示符;以及基于所述指示符,经由所述第一DL BWP、所述第一UL BWP、所述第二DL BWP和所述第二UL BWP中的至少一个执行所述初始接入过程。这里,可以单独地配置所述第一ULBWP和所述第二UL BWP中的每一个,所述初始接入过程可以包括随机接入过程,所述第一ULBWP可以包括用于所述第一UE的随机接入过程的第一资源,以及所述第一资源可以与用于所述第二UE的所述第二UL BWP上的随机接入过程的第二资源相同。
在一方面,所述方法可以进一步包括从与所述第二UE有关的第二同步信号块(SSB)获取关于基本控制资源集(CORESET)的信息。
在另一方面,所述方法可以进一步包括经由系统信息块(系统信息块1(SIB1)),接收关于用于所述第一UE的CORESET的信息,用于所述第一UE的CORESET与用于所述第二UE的CORESET分开地定义。
在另一方面,所述方法可以进一步包括接收用于所述第二UE的SIB1,其中,所述SIB1包括用于执行所述第一UE的所述初始接入过程的关于系统信息的调度信息。
在另一方面,所述调度信息可以包括关于为执行所述第一UE的所述初始接入过程而激活的所述第一DL BWP的起始物理资源块(PRB)的信息。
在另一方面,所述方法可以进一步包括接收用于所述第二UE的SIB1,其中,所述SIB1包括用于所述第一UE的初始接入的随机接入过程的配置信息。
在另一方面,可以经由与关于所述第二UE的第二SSB分开地定义的第一SSB来获取关于用于所述第一UE的CORESET的信息。
有益效果
根据本公开的实施例,RedCap UE能够平滑地执行初始小区接入,执行随机接入过程而不与现有的传统类型UE冲突,并且基于各种跳频设计执行通信。
在本公开中可获得的效果不限于上述效果,并且本公开所属领域的技术人员可以从下面的描述中清楚地理解未提及的其他效果。
附图说明
图1图示无线通信系统中使用的无线帧结构的示例。
图2图示无线通信系统中的下行链路(DL)/上行链路(UL)时隙结构的示例。
图3是用于说明在3GPP系统中使用的物理信道和使用该物理信道的典型信号传输方法的图。
图4图示用于3GPP NR系统中的初始小区接入的SS/PBCH块。
图5图示用于在3GPP NR系统中发送控制信息和控制信道的过程。
图6图示在3GPP NR系统中的其中可以发送物理下行链路控制信道(PUCCH)的控制资源集(CORESET)。
图7图示用于在3GPP NR系统中配置PDCCH搜索空间的方法。
图8是图示载波聚合的概念图。
图9是用于说明单载波通信和多载波通信的图。
图10是示出其中应用跨载波调度技术的示例的图。
图11是示出根据本公开的实施例的UE和基站的配置的框图。
图12图示根据示例的初始接入方法。
图13是图示根据本公开的实施例的初始小区接入方法的图。
图14是图示根据本公开的实施例的初始小区接入方法和PRACH资源配置的图。
图15是图示根据本公开的另一实施例的初始小区接入方法和PRACH资源配置的图。
图16是图示根据本公开的另一实施例的初始小区接入方法和PRACH资源配置的图。
图17是图示根据本公开的另一实施例的初始小区接入方法的图。
图18是图示根据本公开的另一实施例的初始小区接入方法的图。
图19是图示根据本公开的另一实施例的初始小区接入方法的图。
图20是图示根据本公开的另一实施例的初始小区接入方法的图。
图21是图示根据本公开的另一实施例的初始小区接入方法的图。
图22示出了图示根据本公开的另一实施例的PRACH资源配置的图。
图23示出了图示时域中的物理上行链路共享信道的调度的图。
图24示出了图示频域中的物理上行链路共享信道的调度的图。
图25示出了图示根据示例的物理上行链路共享信道的重复传输的图。
图26是图示物理上行链路控制信道的调度的图。
图27是图示物理上行链路控制信道的重复传输的图。
图28是图示跳频的图。
图29是图示宽带跳频的图。
图30是图示根据本公开的实施例的宽带跳频的图。
图31是图示根据本公开的另一实施例的宽带跳频的图。
图32是图示根据本公开的另一实施例的宽带跳频的图。
图33是图示根据本公开的实施例的宽带跳频的图。
图34图示根据示例的PUSCH重复类型B。
图35示出了图示根据本公开的实施例的间隙符号被布置在类型B PUSCH重复中的在前标称重复中的图。
图36示出了图示根据本公开的实施例的间隙符号被布置在类型B PUSCH重复中的后续标称重复中的图。
图37是图示根据本公开的实施例的间隙符号被分散地布置在类型B PUSCH重复中的图。
图38示出了图示根据本公开的实施例的间隙符号被布置在类型B PUSCH重复中具有大量符号的标称重复中的图。
图39示出了图示根据本公开的实施例的间隙符号被布置在类型B PUSCH重复中具有少量符号的标称重复中的图。
图40示出了图示根据本公开的实施例的间隙符号的布置使得孤立符号不出现在类型B PUSCH重复中的图。
图41示出了图示根据本公开的实施例的在类型B PUSCH重复中的标称重复之后添加间隙符号的图;以及
图42示出了图示根据本公开的实施例的考虑类型B PUSCH重复中的无效UL符号和孤立符号的间隙符号的图。
具体实施方式
说明书中使用的术语通过考虑本公开中的功能尽可能采纳当前广泛地使用的通用术语,但是可以根据本领域的技术人员的意图、习惯和新技术的出现来改变这些术语。另外,在特定情况下,存在由申请人任意地选择的术语,并且在这种情况下,其含义将在本公开的对应描述部分中描述。因此,意图是揭示说明书中使用的术语不应该仅基于该术语的名称来分析,而是应该基于整个说明书中术语和内容的实质含义来分析。
在整个说明书和随后的权利要求书中,当描述了一个元件“连接”到另一元件时,该元件可以“直接连接”到另一元件或通过第三元件“电连接”到另一元件。另外,除非明确地相反描述,否则词语“包括”将被理解成暗示包括所述元件,而不暗示排除任何其它元件。此外,在一些示例性实施例中,诸如基于特定阈值的“大于或等于”或“小于或等于”的限制分别可以用“大于”或“小于”适当地替换。
可以在各种无线接入系统中使用以下技术:诸如码分多址(CDMA)、频分多址(FDMA)、时分多址(TDMA)、正交频分多址(OFDMA)、单载波-FDMA(SC-FDMA)等。CDMA可以由诸如通用陆地无线电接入(UTRA)或CDMA2000的无线技术来实现。TDMA可以由诸如全球移动通信系统(GSM)/通用分组无线电服务(GPRS)/增强型数据速率GSM演进(EDGE)的无线技术来实现。OFDMA可以由诸如IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802-20、演进型UTRA(E-UTRA)等的无线技术来实现。UTRA是通用移动电信系统(UMTS)的一部分。第三代合作伙伴计划(3GPP)长期演进(LTE)是使用演进型UMTS陆地无线电接入(E-UTRA)的演进型UMTS(E-UMTS)的一部分,并且LTE高级(A)是3GPP LTE的演进版本。3GPP新无线电(NR)是与LTE/LTE-A分开设计的系统,并且是用于支持作为IMT-2020的要求的增强型移动宽带(eMBB)、超可靠低延迟通信(URLLC)和大规模机器类型通信(mMTC)服务的系统。为了清楚的描述,主要描述了3GPP NR,但是本公开的技术思想不限于此。
除非本文另外指定,否则基站可以包括3GPP NR中定义的下一代节点B(gNB)。此外,除非另外指定,否则终端可以包括用户设备(UE)。
图1图示无线通信系统中使用的无线帧结构的示例。参考图1,3GPP NR系统中使用的无线帧(或无线电帧)可以具有10ms(ΔfmaxNf/100)*Tc)的长度。此外,无线帧包括大小相等的10个子帧(SF)。这里,Δfmax=480*103Hz,Nf=4096,Tc=1/(Δfref*Nf,ref),Δfref=15*103Hz,并且Nf,ref=2048。可以将从0至9的编号分别分配给一个无线帧内的10个子帧。每个子帧的长度为1ms并且可以根据子载波间隔包括一个或多个时隙。更具体地,在3GPP NR系统中,可以使用的子载波间隔是15*2μkHz,并且μ能够具有μ=0、1、2、3、4的值作为子载波间隔配置。也就是说,可以将15kHz、30kHz、60kHz、120kHz和240kHz用于子载波间隔。长度为1ms的一个子帧可以包括2μ个时隙。在这种情况下,每个时隙的长度为2ms。可以将从0至2μ-1的编号分别分配给一个子帧内的2μ个时隙。此外,可以将从0至10*2μ-1的编号分别分配给一个无线帧内的时隙。可以通过无线帧编号(也被称为无线帧索引)、子帧编号(也被称为子帧索引)和时隙编号(或时隙索引)中的至少一个来区分时间资源。
图2图示无线通信系统中的下行链路(DL)/上行链路(UL)时隙结构的示例。特别地,图2示出3GPP NR系统的资源网格的结构。每天线端口有一个资源网格。参考图2,时隙在时域中包括多个正交频分复用(OFDM)符号并且在频域中包括多个资源块(RB)。一个OFDM符号也是指一个符号区间。除非另外指定,否则可以将OFDM符号简称为符号。一个RB包括频域中的12个连续子载波。参考图2,从每个时隙发送的信号可以由包括Nsize,μ grid,x*NRB sc个子载波和Nslot symb个OFDM符号的资源网格来表示。这里,当信号是DL信号时x=DL,而当信号是UL信号时x=UL。Nsize,μ grid,x表示根据子载波间隔成分μ的资源块(RB)的数目(x是DL或UL),并且Nslot symb表示时隙中的OFDM符号的数目。NRB sc是构成一个RB的子载波的数目并且NRB sc=12。可以根据多址方案将OFDM符号称为循环移位OFDM(CP-OFDM)符号或离散傅立叶变换扩展OFDM(DFT-s-OFDM)符号。
一个时隙中包括的OFDM符号的数目可以根据循环前缀(CP)的长度而变化。例如,在正常CP的情况下,一个时隙包括14个OFDM符号,但是在扩展CP的情况下,一个时隙可以包括12个OFDM符号。在特定实施例中,只能在60kHz子载波间隔下使用扩展CP。在图2中,为了描述的方便,作为示例一个时隙被配置有14个OFDM符号,但是可以以类似的方式将本公开的实施例应用于具有不同数目的OFDM符号的时隙。参考图2,每个OFDM符号在频域中包括Nsize,μ grid,x*NRB sc个子载波。可以将子载波的类型划分成用于数据传输的数据子载波、用于参考信号的传输的参考信号子载波和保护频带。载波频率也被称为中心频率(fc)。
一个RB可以由频域中的NRB sc(例如,12)个连续子载波定义。为了参考,可以将配置有一个OFDM符号和一个子载波的资源称为资源元素(RE)或音调。因此,一个RB能够被配置有Nslot symb*NRB sc个资源元素。资源网格中的每个资源元素能够由一个时隙中的一对索引(k,l)唯一地定义。k可以是在频域中从0至Nsize,μ grid,x*NRB sc–1被指配的索引,并且l可以是在时域中从0至Nslot symb–1被指配的索引。
为让UE从基站接收信号或向基站发送信号,UE的时间/频率可以与基站的时间/频率同步。这是因为当基站和UE同步时,UE能够确定在正确的时间对DL信号进行解调并且发送UL信号所必需的时间和频率参数。
时分双工(TDD)或不成对频谱中使用的无线电帧的每个符号可以被配置有DL符号、UL符号和灵活符号中的至少一个。在频分双工(FDD)或成对频谱中用作DL载波的无线电帧可以被配置有DL符号或灵活符号,而用作UL载波的无线电帧可以被配置有UL符号或灵活符号。在DL符号中,DL传输是可能的,但是UL传输是不可能的。在UL符号中,UL传输是可能的,但是DL传输是不可能的。可以根据信号将灵活符号确定为被用作DL或UL。
关于每个符号的类型的信息,即表示DL符号、UL符号和灵活符号中的任何一个的信息,可以用小区特定或公共的无线电资源控制(RRC)信号配置。此外,关于每个符号的类型的信息可以附加地用UE特定或专用RRC信号配置。基站通过使用小区特定RRC信号来通知i)小区特定的时隙配置的周期、ii)从小区特定的时隙配置的周期的开头起仅具有DL符号的时隙的数目、iii)从紧接在仅具有DL符号的时隙之后的时隙的第一符号起的DL符号的数目、iv)从小区特定的时隙配置的周期的结束起仅具有UL符号的时隙的数目、以及v)从紧接在仅具有UL符号的时隙之前的时隙的最后符号起的UL符号的数目。这里,未配置有UL符号和DL符号中的任何一个的符号是灵活符号。
当关于符号类型的信息用UE特定的RRC信号配置时,基站可以以小区特定的RRC信号用信号通知灵活符号是DL符号还是UL符号。在这种情况下,UE特定的RRC信号不能将用小区特定的RRC信号配置的DL符号或UL符号改变成另一符号类型。UE特定的RRC信号可以用信号通知每个时隙的对应时隙的Nslot symb个符号当中的DL符号的数目以及对应时隙的Nslot symb个符号当中的UL符号的数目。在这种情况下,时隙的DL符号可以连续地被配置有时隙的第一符号至第i个符号。此外,时隙的UL符号可以连续地被配置有时隙的第j个符号至最后一个符号(其中i<j)。在时隙中,未配置有UL符号和DL符号中的任何一个的符号是灵活符号。
可以将用以上RRC信号配置的符号的类型称为半静态DL/UL配置。在先前用RRC信号配置的半静态DL/UL配置中,灵活符号可以通过在物理DL控制信道(PDCCH)上发送的动态时隙格式信息(SFI)被指示为DL符号、UL符号指示,或者灵活符号。在这种情况下,不会将用RRC信号配置的DL符号或UL符号改变为另一符号类型。表1举例说明基站能够指示给UE的动态SFI。
[表1]
Figure BDA0004107269170000141
在表1中,D表示DL符号,U表示UL符号,并且X表示灵活符号。如表1中所示,可以允许一个时隙中最多两次DL/UL切换。
图3是用于说明3GPP系统(例如,NR)中使用的物理信道和使用该物理信道的典型信号传输方法的图。如果UE的电源被打开或者UE驻留在新小区中,则UE执行初始小区搜索(S101)。具体地,UE可以在初始小区搜索中与BS同步。为此,UE可以从基站接收主同步信号(PSS)和辅同步信号(SSS)以与基站同步,并且获得诸如小区ID的信息。此后,UE能够从基站接收物理广播信道并且获得小区中的广播信息。
在初始小区搜索完成后,UE根据物理下行链路控制信道(PDCCH)和PDCCH中的信息来接收物理下行链路共享信道(PDSCH),使得UE能够获得比通过初始小区搜索获得的系统信息更具体的系统信息(S102)。
当UE最初接入基站或者不具有用于信号传输的无线电资源(即,在RRC_IDLE模式的UE)时,UE可以对基站执行随机接入过程(操作S103至S106)。首先,UE能够通过物理随机接入信道(PRACH)发送前导(S103)并且通过PDCCH和所对应的PDSCH从基站接收针对前导的响应消息(S104)。当UE接收到有效的随机接入响应消息时,UE通过由通过PDCCH从基站发送的UL许可所指示的物理上行链路共享信道(PUSCH)来向基站发送包括UE的标识符等的数据(S105)。接下来,UE等待PDCCH的接收作为用于冲突解决的基站的指示。如果UE通过UE的标识符成功地接收到PDCCH(S106),则终止随机接入过程。
在上述过程之后,UE接收PDCCH/PDSCH(S107)并且发送物理上行链路共享信道(PUSCH)/物理上行链路控制信道(PUCCH)(S108)作为一般UL/DL信号传输过程。特别地,UE可以通过PDCCH来接收下行链路控制信息(DCI)。DCI可以包括针对UE的诸如资源分配信息的控制信息。另外,DCI的格式可以根据预定用途而变化。UE通过UL向基站发送的上行控制信息(UCI)包括DL/UL ACK/NACK信号、信道质量指示符(CQI)、预编码矩阵索引(PMI)、秩指示符(RI)等。这里,可以将CQI、PMI和RI包括在信道状态信息(CSI)中。在3GPP NR系统中,UE可以通过PUSCH和/或PUCCH来发送诸如上述HARQ-ACK和CSI的控制信息。
图4a和图4b图示用于3GPP NR系统中的初始小区接入的SS/PBCH块。当电源接通或者想要接入新小区时,UE可以获得与该小区的时间和频率同步并且执行初始小区搜索过程。UE可以在小区搜索过程期间检测小区的物理小区标识Ncell ID。为此,UE可以从基站接收同步信号,例如,主同步信号(PSS)和辅同步信号(SSS),并且与基站同步。在这种情况下,UE能够获得诸如小区标识(ID)的信息。
参考图4a和图4b,将更详细地描述同步信号(SS)。能够将同步信号分类为PSS和SSS。PSS可以用于获得时域同步和/或频域同步,诸如OFDM符号同步和时隙同步。SSS能够用于获得帧同步和小区组ID。参考图4a和表2,SS/PBCH块能够在频率轴上被配置有连续的20个RB(=240个子载波),并且能够在时间轴上被配置有连续的4个OFDM符号。在这种情况下,在SS/PBCH块中,通过第56个至第182个子载波,在第一OFDM符号中发送PSS并且在第三OFDM符号中发送SSS。这里,SS/PBCH块的最低子载波索引从0起编号。在发送PSS的第一OFDM符号中,基站不通过剩余子载波,即第0个至第55个子载波和第183个至第239个子载波来发送信号。此外,在发送SSS的第三OFDM符号中,基站不通过第48个至第55个子载波和第183个至第191个子载波来发送信号。基站通过SS/PBCH块中除了以上信号以外的剩余RE来发送物理广播信道(PBCH)。
[表2]
Figure BDA0004107269170000171
SS识别通过三个PSS和SSS的组合将总共1008个唯一物理层小区ID分组成336个物理层小区标识符组,每个组包括三个唯一标识符,具体地,使得每个物理层小区ID将仅仅是一个物理层小区标识符组的一部分。因此,物理层小区ID Ncell ID=3N(1) ID+N(2) ID能够由指示物理层小区标识符组的范围从0至335的索引N(1) ID和指示物理层小区标识符组中的物理层标识符的范围从0至2的索引N(2) ID唯一地定义。UE可以检测PSS并且识别三个唯一物理层标识符中的一个。此外,UE能够检测SSS并且识别与物理层标识符相关联的336个物理层小区ID中的一个。在这种情况下,PSS的序列dPss(n)如下。
dPSS(n)=1-2x(m)
m=(n+43N(2)ID)mod 127
0≤n<127
这里,x(i+7)=(x(i+4)+x(i))mod 2并且被给出为
[x(6) x(5) x(4) x(3) x(2) x(1) x(0)]=[1 1 1 0 1 1 0]。
此外,SSS的序列dSSS(n)如下。
dSSS(n)=[1-2x0((n+m0)mod 127][1-2xi((n+m1)mod 127]
m0=15 floor(N(1) ID/112)+5N(2) ID
m1=N(1) ID mod 112
0≤n<127
这里,
Figure BDA0004107269170000181
并且被给出为
[x0(6) x0(5) x0(4) x0(3) x0(2) x0(1) x0(0)]=[0 0 0 0 0 0 1]
[x1(6) x1(5) x1(4) x1(3) x1(2) x1(1) x1(0)]=[0 0 0 0 0 0 1]。
可以将具有10ms长度的无线电帧划分成具有5ms长度的两个半帧。参考图4b,将描述在每个半帧中发送SS/PBCH块的时隙。发送SS/PBCH块的时隙可以是情况A、B、C、D和E中的任何一种。在情况A中,子载波间隔是15kHz并且SS/PBCH块的起始时间点是第({2,8}+14*n)个符号。在这种情况下,在3GHz或更低的载波频率下,n=0或1。此外,在高于3GHz且低于6GHz的载波频率下,可以为n=0、1、2、3。在情况B中,子载波间隔是30kHz并且SS/PBCH块的起始时间点是{4,8,16,20}+28*n。在这种情况下,在3GHz或更低的载波频率下,n=0。此外,在高于3GHz且低于6GHz的载波频率下可以为n=0、1。在情况C中,子载波间隔是30kHz并且SS/PBCH块的起始时间点是第({2,8}+14*n)个符号。在这种情况下,在3GHz或更低的载波频率下,n=0或1。此外,在高于3GHz且低于6GHz的载波频率下,可以为n=0、1、2、3。在情况D中,子载波间隔是120kHz并且SS/PBCH块的起始时间点是第({4,8,16,20}+28*n)个符号。在这种情况下,在6GHz或更高的载波频率下,n=0、1、2、3、5、6、7、8、10、11、12、13、15、16、17、18。在情况E中,子载波间隔是240kHz并且SS/PBCH块的起始时间点是第({8,12,16,20,32,36,40,44}+56*n)个符号。在这种情况下,在6GHz或更高的载波频率下,n=0、1、2、3、5、6、7、8。
图5a和图5b图示在3GPP NR系统中发送控制信息和控制信道的过程。参考图5a,基站可以将用无线电网络临时标识符(RNTI)掩码的(例如,异或运算)的循环冗余校验(CRC)添加到控制信息(例如,下行链路控制信息(DCI))(S202)。基站可以用根据每个控制信息的目的/目标确定的RNTI值对CRC进行加扰。由一个或多个UE使用的公共RNTI能够包括系统信息RNTI(SI-RNTI)、寻呼RNTI(P-RNTI)、随机接入RNTI(RA-RNTI)和发送功率控制RNTI(TPC-RNTI)中的至少一个。此外,UE特定的RNTI可以包括小区临时RNTI(C-RNTI)和CS-RNTI中的至少一个。此后,基站可以在执行信道编码(例如,极性编译)(S204)之后根据用于PDCCH传输的资源量来执行速率匹配(S206)。此后,基站可以基于以控制信道元素(CCE)为基础的PDCCH结构来复用DCI(S208)。
此外,基站可以对经复用的DCI应用诸如加扰、调制(例如,QPSK)、交织等的附加过程(S210),并且然后将DCI映射到要被发送的资源。CCE是用于PDCCH的基本资源单元,并且一个CCE可以包括多个(例如,六个)资源元素组(REG)。一个REG可以被配置有多个(例如12个)RE。可以将用于一个PDCCH的CCE的数目定义为聚合等级。在3GPP NR系统中,可以使用1、2、4、8或16的聚合等级。图5b是与CCE聚合等级和PDCCH的复用有关的图,并且图示用于一个PDCCH的CCE聚合等级的类型以及据此在控制区域中发送的CCE。
图6图示在3GPP NR系统中的其中可以发送物理下行链路控制信道(PUCCH)的控制资源集(CORESET)。CORESET是时间-频率资源,在该时间-频率资源中,PDCCH(即用于UE的控制信号)被发送。此外,可以将要稍后描述的搜索空间映射到一个CORESET。因此,UE可以监视被指定为CORESET的时间-频率域而不是监视用于PDCCH接收的所有频带,并且对映射到CORESET的PDCCH进行解码。基站可以向UE针对每个小区配置一个或多个CORESET。CORESET可以在时间轴上被配置有最多三个连续的符号。此外,可以在频率轴上以六个连续的PRB为单位配置CORESET。在图5的实施例中,CORESET#1被配置有连续的PRB,而CORESET#2和CORESET#3被配置有不连续的PRB。CORESET能够位于时隙中的任何符号中。例如,在图5的实施例中,CORESET#1开始于时隙的第一符号,CORESET#2开始于时隙的第五符号,并且CORESET#9开始于时隙的第九符号。
图7图示用于在3GPP NR系统中设置PDCCH搜索空间的方法。为了将PDCCH发送到UE,每个CORESET可以具有至少一个搜索空间。在本公开的实施例中,搜索空间是能够用来发送UE的PDCCH的所有时间-频率资源(在下文中为PDCCH候选)的集合。搜索空间可以包括要求3GPP NR的UE共同搜索的公共搜索空间和要求特定UE搜索的UE特定的搜索空间或UE特定的搜索空间。在公共搜索空间中,UE可以监视被设置为使得属于同一基站的小区中的所有UE共同搜索的PDCCH。此外,可以为每个UE设置UE特定的搜索空间,使得UE在根据UE而不同的搜索空间位置处监视分配给每个UE的PDCCH。在UE特定的搜索空间的情况下,由于可以分配PDCCH的有限控制区域,UE之间的搜索空间可以部分地重叠并被分配。监视PDCCH包括在搜索空间中对PDCCH候选进行盲解码。当盲解码成功时,可以表达为(成功地)检测/接收到PDCCH,而当盲解码失败时,可以表达为未检测到/未接收到或者未成功地检测/接收到PDCCH。
为了说明的方便,用一个或多个UE先前已知的组公共(GC)RNTI被加扰以便向一个或多个UE发送DL控制信息的PDCCH被称为组公共(GC)PDCCH或公共PDCCH。此外,用特定UE已经知道的特定终端的RNTI被加扰以便向特定UE发送UL调度信息或DL调度信息的PDCCH被称为特定UE的PDCCH。可以将公共PDCCH包括在公共搜索空间中,并且可以将UE特定的PDCCH包括在公共搜索空间或UE特定的PDCCH中。
基站可以通过PDCCH向每个UE或UE组用信号通知关于与作为传输信道的寻呼信道(PCH)和下行链路共享信道(DL-SCH)的资源分配有关的信息(即,DL许可)或与上行链路共享信道(UL-SCH)和混合自动重传请求(HARQ)的资源分配有关的信息(即,UL许可)。基站可以通过PDSCH来发送PCH传输块和DL-SCH传输块。基站可以通过PDSCH来发送排除特定控制信息或特定服务数据的数据。此外,UE可以通过PDSCH来接收排除特定控制信息或特定服务数据的数据。
基站可以在PDCCH中包括关于向哪个UE(一个或多个UE)发送PDSCH数据并且该PDSCH数据将如何由所对应的UE接收并解码的信息,并且发送PDCCH。例如,假定在特定的PDCCH上发送的DCI用RNTI“A”被CRC掩码,并且DCI指示PDSCH被分配给无线电资源“B”(例如,频率位置)并且指示传输格式信息“C”(例如,传输块大小、调制方案、编码信息等)。UE使用UE具有的RNTI信息来监视PDCCH。在这种情况下,如果存在使用“A”RNTI对PDCCH执行盲解码的UE,则该UE接收PDCCH,并且通过所接收到的PDCCH的信息来接收由“B”和“C”指示的PDSCH。
表3示出无线通信系统中使用的物理上行链路控制信道(PUCCH)的实施例。
[表3]
PUCCH格式 0FDM符号的长度 比特数
0 1-2 ≤2
1 4-14 ≤2
2 1-2 >2
3 4-14 >2
4 4-14 >2
PUCCH可以用于发送以下UL控制信息(UCI)。
调度请求(SR):用于请求UL UL-SCH资源的信息。
HARQ-ACK:对PDCCH的响应(指示DL SPS释放)和/或对PDSCH上的DL传输块(TB)的响应。HARQ-ACK指示是否接收到在PDCCH或PDSCH上发送的信息。HARQ-ACK响应包括肯定ACK(简称为ACK)、否定ACK(在下文中为NACK)、不连续传输(DTX)或NACK/DTX。这里,术语HARQ-ACK与HARQ-ACK/NACK和ACK/NACK混合使用。通常,ACK可以由比特值1表示,而NACK可以由比特值0表示。
信道状态信息(CSI):关于DL信道的反馈信息。UE基于由基站发送的CSI-参考信号(RS)来生成它。多输入多输出(MIMO)相关的反馈信息包括秩指示符(RI)和预编码矩阵指示符(PMI)。能够根据由CSI指示的信息将CSI划分成CSI部分1和CSI部分2。
在3GPP NR系统中,可以使用五种PUCCH格式来支持各种服务场景、各种信道环境和帧结构。
PUCCH格式0是能够递送1比特或2比特HARQ-ACK信息或SR的格式。能够通过时间轴上的一个或两个OFDM符号和频率轴上的一个PRB来发送PUCCH格式0。当在两个OFDM符号中发送PUCCH格式0时,可以通过不同的RB来发送两个符号上的相同序列。通过这个,UE可以获得频率分集增益。更详细地,UE可以根据Mbit比特UCI(Mbit=1或2)来确定循环移位(CS)值mcs。另外,可以通过将基于预定CS值mcs的循环移位序列映射到一个OFDM符号和一个RB的12个RE来发送长度为12的基本序列。当可用于UE的循环移位的数目是12并且Mbit=1时,1比特UCI 0和1分别可以被映射到在循环移位值上差为6的两个循环移位序列。另外,当Mbit=2时,2比特UCI 00、01、11和10分别可以被映射到在循环移位值上差为3的四个循环移位序列。
PUCCH格式1可以递送1比特或2比特HARQ-ACK信息或SR。可以通过时间轴上的连续的OFDM符号和频率轴上的一个PRB来发送PUCCH格式1。这里,由PUCCH格式1占据的OFDM符号的数目可以是4至14中的一个。更具体地,可以对Mbit=1的UCI进行BPSK调制。UE可以利用正交相移键控(QPSK)对Mbit=2的UCI进行调制。信号是通过将已调制的复数值符号d(0)乘以长度12的序列来获得的。在这种情况下,序列可以是用于PUCCH格式0的基础序列。UE通过时间轴正交覆盖码(OCC)扩展PUCCH格式1被分配到的偶数编号的OFDM符号以发送所获得的信号。PUCCH格式1根据要使用的OCC的长度来确定在一个RB中复用的不同的UE的最大数目。解调参考信号(DMRS)可以用OCC被扩展并且被映射到PUCCH格式1的奇数编号的OFDM符号。
PUCCH格式2可以递送超过2个比特的UCI。可以通过时间轴上的一个或两个OFDM符号和频率轴上的一个或多个RB来发送PUCCH格式2。当在两个OFDM符号中发送PUCCH格式2时,通过两个OFDM符号在不同的RB中发送的序列可以彼此相同。通过这个,UE可以获得频率分集增益。更具体地,对Mbit个比特UCI(Mbit>2)进行比特级加扰、QPSK调制,并且将其映射到一个或两个OFDM符号的RB。这里,RB的数目可以是1至16中的一个。
PUCCH格式3或PUCCH格式4可以递送超过2个比特的UCI。可以通过时间轴上的连续的OFDM符号和频率轴上的一个PRB来发送PUCCH格式3或PUCCH格式4。由PUCCH格式3或PUCCH格式4占据的OFDM符号的数目可以是4至14中的一个。具体地,UE利用π/2-二进制相移键控(BPSK)或QPSK对Mbit个比特UCI(Mbit>2)进行调制以生成复数值符号d(0)至d(Msymb-1)。这里,当使用π/2-BPSK时,Msymb=Mbit,而当使用QPSK时,Msymb=Mbit/2。UE可以不对PUCCH格式3应用块单位扩展。然而,UE可以使用长度为12的PreDFT-OCC来对一个RB(即,12个子载波)应用块单位扩展,使得PUCCH格式4可以具有两种或四种复用能力。UE对扩展信号执行发送预编码(或DFT预编码)并且将其映射到每个RE以发送扩展信号。
在这种情况下,可以根据由UE发送的UCI的长度和最大编码速率来确定由PUCCH格式2、PUCCH格式3或PUCCH格式4占据的RB的数目。当UE使用PUCCH格式2时,UE可以通过PUCCH一起发送HARQ-ACK信息和CSI信息。当UE可以发送的RB的数目大于PUCCH格式2、PUCCH格式3或PUCCH格式4可以使用的RB的最大数目时,UE可以根据UCI信息的优先级在不发送一些UCI信息的情况下,仅发送剩余的UCI信息。
可以通过RRC信号来配置PUCCH格式1、PUCCH格式3或PUCCH格式4以指示时隙中的跳频。当配置了跳频时,可以用RRC信号配置要跳频的RB的索引。当通过时间轴的N个OFDM符号来发送PUCCH格式1、PUCCH格式3或PUCCH格式4时,第一跳可以具有floor(N/2)个OFDM符号并且第二跳可以具有ceiling(N/2)个OFDM符号。
PUCCH格式1、PUCCH格式3或PUCCH格式4可以被配置成在多个时隙中重复地发送。在这种情况下,可以通过RRC信号来配置重复地发送PUCCH的时隙的数目K。重复地发送的PUCCH必须开始于每个时隙中恒定位置的OFDM符号,并且具有恒定长度。当通过RRC信号将其中UE应该发送PUCCH的时隙的OFDM符号当中的一个OFDM符号指示为DL符号时,UE可以不在对应的时隙中发送PUCCH并且将PUCCH的传输延迟到下一个时隙以发送PUCCH。
同时,在3GPP NR系统中,UE可以使用等于或小于载波(或小区)的带宽的带宽来执行传输/接收。为此,UE可以接收被配置有一些载波带宽的连续带宽的带宽部分(BWP)。根据TDD操作或在非配对频谱中操作的UE可以在一个载波(或小区)中接收最多四个DL/UL BWP对。另外,UE可以激活一个DL/UL BWP对。根据FDD操作或在配对频谱中操作的UE能够在DL载波(或小区)上接收最多四个DL BWP,而在UL载波(或小区)上接收最多四个UL BWP。UE可以为每个载波(或小区)激活一个DL BWP和一个UL BWP。UE可以不在除已激活的BWP以外的时间-频率资源中执行接收或传输。可以将已激活的BWP称为活动BWP。
基站可以通过下行链路控制信息(DCI)来指示由UE配置的BWP当中激活的BWP。通过DCI指示的BWP被激活,而其他配置的BWP被停用。以TDD操作的载波(或小区)中,基站可以在用于调度PDSCH或PUSCH的DCI中包括指示要激活的BWP的带宽部分指示符(BPI)以改变UE的DL/UL BWP对。UE可以接收用于调度PDSCH或PUSCH的DCI并且可以识别基于BPI而激活的DL/UL BWP对。对于以FDD操作的DL载波(或小区),基站可以在用于调度PDSCH的DCI中包括指示要激活的BWP的BPI以改变UE的DL BWP。对于以FDD操作的UL载波(或小区),基站可以在用于调度PUSCH的DCI中包括指示要激活的BWP的BPI以便改变UE的UL BWP。
图8是图示载波聚合的概念图。
载波聚合是这样的方法,其中UE使用被配置有UL资源(或分量载波)和/或DL资源(或分量载波)的多个频率块或(在逻辑意义上的)小区作为一个大逻辑频带以便无线通信系统使用更宽的频带。一个分量载波也可以被称为称作主小区(PCell)或辅小区(SCell)或主SCell(PScell)的术语。然而,在下文中,为了描述的方便,使用术语“分量载波”。
参考图8,作为3GPP NR系统的示例,整个系统频带可以包括最多16个分量载波,并且每个分量载波可以具有最多400MHz的带宽。分量载波可以包括一个或多个物理上连续的子载波。尽管在图8中示出了每个分量载波具有相同的带宽,但是这仅仅是示例,并且每个分量载波可以具有不同的带宽。另外,尽管每个分量载波被示出为在频率轴上彼此相邻,但是附图是在逻辑概念上被示出,并且每个分量载波可以物理上彼此相邻,或者可以间隔开。
不同的中心频率可以被用于每个分量载波。另外,可以在物理上相邻的分量载波中使用一个公共中心频率。假定在图8的实施例中所有分量载波是物理上相邻的,则中心频率A可以被用在所有分量载波中。另外,假定各自的分量载波彼此物理上不相邻,则中心频率A和中心频率B能够被用在每个分量载波中。
当通过载波聚合来扩展总系统频带时,能够以分量载波为单位来定义用于与每个UE通信的频带。UE A可以使用作为总系统频带的100MHz,并且使用所有五个分量载波来执行通信。UE B1~B5能够仅使用20MHz带宽并且使用一个分量载波来执行通信。UE C1和C2分别可以使用40MHz带宽并且使用两个分量载波来执行通信。这两个分量载波可以在逻辑上/物理上相邻或不相邻。UE C1表示使用两个不相邻分量载波的情况,而UE C2表示使用两个相邻分量载波的情况。
图9是用于说明单个载波通信和多载波通信的图。特别地,图9(a)示出单载波子帧结构并且图9(b)示出多载波子帧结构。
参考图9(a),在FDD模式下,一般的无线通信系统可以通过一个DL频带和与其相对应的一个UL频带来执行数据传输或接收。在另一特定实施例中,在TDD模式下,无线通信系统可以在时域中将无线电帧划分成UL时间单元和DL时间单元,并且通过UL/DL时间单元来执行数据传输或接收。参考图9(b),能够将三个20MHz分量载波(CC)聚合到UL和DL中的每一个中,使得能够支持60MHz的带宽。每个CC可以在频域中彼此相邻或不相邻。图9(b)示出ULCC的带宽和DL CC的带宽相同且对称的情况,但是能够独立地确定每个CC的带宽。此外,具有不同数目的UL CC和DL CC的不对称载波聚合是可能的。可以将通过RRC分配/配置给特定UE的DL/UL CC称作特定UE的服务DL/UL CC。
基站可以通过激活UE的服务CC中的一些或全部或者停用一些CC来执行与UE的通信。基站能够改变要激活/停用的CC,并且改变要激活/停用的CC的数目。如果基站将对于UE可用的CC分配为小区特定的或UE特定的,则除非针对UE的CC分配被完全重新配置或者UE被切换,否则所分配的CC中的至少一个不会被停用。未由UE停用的一个CC被称作为主CC(PCC)或主小区(PCell),而基站能够自由地激活/停用的CC被称作辅CC(SCC)或辅小区(SCell)。
同时,3GPP NR使用小区的概念来管理无线电资源。小区被定义为DL资源和UL资源的组合,即,DL CC和UL CC的组合。小区可以被单独配置有DL资源,或者可以被配置有DL资源和UL资源的组合。当支持载波聚合时,DL资源(或DL CC)的载波频率与UL资源(或UL CC)的载波频率之间的链接可以由系统信息来指示。载波频率是指每个小区或CC的中心频率。与PCC相对应的小区被称为PCell,而与SCC相对应的小区被称为SCell。DL中与PCell相对应的载波是DL PCC,而UL中与PCell相对应的载波是UL PCC。类似地,DL中与SCell相对应的载波是DL SCC,而UL中与SCell相对应的载波是UL SCC。根据UE能力,服务小区可以被配置有一个PCell和零个或更多个SCell。在处于RRC_CONNECTED状态但未配置用于载波聚合或者不支持载波聚合的UE的情况下,只有一个服务小区仅配置有PCell。
如上所述,载波聚合中使用的术语“小区”与指通过一个基站或一个天线组来提供通信服务的某个地理区域的术语“小区”区分开。也就是说,还可以将一个分量载波称为调度小区、被调度的小区、主小区(PCell)、辅小区(SCell)或主SCell(PScell)。然而,为了区分表示某个地理区域的小区和载波聚合的小区,在本公开中,将载波聚合的小区称为CC,并且将地理区域的小区称为小区。
图10是示出其中应用跨载波调度技术的示例的图。当设置跨载波调度时,通过第一CC发送的控制信道可以使用载波指示符字段(CIF)来调度通过第一CC或第二CC发送的数据信道。CIF被包括在DCI中。换句话说,设置调度小区,并且在该调度小区的PDCCH区域中发送的DL许可/UL许可调度被调度的小区的PDSCH/PUSCH。也就是说,在调度小区的PDCCH区域中存在用于多个分量载波的搜索区域。PCell基本上可以是调度小区,并且特定SCell可以由上层指定为调度小区。
在图10的实施例中,假定了三个DL CC被合并。这里,假定了DL分量载波#0是DLPCC(或PCell),并且DL分量载波#1和DL分量载波#2是DL SCC(或SCell)。此外,假定了将DLPCC设置为PDCCH监视CC。当未通过UE特定的(或UE组特定或小区特定)更高层信令配置跨载波调度时,CIF被禁用,并且每个DL CC能够根据NR PDCCH规则在没有CIF的情况下仅发送用于调度其PDSCH的PDCCH(非跨载波调度、自载波调度)。同时,如果通过UE特定的(或UE组特定或小区特定)更高层信令配置了跨载波调度,则CIF被启用,并且特定CC(例如,DL PCC)可以使用CIF来不仅发送用于调度DL CC A的PDSCH的PDCCH而且还发送用于调度另一CC的PDSCH的PDCCH(跨载波调度)。另一方面,在另一DL CC中不发送PDCCH。因此,UE监视不包括CIF的PDCCH以根据是否为UE配置了跨载波调度来接收自载波调度的PDSCH,或者监视包括CIF的PDCCH以接收跨载波调度的PDSCH。
另一方面,图9和图10图示3GPP LTE-A系统的子帧结构,并且可以将相同或类似的配置应用于3GPP NR系统。然而,在3GPP NR系统中,图9和图10的子帧可以用时隙替换。
图11是示出根据本公开的实施例的UE和基站的配置的框图。在本公开的实施例中,UE可以利用保证了便携性和移动性的各种类型的无线通信设备或计算设备来实现。可以将UE称为用户设备(UE)、站(STA)、移动订户(MS)等。此外,在本公开的实施例中,基站控制并管理与服务区域相对应的小区(例如,宏小区、毫微微小区、微微小区等),并且执行信号传输、信道指定、信道监视、自我诊断、中继等的功能。可以将基站称为下一代节点B(gNB)或接入点(AP)。
如附图中所示,根据本公开的实施例的UE 100可以包括处理器110、通信模块120、存储器130、用户接口140和显示单元150。
首先,处理器110可以在UE 100内执行各种指令或过程并处理数据。此外,处理器110可以控制包括UE 100的每个单元的整个操作,并且可以控制数据在各单元之间的传输/接收。这里,处理器110可以被配置成执行根据本公开中描述的实施例的操作。例如,处理器110可以接收时隙配置信息,基于时隙配置信息确定时隙配置,并且根据所确定的时隙配置来执行通信。
接下来,通信模块120可以是使用无线通信网络来执行无线通信并且使用无线LAN来执行无线LAN接入的集成模块。为此,通信模块120可以以内部或外部形式包括多个网络接口卡(NIC),诸如蜂窝通信接口卡121和122以及未授权频带通信接口卡123。在附图中,通信模块120被示为整体集成模块,但是与附图不同,能够根据电路配置或用法独立地布置每个网络接口卡。
蜂窝通信接口卡121可以通过使用移动通信网络与基站200、外部设备和服务器中的至少一个发送或接收无线电信号并且基于来自处理器110的指令在第一频带中提供蜂窝通信服务。根据实施例,蜂窝通信接口卡121可以包括使用小于6GHz的频带的至少一个NIC模块。蜂窝通信接口卡121的至少一个NIC模块可以在由所对应的NIC模块支持的6GHz以下频带中依照蜂窝通信标准或协议来独立地与基站200、外部设备和服务器中的至少一个执行蜂窝通信。
蜂窝通信接口卡122可以通过使用移动通信网络与基站200、外部设备和服务器中的至少一个发送或接收无线电信号并且基于来自处理器110的指令在第二频带中提供蜂窝通信服务。根据实施例,蜂窝通信接口卡122可以包括使用大于6GHz的频带的至少一个NIC模块。蜂窝通信接口卡122的至少一个NIC模块可以在由所对应的NIC模块支持的6GHz以上的频带中依照蜂窝通信标准或协议独立地与基站200、外部设备和服务器中的至少一个执行蜂窝通信。
未授权频带通信接口卡123通过使用作为未授权频带的第三频带与基站200、外部设备和服务器中的至少一个发送或接收无线电信号,并且基于来自处理器110的指令提供未授权频带通信服务。未授权频带通信接口卡123可以包括使用未授权频带的至少一个NIC模块。例如,未授权频带可以是2.4GHz或5GHz的频带。未授权频带通信接口卡123的至少一个NIC模块可以根据由所对应的NIC模块支持的频带的未授权频带通信标准或协议独立地或依赖地与基站200、外部设备和服务器中的至少一个执行无线通信。
存储器130存储UE 100中使用的控制程序及其的各种数据。这样的控制程序可以包括与基站200、外部设备和服务器当中的至少一个执行无线通信所需要的规定程序。
接下来,用户接口140包括UE 100中提供的各种输入/输出手段。换句话说,用户接口140可以使用各种输入手段来接收用户输入,并且处理器110可以基于所接收到的用户输入控制UE 100。此外,用户接口140可以使用各种输出手段来基于来自处理器110的指令执行输出。
接下来,显示单元150在显示屏幕上输出各种图像。显示单元150可以基于来自处理器110的控制指令输出各种显示对象,诸如由处理器110执行的内容或用户界面。
此外,根据本公开的实施例的基站200可以包括处理器210、通信模块220和存储器230。
首先,处理器210可以执行各种指令或程序,并且处理基站200的内部数据。此外,处理器210可以控制基站200中的各单元的整个操作,并且控制数据在各单元之间的传输和接收。这里,处理器210可以被配置成执行根据本公开中描述的实施例的操作。例如,处理器210可以用信号通知时隙配置并且根据经用信号通知的时隙配置来执行通信。
接下来,通信模块220可以是使用无线通信网络来执行无线通信并且使用无线LAN来执行无线LAN接入的集成模块。为此,通信模块120可以以内部或外部形式包括多个网络接口卡,诸如蜂窝通信接口卡221和222以及未授权频带通信接口卡223。在附图中,通信模块220被示出为整体集成模块,但是与附图不同,能够根据电路配置或用法独立地布置每个网络接口卡。
蜂窝通信接口卡221可以通过使用移动通信网络与UE 100、外部设备和服务器中的至少一个发送或接收无线电信号并且基于来自处理器210的指令在第一频带中提供蜂窝通信服务。根据实施例,蜂窝通信接口卡221可以包括使用小于6GHz的频带的至少一个NIC模块。蜂窝通信接口卡221的至少一个NIC模块可以在由所对应的NIC模块支持的小于6GHz的频带中依照蜂窝通信标准或协议独立地与UE100、外部设备和服务器中的至少一个执行蜂窝通信。
蜂窝通信接口卡222可以通过使用移动通信网络与UE 100、外部设备和服务器中的至少一个发送或接收无线电信号并且基于来自处理器210的指令在第二频带中提供蜂窝通信服务。根据实施例,蜂窝通信接口卡222可以包括使用6GHz或更高的频带的至少一个NIC模块。蜂窝通信接口卡222的至少一个NIC模块可以在由所对应的NIC模块支持的6GHz或更高的频带中依照蜂窝通信标准或协议独立地与基站100、外部设备和服务器中的至少一个执行蜂窝通信。
未授权频带通信接口卡223通过使用作为未授权频带的第三频带与基站100、外部设备和服务器中的至少一个发送或接收无线电信号,并且基于来自处理器210的指令提供未授权频带通信服务。未授权频带通信接口卡223可以包括使用未授权频带的至少一个NIC模块。例如,未授权频带可以是2.4GHz或5GHz的频带。未授权频带通信接口卡223的至少一个NIC模块可以依照由所对应的NIC模块支持的频带的未授权频带通信标准或协议独立地或依赖地与UE 100、外部设备和服务器中的至少一个执行无线通信。
图11是图示根据本公开的实施例的UE 100和基站200的框图,并且单独地示出的框是设备的逻辑上划分的元件。因此,可以根据设备的设计将设备的前述元件安装在单个芯片或多个芯片中。此外,可以在UE 100中选择性地提供UE 100的配置的一部分,例如,用户接口140、显示单元150等。此外,必要时可以在基站200中附加地提供用户接口140、显示单元150等。
I.RedCap UE的初始接入方法
图12图示了根据示例的初始接入方法。在下文中,Rel-15UE或Rel-16UE被称为传统UE,并且图12是由传统UE执行的一般初始接入过程。
参考图12,UE从基站接收SSB。可以定义SSB可发送的频域和时域。UE可以在该频域和时域内接收SSB。SSB包括PSS、SSS和PBCH。UE可以通过接收PSS和SSS来执行下行链路同步并识别物理小区ID。UE可以通过接收PBCH来接收PBCH中包括的主信息块(MIB)。
MIB包括小区的最基本信息以及类型0搜索空间和基本CORESET(即,CORESET0)的配置信息。UE可以基于类型0搜索空间和CORESET0的配置信息来监视和接收PDCCH。PDCCH可以递送DCI格式1_0,其中,CRC用SI-RNTI加扰。DCI格式1_0可以用于PDSCH的调度。PDSCH可以向UE递送包括UE接入小区所需的小区公共信息的SIB1。
UE可以从由PDSCH递送的SIB1接收小区公共信息并且接收PRACH的配置信息。UE可以根据PRACH的配置信息来发送PRACH。经由PRACH的传输和后续的随机接入过程,UE可以执行上行链路同步并接收UE特定的信息。
然而,与传统类型UE相比具有降低的能力(RedCap)的新类型UE(下文中称为RedCap UE)可能无法通过使用根据图12的初始小区接入过程来接入小区。这是因为以下原因。
1)RedCap UE能够执行接收的带宽可能是有限的。这是因为为了低产品价格RedCap UE可能仅支持小带宽。另一方面,在如图12所示的初始小区接入过程中,不考虑UE的带宽。例如,CORESET0的带宽(在图12中被示为CORESET0BW)可能大于RedCap UE的带宽。
2)RedCap UE可能要求更高的覆盖。根据传统类型UE的链路预算来确定根据图12的初始小区接入过程。因此,为了使RedCap UE成功进行初始小区接入,需要进一步改进根据图12的初始小区接入过程。例如,在CORESET0中接收的PDCCH应该能够满足足够的覆盖。
以下实施例公开了用于这种RedCap UE的改进的初始接入过程。
(1)第一实施例
作为本公开的第一实施例,RedCap UE可以经由SIB1接收用于RedCap UE的初始小区接入的控制信道信息。
图13是图示根据本公开的实施例的初始小区接入方法的图。
参考图13,RedCap UE可以接收小区的SS/PBCH(或SSB)。RedCap UE可以经由SS/PBCH,接收CORESET0的频域的信息(在图13中被示为CORESET0BW)或类型0搜索空间的时域的信息。RedCap UE可以在类型0搜索空间或CORESET0内接收用SI-RNTI加扰的PDCCH。RedCap UE可以通过PDCCH接收DCI格式1_0。DCI格式1_0可以包括用于递送SIB1的PDSCH(在图13中被示为用于SIB1的PDSCH)的调度信息。因此,RedCap UE可以通过PDSCH接收SIB1。
RedCap UE可以在所接收的SIB1中识别用于RedCap UE的初始小区接入的信息的存在或不存在。用于RedCap UE的初始小区接入的信息可以包括关于用于RedCap UE的初始小区接入的CORESET(下文中被称为CORESET-Red)或搜索空间(下文中被称为搜索空间-Red)的信息。
RedCap UE可以被配置有RedCap UE的CORESET(在图13中被示为CORESET-Red)的频率资源分配信息、长度、REG、REG捆绑或CCE配置信息。RedCap UE可以被配置有与CORESET0分开的与CORESET-Red相对应的搜索空间。为了配置搜索空间(搜索空间-Red),UE可以接收信息,诸如用于监视PDCCH的周期和偏移或PDCCH候选的聚合等级以及每聚合等级的PDCCH候选的数目。
如果在由RedCap UE接收的SIB1中不存在针对RedCap UE的CORESET-Red的配置,或者不存在与CORESET-Red相对应的搜索空间的配置,则RedCap UE可以执行以下操作中的至少一个操作。
第一操作包括以下操作:如果RedCap UE未能经由SIB1接收到CORESET-Red和搜索空间-Red的配置,则确定RedCap UE不能接入小区。
第二操作包括以下操作:如果RedCap UE未能经由SIB1接收到CORESET-Red的配置,则假定CORESET-Red的频率资源分配信息、长度、REG、REG捆绑或CCE配置信息与CORESET0的配置信息相同。
第三操作包括以下操作:如果RedCap UE未能经由SIB1接收到CORESET-Red的一些配置,但是接收到CORESET-Red的一些配置,则假定未能接收到的CORESET-Red的配置信息与CORESET0的配置信息相同。例如,如果RedCap UE经由SIB1接收到CORESET-Red的频率资源分配信息但未能接收到长度、REG、REG捆绑或CCE配置信息,则假定长度、REG、REG捆绑和CCE配置信息与CORESET0的长度、REG、REG捆绑或CCE配置信息相同。
第四操作包括以下操作:如果RedCap UE未能经由SIB1接收到搜索空间-Red的配置,则搜索空间-Red的PDCCH候选的周期和偏移或聚合等级以及每聚合等级的PDCCH候选的数目与小区的类型0搜索空间的配置相同。这里,类型0搜索空间是用于监视具有用SI-RNTI加扰的CRC的PDCCH的搜索空间。
第五操作包括以下操作:如果RedCap UE经由SIB1接收到搜索空间-Red的一些配置并且未能接收到搜索空间-Red的配置中的一些,则假定未能接收到的搜索空间-Red的配置信息与类型0搜索空间的配置信息相同。例如,如果RedCap UE经由SIB1接收到搜索空间-Red的周期和偏移,但未能接收到PDCCH候选的聚合等级和每聚合等级的PDCCH候选的数目,则可以假定PDCCH候选的聚合等级和每聚合等级的PDCCH候选的数目与搜索空间-Red的PDCCH候选的聚合等级和每聚合等级的PDCCH候选的数目相同。
另外,RedCap UE可以从SIB1接收指示RedCap UE是否能够接入小区的指示符。
作为示例,该指示符可以指示RedCap UE能够接入该小区或者RedCap UE不能接入该小区。如果指示符指示RedCap UE不能接入小区,则RedCap UE不能使用在SIB1中接收的PRACH资源来执行小区接入。
作为另一示例,该指示符可以指示RedCap UE能够使用CORESET-Red或搜索空间-Red来接入小区,或者RedCap UE不能使用CORESET-Red或搜索空间-Red来接入小区。如果指示符指示RedCap UE不能使用CORESET-Red或搜索空间-Red来接入小区,则RedCap UE可以使用在SIB1中接收的PRACH资源来执行小区接入。
作为另一示例,该指示符可以指示RedCap UE是否能够经由SIB1中配置的PRACH来接入小区。如果指示符指示RedCap UE能够使用在SIB1中配置的PRACH来接入小区,则RedCap UE可以使用在SIB1中接收的PRACH资源来执行小区接入。
RedCap UE经由SIB1接收CORESET-Red和搜索空间-Red的信息的方法如下。
作为第一方法,可以以与在PBCH中配置CORESET0或类型0搜索空间相同的方式配置与RedCap UE有关的CORESET-Red和搜索空间-Red的信息。也就是说,CORESET-Red和搜索空间-Red的信息可以是8比特。在8比特当中,4比特可以表示CORESET-Red信息,而剩余的4比特可以表示搜索空间-Red信息。4比特CORESET-Red信息指示16个组合中的一个组合。4比特搜索空间-Red指示16个组合中的一个组合。这里,使用8比特来提供描述,但是如果8比特不够,则可以将其扩展到任何整数比特。
作为第二方法,可以以与配置现有CORESET和搜索空间相同的方式配置与RedCapUE有关的CORESET-Red和搜索空间-Red的信息。
作为示例,CORESET-Red信息可以包括CORESET-Red频率信息。
在一方面,CORESET-Red频率信息可以包括基于CORESET0的PRB偏移。也就是说,CORESET-Red频率信息(分配的PRB)可以是通过将偏移添加到CORESET0的PRB而获得的PRB。
在另一方面,CORESET-Red频率信息可以包括小区的公共PRB索引。这里,小区的公共PRB索引是小区的UE公共地使用的PRB索引,并且可以在SIB1中接收与公共PRB索引0相对应的频率。UE可以从公共PRB索引0指配索引。CORESET-Red信息可以通过使用公共PRB索引来指示PRB的起始索引。
作为另一示例,CORESET-Red信息可以包括CORESET-Red的长度(符号数目)。长度可以包括1、2或3个符号。长度可以附加地包括6至12个符号。可以包括通过比较CORESET-Red的长度(符号数目)和CORESET0的长度而获得的值。例如,可以包括指示CORESET-Red的长度(符号数目)是否等于或不同于CORESET0的长度(符号数目)的信息。可以使用与CORESET0的长度(符号数目)的差来指示CORESET-Red的长度(符号数目)。也就是说,可以包括根据CORESET-Red的长度(符号数目)-CORESET0的长度(符号数目)获得的信息。通常,由于CORESET-Red的长度(符号数目)大于或等于CORESET0的长度(符号数目),因此差值(CORESET-Red的长度(符号数目)-CORESET0的长度(符号数目))可以仅包括非负整数。
作为另一示例,CORESET-Red信息可以包括关于是否针对REG到CCE映射执行交织的信息。如果不执行交织,则可以将用于RedCap UE的REG(REG捆绑)顺序地捆绑到CCE中。如果执行交织,则用于RedCap UE的REG(REG捆绑)的索引被交织,并且可以将交织的索引顺序地捆绑到CCE中。
作为另一示例,CORESET-Red信息可以包括REG捆绑的大小配置信息。REG捆绑的大小表示包括在一个REG捆绑中的REG的数目。可以根据REG捆绑的大小来捆绑REG。RedCap UE可以假定相同的预编码被应用于REG捆绑中所包括的REG。因此,RedCap UE可以通过联合地检测REG捆绑中包括的REG的DM-RS来减少信道估计误差。
为了更高的信道估计性能,CORESET-Red可以包括附加信息。RedCap UE可以基于附加信息来假定在不同CCE之间使用相同的预编码。这里,不同的CCE可以是在频域中相邻的CCE。例如,当CCE的索引在频域中被顺序地编号为0、1、2、…时,RedCap UE可以根据附加信息假定相同的预编码被用于频域中相邻的CCE,例如CCE0和CCE1。另外,RedCap UE可以假定相同的预编码被用于后续CCE,例如,CCE2和CCE3。可以通过假定相同的预编码被用于频域中相邻的多个CCE来提高信道估计性能。
这里,相同的预编码的应用可以限于包括在一个PDCCH候选中的CCE。也就是说,RedCap UE可以假定相同的预编码仅被用于包括在一个PDCCH候选中的CCE。另外,RedCapUE可以假定不同的预编码被用于包括在不同PDCCH候选中的CCE。
作为示例,搜索空间-Red可以包括周期和偏移信息。周期和偏移可以包括时隙单位、时隙的集合单位、符号单位和符号的集合单位中的至少一个时间单位。RedCap UE可以附加地用在每个时间单位内开始PDCCH监视的符号的索引指示。如果周期和偏移信息的单位是时隙单位,则起始符号的索引可以由14比特位图指示。位图的最高有效位(MSB)指示时隙的第一符号,并且最低有效位(LSB)指示时隙的最后符号。如果周期和偏移信息的单位是除了时隙之外的时间单位,则可以指示与包括在时间单位中的符号的数目相对应的位图。位图的MSB可以指示包括在时间单位中的符号中的第一个符号,并且LSB可以指示包括在时间单位中的符号中的最后符号。RedCap UE可以经由起始索引或周期和偏移值来确定需要监视PDCCH的监视时机。RedCap UE需要对与监视时机相对应的符号中的PDCCH进行盲解码。
作为另一示例,搜索空间-Red可以包括关于附加监视时机的信息,在该附加监视时机,由RedCap UE在监视时机监视的PDCCH可以被重复接收。UE可以在监视时机监视并接收第一PDCCH。然而,如果仅利用一个第一PDCCH不可能进行充分接收,则可以通过在另一监视时机重复地接收第一PDCCH来提高PDCCH的接收性能。因此,可能需要关于使得能够重复接收第一PDCCH的附加监视时机的信息。
可以通过以下方法提供附加监视时机。
作为第一方法,可以在每个时间单位中重复附加的监视时机,并由时间单位的数目指示。这里,时间单位可以包括时隙、时隙集合、符号和符号集合中的至少一个。例如,假定时间单位是时隙。根据第一方法,可以通过时隙的数目(K)来指示附加监视时机。在这种情况下,可以在后续时隙中在与第一时隙的符号起始位置相同的符号起始位置处重复地接收由RedCap UE在第一时隙的监视时机监视和接收的第一PDCCH。RedCap UE可以以这种方式重复地接收PDCCH与所指示的时隙的数目(K)一样多的次数。即使在除了时隙之外的时间单位的情况下,也可以使用相同的方案。
作为第二方法,附加监视时机可以在紧接监视时机之后的符号中重复,并且可以由重复次数(K)来指示。例如,如果假定在一个时隙中配置监视时机,则附加监视时机可以位于紧接在监视时机在一个时隙中结束的符号之后的符号中。此外,在紧接在附加监视时机结束的符号之后的符号中,可以定位另一附加监视时机。以这种方式,可以根据重复次数(K)连续地定位附加监视时机。
再次在图13中,已经从SIB1接收到CORESET-Red或搜索空间-Red的信息的RedCapUE可以在CORESET-Red和搜索空间-Red内接收PDCCH。PDCCH可以用于PDSCH的调度。PDSCH可以携带SIB1(在下文中,称为SIB1-Red),其包括要由RedCap UE附加地接收的系统信息。因此,RedCap UE可以根据CORESET-Red或搜索空间-Red的信息来接收PDCCH,并且可以接收由PDCCH调度的PDSCH,从而接收SIB1-Red,其是RedCap UE的初始小区接入所需的系统信息。SIB1-Red可以包括关于用于RedCap UE的小区接入的PRACH的信息。为了方便起见,由RedCap UE用于小区接入的PRACH可以被称为PRACH-Red。
为了接收SIB1-Red,应当经由PDCCH向RedCap UE指示在其上调度了PDSCH的时频资源。为了被调度有频率资源(即,PRB),RedCap UE需要识别活动下行链路BWP。可替代地,RedCap UE需要配置活动下行链路BWP。相关方法如下。
作为第一方法,RedCap UE可以不从SIB1被配置单独的活动下行链路BWP。另外,基于由SIB1指示的CORESET-Red,从最低频率PRB到最高频率PRB的频率可能不被确定为RedCap UE的活动下行链路BWP。
作为第二方法,UE可以配置有来自SIB1的RedCap UE的活动下行链路BWP。这里,活动下行链路BWP包括CORESET-Red频带。
在以上描述中,SS/PBCH、CORESET0、CORESET-Red等是下行链路信号或信道。因此,下行链路信号或信道可以被包括在下行链路小区的下行链路BWP中。另一方面,PRACH或PRACH-Red是上行链路信道,并且因此可以被包括在上行链路小区的上行链路BWP中。因此,除了CORESET-Red和搜索空间-Red的信息之外,可能还附加地需要用于PRACH-Red传输的时频域信息。
PRACH可以具有要使用的不同子载波间隔。例如,PRACH可以具有更小的子载波间隔,以便具有更长的符号长度。15kHz、30kHz、60kHz或120kHz被用于PUSCH和PUCCH的子载波间隔,以发送上行链路数据或控制信息,而PRACH的子载波间隔可以是1.25kHz或5kHz。因此,具有不同子载波间隔的信号或信道可以共存于上行链路小区中。在这种情况下,需要保护频带来抑制具有彼此相邻的子载波间隔的信号或信道之间的干扰。因此,如果PRACH分散在时频资源中,则可能由于保护频带而浪费上行链路资源。为了防止这种情况,传统类型UE使用的PRACH和RedCap UE使用的PRACH需要放置在尽可能接近的时间和频率资源中。
在下文中,本实施例公开了一种用于将传统类型UE的PRACH和RedCap UE的PRACH-Red放置在上行链路小区中的相邻时频资源中的方法。
参考图14描述第一方法,参考图15描述第二方法,以及参考图16描述第三方法。
图14是图示根据本公开的实施例的初始小区接入方法和PRACH资源配置的图。
参考图14,RedCap UE可以确定PRACH-Red位于与传统类型UE的PRACH相邻的时间(参见图14中所示的TDM)。可以不存在用于PRACH-Red的频率信息的单独配置。在这种情况下,PRACH-Red的频率信息可以与PRACH的频率信息相同。也就是说,PRACH占用的频率和PRACH-Red占用的频率可以相同。RedCap UE可以被配置有用于PRACH-Red的单独的时间信息。
这里,时间信息可以包括关于PRACH-Red是紧接在PRACH之前还是紧接在PRACH之后的信息。如果位于紧接PRACH之后,则PRACH-Red可以在紧接PRACH结束的时间点之后的时间点(或后续时隙)处开始。如果紧接在PRACH之前,则PRACH-Red可以在紧接在PRACH开始的时间点之前的时间点(或后续时隙)结束。
可替代地,时间信息可以指示PRACH和PRACH-Red之间的时间差。更具体地,时间信息可以包括PRACH的最后时间点与PRACH-Red的第一时间点之间的时间差或间隔(符号的数目或时隙的数目)。可替代地,时间信息可以包括PRACH-Red的最后时间点与PRACH的第一时间点之间的时间差或间隔(符号的数目或时隙的数目)。可替代地,时间信息可以包括PRACH的第一时间点与PRACH-Red的第一时间点之间的时间差或间隔(符号的数目或时隙的数目)。
图15是图示根据本公开的另一实施例的初始小区接入方法和PRACH资源配置的图。
参考图15,RedCap UE可以确定PRACH-Red位于与传统类型UE的PRACH相邻的频率处。可以不存在用于PRACH-Red的时间信息的单独配置。在这种情况下,PRACH-Red的时间信息可以与PRACH的时间信息相同。也就是说,PRACH占用的时间(时隙和符号)和PRACH-Red占用的时间(时隙和符号)可以相同。RedCap UE可以被配置有用于PRACH-Red的单独频率信息。
这里,频率信息可以包括关于PRACH-Red的频率是紧接在PRACH之下还是紧接在PRACH之上的信息。
可替代地,频率信息可以指示PRACH和PRACH-Red之间的频率差。更具体地,频率信息可以包括PRACH的最高频率与PRACH-Red的最低频率之间的频率差或间隔(根据上行链路小区的上行链路BWP的子载波间隔的单位的子载波的数目,或根据PRACH的子载波间隔的单位的子载波的数目或PRB的数目)。可替代地,频率信息可以包括PRACH-Red的最高频率与PRACH的最低频率之间的频率差或间隔(根据上行链路小区的上行链路BWP的子载波间隔的单位的子载波的数目或根据PRACH的子载波间隔的单位的子载波的数目或PRB的数目)。可替代地,频率信息可以包括PRACH的最低频率与PRACH-Red的最低频率之间的频率差或间隔(根据上行链路小区的上行链路BWP的子载波间隔的单位的子载波的数目或根据PRACH的子载波间隔的单位的子载波的数目或PRB的数目)。
图16是图示根据本公开的另一实施例的初始小区接入方法和PRACH资源配置的图。
参考图16,RedCap UE可以确定PRACH-Red位于与传统类型UE的PRACH相同的时间-频率处。可以不存在用于PRACH-Red的时间-频率信息的单独配置。在这种情况下,PRACH-Red的时频信息可以与PRACH的时频信息相同。RedCap UE可以使用在该时频处的PRACH中的一些PRACH。例如,传统类型UE的PRACH可以包括多个PRACH前导序列。在这种情况下,RedCapUE可以使用多个PRACH前导序列中的一些PRACH前导序列。
为此,RedCap UE可以配置有PRACH前导序列中的可用序列的索引(或ID)。更具体地,RedCap UE可以配置有可用序列的索引(或ID)中的最低索引(或ID),并且可以使用具有该索引(到ID)和该索引(到ID)之后的索引(到ID)的序列。
作为另一示例,RedCap UE可以配置有可用序列的数目,并且可以使用所有序列当中具有高索引(或ID)的与可用序列的数目一样多的序列。
(2)第二实施例
根据本公开的第二实施例,RedCap UE可以在SIB1中接收用于RedCap UE的初始小区接入的系统信息的调度信息。这里,用于RedCap UE的初始小区接入的系统信息被称为SIB1-Red。这在图17中示出。
图17是图示根据本公开的另一实施例的初始小区接入方法的图。
参考图17,RedCap UE可以接收小区的SS/PBCH(或SSB)。RedCap UE可以经由SS/PBCH接收CORESET0的频域的信息或类型0搜索空间的时域的信息。RedCap UE可以在类型0搜索空间或CORESET0中接收用SI-RNTI加扰的PDCCH。RedCap UE可以通过PDCCH接收DCI格式1_0。DCI格式1_0可以包括递送SIB1的PDSCH的调度信息。因此,RedCap UE可以接收SIB1(在图17中示为用于SIB1的PDSCH)。
由RedCap UE接收的SIB1可以包括用于传统类型UE的小区接入的信息。传统类型UE不需要单独接收用于RedCap UE的系统信息。因此,如果将用于RedCap UE的系统信息添加到现有SIB1,则SIB1的开销可能增加。为了防止这种情况,优选地,单独发送RedCap UE所需的系统信息。因此,SIB1可以包括可以在其上接收RedCap UE所需的系统信息的PDSCH的时频信息。RedCap UE可以根据时频信息来接收PDSCH。所接收的PDSCH可以包括SIB1-Red(在图17中示为用于SIB1-Red的PDSCH)。RedCap UE可以通过接收SIB1-Red来接收用于初始小区接入的信息。例如,RedCap UE可以基于SIB1-Red来识别用于初始小区接入的PRACH-Red的配置。
为了给RedCap UE分配在其上调度用于SIB1-Red的PDSCH的频率资源(即,PRB),UE需要识别在其上调度PDSCH的活动下行链路BWP(在图17中示为RedCap BW)。因此,RedCapUE需要配置有活动下行链路BWP。
作为示例,RedCap UE可以被配置有来自SIB1的活动下行链路BWP的长度和起始PRB(具有最低频率的PRB)的索引。这里,PRB的索引可以由公共PRB索引指示。可替代地,PRB的索引可以由从CORESET0起的频率间隔(PRB的数目)指示。也就是说,由于RedCap UE已经识别出由CORESET0占用的频域,因此可以通过将给定频率间隔(PRB的数目)添加到该频域来确定活动下行链路BWP的开始PRB。
可以将24个PRB、48个PRB和96个PRB中的至少一个值配置为长度。作为另一示例,长度可以等于CORESET0中包括的PRB的数目。在这种情况下,可以在SIB1中省略关于活动下行链路BWP的长度的信息。
RedCap UE可以假定在所配置的活动下行链路BWP内接收到递送SIB1-Red的PDSCH。
(3)第三实施例
根据本公开的第三实施例,RedCap UE可以在SIB1中接收用于RedCap UE的初始小区接入的PRACH配置信息。这里,用于RedCap UE的初始小区接入的PRACH被称为PRACH-Red。这在图18中示出。
图18是图示根据本公开的另一实施例的初始小区接入方法的图。
参考图18,RedCap UE可以接收小区的SS/PBCH(或SSB)。RedCap UE可以经由SS/PBCH接收CORESET0的频域的信息或类型0搜索空间的时域的信息。RedCap UE可以在类型0搜索空间或CORESET0中接收用SI-RNTI加扰的PDCCH。RedCap UE可以通过PDCCH接收DCI格式1_0。DCI格式1_0可以包括用于SIB1的PDSCH调度信息。因此,RedCap UE可以接收SIB1(在图18中示为用于SIB1的PDSCH)。
由RedCap UE接收的SIB1可以包括用于传统类型UE的小区接入的信息。另外,SIB1可以附加地包括用于RedCap UE的系统信息。因此,RedCap UE可以经由SIB1获取关于RedCap UE的初始小区接入的信息,而不需要接收单独的系统信息(例如,图17中的SIB1-Red)。例如,SIB1可以包括用于初始小区接入的PRACH-Red配置信息。
RedCap UE可以被配置有用于配置PRACH-Red和小区接入的上行链路BWP。可以在上行链路BWP中发送PRACH-Red。因此,PRACH-Red配置被包括在上行链路BWP中。SIB1中的用于RedCap UE的上行链路BWP可被配置如下。
(4)第四实施例
根据本公开的第四实施例,RedCap UE可以接收仅用于RedCap UE的SS/PBCH。这可以与由传统类型UE接收的SS/PBCH区分开。稍后将描述区分方法。为了方便起见,可以仅由RedCap UE接收的SS/PBCH被称为SSB-Red。这在图19中示出。
图19是图示根据本公开的另一实施例的初始小区接入方法的图。
参考图19,RedCap UE可以在仅用于RedCap UE的BWP(在图19中示为RedCap BW)中接收SSB-Red,该SSB-Red是仅用于RedCap UE的SS/PBCH。通过接收SSB-Red,RedCap UE可以获得下行链路信号同步并且接收在PBCH中发送的小区ID和主信息块(MIB)。通过接收SSB-Red,RedCap UE可以获取CORESET-Red或搜索空间-Red的配置信息,在其中将监视用于调度递送SIB1-Red的PDSCH的PDCCH。RedCap UE可以在CORESET-Red或搜索空间-Red中监视和接收PDCCH。通过接收PDCCH,RedCap UE可以接收递送SIB1-Red的PDSCH(在图19中示为用于SIB1-Red的PDSCH)。RedCap UE可以从SIB1-Red被配置有用于小区接入的PRACH-Red的配置信息,并且可以根据PRACH-Red的配置信息来发送PRACH。
在第四实施例中,RedCap UE需要在与传统类型UE的下行链路BWP不同的单独BWP中接收SSB-Red。然而,由于SSB-Red是在小区接入之前接收到的,因此RedCap UE不能识别SSB-Red被发送的频率和时间。另外,RedCap UE应当能够区分由传统类型UE接收的SS/PBCH和SSB-Red。下面公开了一种用于此的方法。
第一方法包括RedCap UE像传统类型UE一样执行初始小区接入过程的过程。例如,RedCap UE可以接收小区的SS/PBCH(或SSB)。RedCap UE可以经由SS/PBCH接收CORESET0的频域的信息或类型0搜索空间的时域的信息。RedCap UE可以通过使用类型0搜索空间或CORESET0的信息来接收用SI-RNTI加扰的PDCCH。RedCap UE可以通过PDCCH接收DCI格式1_0。DCI格式1_0可以包括递送SIB1的PDSCH的调度信息。因此,RedCap UE可以接收SIB1。SIB1可以包括发送SSB-Red的频率和时间的信息。也就是说,UE可以经由SIB1被配置有用于接收用于RedCap UE的SSB-Red的信息。
SSB-Red的频率可以使用绝对射频信道号(ARFCN)来指示。可替代地,SSB-Red的频率可以由公共PRB索引指示。可替代地,SSB-Red的频率可以由从SSB的频率起的间隔来指示。这里,间隔可以被指示为频率。间隔可以由PRB的数目指示。间隔可以由子载波的数目指示。间隔可以由SSB和SSB-Red之间的信道栅格的数目或同步栅格的数目来指示。
SSB-Red的时间可以与SSB的时间相同。即,可以在相同的时间(时隙和符号)处发送SSB和SSB-Red。作为另一示例,SSB-Red的时间和SSB的时间可以具有某个时间间隔。例如,可以将某个时间间隔给定为5ms(半帧长度)。通过SSB与SSB-Red之间的预定时间间隔,RedCap UE可以在第一时间间隔中接收SSB并且可以在第二时间间隔中接收SSB-Red。以这种方式,接收两个同步块,并且因此可以更准确地执行下行链路同步。
第二方法包括SSB-Red具有与传统类型UE的结构不同的结构。
作为示例,SSB-Red可以被设计为包括更大的频带,以便改善PBCH的接收性能。例如,SSB-Red可以被设计成具有比传统类型UE的SSB多4个PRB。也就是说,SSB-Red可以被设计为占用24个PRB。更具体地,SSB-Red可以具有4个符号。在四个符号中,在第一符号中发送PSS,并且在第三符号中发送SSS。另外,可以在第二符号的24个PRB、第四符号的24个PRB中以及在第三符号的24个PRB之中除了映射SSS的资源之外的资源中发送PBCH。尽管在上面的示例中已经描述了24个PRB的示例,但是它可以扩展到更多的PRB。
RedCap UE可以接收PSS和SSS以获取下行链路信号同步和小区ID。为了在包括20个PRB的SS/PBCH(SSB)和被设计为具有更多PRB的SS/PBCH(SSB-Red)之间进行确定,RedCapUE可以通过假定具有20个PRB来执行PBCH解码,并且可以通过假定被设计为具有更多PRB来执行PBCH解码。如果通过假定具有20个PRB,PBCH解码成功,则UE可以识别SS/PBCH是正常UE(传统)的SSB。如果通过假定具有更多PRB,PBCH解码成功,则RedCap UE可以识别SS/PBCH是RedCap的SSB-Red。
作为另一示例,SSB-Red可以被设计成包括更多符号以提高PBCH的接收性能。例如,SSB-Red可以被设计成具有比传统类型UE的符号多一个或两个符号。即,SSB-Red可以被设计成包括5至6个符号。在第一符号中发送PSS,并且在第三符号中发送SSS。另外,可以在第二符号和第四符号中发送PBCH,并且可以在第五符号或第六符号中发送PBCH。
RedCap UE可以接收PSS和SSS以获取下行链路信号同步和小区ID。为了在包括四个符号的SS/PBCH(SSB)和被设计为具有更多符号的PBCH(SSB-Red)之间进行确定,RedCapUE可以通过假定具有四个符号来执行PBCH解码,并且可以通过假定被设计为具有更多符号来执行PBCH解码。如果通过假定具有四个符号,PBCH解码成功,则UE可以识别SS/PBCH是正常UE(传统)的SSB。如果通过假定具有更多符号,PBCH解码成功,则RedCap UE可以识别SS/PBCH是RedCap的SSB-Red。
作为另一示例,可以根据SS/PBCH被映射到的符号序列来区分SSB和SSB-Red。例如,在SSB-Red中,与在SSB中不同,PSS位于第一符号中,并且SSS的位置可以被移动到第二符号或第四符号。如果SSS被移动到第二符号,则可以在第三符号的20个PRB、第四符号的20个PRB和第二符号的20个PRB之中未被SSS占用的PRB中发送PBCH。如果SSS被移动到第四符号,则可以在第二符号的20个PRB、第三符号的20个PRB和第四符号的20个PRB之中未被SSS占用的PRB中发送PBCH。
RedCap UE可以接收PSS。另外,RedCap UE可以确定发送SSS的符号,以便确定SSB是传统类型UE的SSB还是RedCap UE的SSB-Red。如果在第三符号中接收到SSS,则UE可以识别SS/PBCH是正常UE(传统)的SSB。如果在第二或第四符号中接收到SSS,则UE可以识别SS/PBCH是RedCap的SSB-Red。
作为另一示例,可以使用从SS/PBCH获得的物理小区ID来区分SSB和SSB-Red。例如,SS/PBCH可以具有多达1008个物理小区ID。RedCap UE可以在多达1008个物理小区ID中的特定值的情况下确定SSB-Red。例如,特定值可以是当除以3时余数为0的物理小区ID。作为另一示例,由于物理小区ID具有Ncell ID=3*N(1) ID+N(2) ID的形式,因此如果N(1) ID或N(2) ID是特定值,则可以确定SSB-Red。作为另一示例,可用于SS/PBCH的物理小区ID的数目可以增加到1008或更多。在这种情况下,如果物理小区ID具有1008或更大的值,则RedCap UE可以确定SS/PBCH是SSB-Red。
作为另一示例,可以根据SS/PBCH中的PBCH的RE映射序列来区分SSB和SSB-Red。例如,如果传统类型UE的SSB的PBCH在第一方向上(例如,以从低频RE到高频RE的序列来执行映射),则RedCap UE的SSB-Red的PBCH可以在第二方向(例如,相反方向,其中,以从高频RE到低频RE的RE序列来执行映射)上。这里,第二方向可以是与第一方向不同的方向。UE可以基于PBCH的RE映射来确定对应的SSB是传统类型UE的SSB还是RedCap UE的SSB-Red。
RedCap UE可以接收PSS和SSS以获取下行链路信号同步和小区ID。为了在第一方向上映射的SS/PBCH(SSB)与被设计为在第二方向上的PBCH(SSB-Red)之间进行确定,RedCap UE可以通过假定第一方向来执行PBCH解码,并且可以通过假定被设计为在第二方向上来执行PBCH解码。如果通过假定第一方向,PBCH解码成功,则UE可以识别SS/PBCH是正常UE(传统)的SSB。如果通过假定第二方向,PBCH解码成功,则UE可以识别SS/PBCH是RedCap的SSB-Red。
作为另一示例,可以根据SS/PBCH中的PBCH的CRC来区分SSB和SSB-Red。例如,如果传统类型UE的SSB的PBCH用第一CRC来加扰,则RedCap UE的SSB-Red的PBCH可以用不同于第一CRC的第二CRC来加扰。UE可以通过识别PBCH的CRC值来确定对应的SSB是传统类型UE的SSB还是RedCap UE的SSB-Red。
RedCap UE可以接收PSS和SSS以获取下行链路信号同步和小区ID。为了在用第一CRC加扰的SS/PBCH(SSB)和用第二CRC加扰的PBCH(SSB-Red)之间进行确定,RedCap UE可以通过假定第一CRC来执行PBCH解码,并且可以通过假定第二CRC来执行PBCH解码。如果通过假定第一CRC,PBCH解码成功,则UE可以识别SS/PBCH是传统类型UE的SSB。如果通过假定第二CRC,PBCH解码成功,则UE可以识别SS/PBCH是RedCap的SSB-Red。
作为另一示例,可以根据SS/PBCH中的PBCH的1比特来区分SSB和SSB-Red。传统类型UE的SSB的PBCH可以具有未使用的1比特。因此,可以根据1比特的值来作出传统类型UE的SSB或RedCap UE的SSB-Red之间的确定。例如,如果PBCH中的1比特的值是“0”,则RedCap UE可以将对应的SSB确定为传统类型UE的SSB,并且如果该值是“1”,则对应的SSB可以被确定为RedCap UE的SSB-Red。
在先前示例中,RedCap UE可以仅在接收到PSS、SSS和PBCH之后,在传统类型UE的SSB或RedCap UE的SSB-Red之间进行确定。这可能导致额外接收的开销和电池消耗。
作为另一示例,可发送SSB-Red的频率可以不同于发送SSB的频率。例如,UE可以以某个频率间隔接收SSB以便接收正确的SSB。这里,某个频率间隔可以被定义为同步栅格。为了减少UE的电池消耗,这可以使得能够以某个频率间隔(例如,数十kHz到数百kHz)稀疏地接收SSB,而不是以所有频率接收SSB。基站以某个频率间隔发送SSB,以便UE正确地接收SSB。换言之,可能存在UE不执行SSB监视的频带。基站可以在该频带中发送SSB-Red,并且RedCap UE可以在该频带中接收SSB-Red。
作为另一示例,可发送SSB-Red的时间间隔可不同于发送SSB的时间间隔。例如,为了接收正确的SSB,UE可以在10ms无线电帧的5ms半帧内接收SSB。换言之,可能存在UE不执行SSB监视的时间间隔。例如,如果在10ms无线电帧的5ms半帧中发送SSB,则在剩余时间间隔中不执行SSB监视。基站可以在该时间间隔中发送SSB-Red,并且RedCap UE可以在该时间间隔中接收SSB-Red。
(5)第五实施例
根据本公开的第五实施例,RedCap UE可以与传统类型UE不同地解释由SS/PBCH指示的信息。这里,传统类型UE和RedCap UE都可以接收SS/PBCH。也就是说,SS/PBCH的结构可以与传统类型UE的SSB的结构相同。这在图20中示出。
图20是图示根据本公开的另一实施例的初始小区接入方法的图。
参考图20,传统类型UE和RedCap UE可以接收SS/PBCH。通过接收PSS和SSS,可以获得下行链路信号同步,并且可以接收物理小区ID。传统类型UE和RedCap UE可以接收PBCH。在这种情况下,传统类型UE和RedCap UE可以以不同的方式解释PBCH。
传统类型UE可以通过PBCH的8个比特来接收CORESET0的配置信息和类型0搜索空间的配置信息。表示CORESET0的频率配置信息的4个比特可以指示16个组合中的一个组合。表示类型0搜索空间的配置信息的4个比特可以指示16个组合中的一个组合。如果4比特指示“0000”,则它指示16个组合中的第一组合。以这种方式,经由4个比特和4个比特(总共8个比特),UE可以接收用于调度递送SIB1的PDSCH的PDCCH。
RedCap UE可以不同地解释PBCH的8个比特。可以重新解释表示CORESET0的配置信息的4个比特,以便用作CORESET-Red的配置信息。也就是说,CORESET-Red的配置信息由4比特指示,并且可以指示16个组合中的一个组合。可以重新解释表示类型0搜索空间的配置信息的4个比特,以便用作搜索空间-Red的配置信息。
例如,当表示CORESET0的配置信息的4比特指示“0000”时,UE的操作如下。如果UE是传统类型UE,则确定4比特指示表示CORESET0的配置信息的16个组合中的一个组合。即,如果4比特显示“0000”,则这被确定为表示CORESET0的配置信息的16个组合中的第一组合。如果UE是RedCap UE,则确定4比特指示表示CORESET-Red的配置信息的16个组合中的一个组合。即,如果4比特显示“0000”,则这被确定为表示CORESET-Red的配置信息的16个组合中的第一组合。
可以指示UE是否执行重新解释。例如,可以使用PBCH的1比特来向RedCap UE指示在PBCH中接收的信息是否能够根据RedCap UE来重新解释。如果1比特为“0”,则RedCap UE不应重新解释在PBCH中接收的信息。如果1比特是“1”,则RedCap UE可以重新解释在PBCH中接收的信息。
(6)第六实施例
根据本公开的第六实施例,RedCap UE可以基于CORESET0确定CORESET-Red的配置信息。更具体地,RedCap UE可以通过接收SS/PBCH来获取CORESET0的配置信息。RedCap UE可以基于CORESET0的配置信息来推断CORESET-Red的配置信息。
作为示例,可以假定CORESET-Red在紧接CORESET0结束的符号之后的符号中开始。这里,CORESET-Red可以具有与CORESET0相同的配置。也就是说,PRB的数目、PRB的位置或CORESET长度可以与CORESET0相同。可以假定CORESET-Red在紧接CORESET0所属的时隙之后的时隙中开始。这里,CORESET-Red可以具有与CORESET0相同的配置。也就是说,PRB的数目、PRB的位置或CORESET长度可以与CORESET0相同。时隙内CORESET-Red开始的符号的位置可以与时隙内CORESET0开始的位置相同。这里,描述了紧接的后续符号或紧接的后续时隙,但是这可以进一步扩展,使得可以应用特定数目的符号之后的符号或特定数目的时隙之后的时隙。此外,已经描述了CORESET-Red仅位于CORESET0之后,但是相反,CORESET-Red可以位于CORESET0之前。
作为另一示例,可以假定CORESET-Red紧接在CORESET0结束的PRB的上方的PRB中开始。这里,CORESET-Red可以具有与CORESET0相同的配置。也就是说,PRB的数目或CORESET长度可以与CORESET0相同。这里,已经描述了CORESET-Red在紧接PRB的上方开始,但是这可以进一步扩展,使得CORESET-Red可以在一定数目的PRB之后开始。CORESET-Red可以位于紧接在CORESET0开始的PRB的下方。
(7)第七实施例
在本公开的第七实施例中,传统类型UE和RedCap UE可以监视CORESET0中的不同PDCCH候选。这里,在SS/PBCH中指示CORESET0。传统类型UE和RedCap UE可以同等地接收CORESET0配置信息而没有区别。这在图21中示出。
图21是图示根据本公开的另一实施例的初始小区接入方法的图。
参考图21,传统类型UE可以在CORESET0中接收用于调度SIB1的PDCCH。该PDCCH可以递送DCI格式1_0。
RedCap UE可以在CORESET0中接收递送SIB1-Red的PDCCH。该PDCCH可以递送DCI格式X。配置DCI格式X的方法如下。
在第一方法中,DCI格式1_0和DCI格式X的长度可以彼此不同。也就是说,由于传统类型UE对第一长度的DCI格式1_0进行盲解码,因此传统类型UE可以接收DCI格式1_0但可以不接收DCI格式X。相反,由于RedCap UE对第二长度的DCI格式X进行盲解码,因此RedCap UE可以接收DCI格式X但可以不接收DCI格式1_0。RedCap UE可以附加地对第一长度的DCI格式1_0进行盲解码以接收DCI格式1_0,并且可以接收由DCI格式1_0调度的SIB1。
在第二方法中,DCI格式1_0和DCI格式X的CRC可以用不同的值加扰。例如,DCI格式1_0的CRC用SI-RNTI加扰,但是DCI格式X的CRC可以用与SI-RNTI不同的值加扰。也就是说,由于传统类型UE对用SI-RNTI加扰的DCI格式1_0进行盲解码,因此传统类型UE可以接收DCI格式1_0但可能不接收DCI格式X。相反,由于RedCap UE对用不同值加扰的DCI格式X进行盲解码,因此RedCap UE可以接收DCI格式X但可能不接收DCI格式1_0。RedCap UE可以附加地对用SI-RNTI加扰的DCI格式1_0进行盲解码以接收DCI格式1_0,并且可以接收由DCI格式1_0调度的SIB1。
在第三方法中,传统类型UE和RedCap UE可以接收DCI格式1_0和DCI格式X,并且DCI格式1_0和DCI格式X可以通过1比特指示符来区分。1比特指示符可以位于DCI格式1_0和DCI格式X中的相同位置。如果1比特值是“0”,则确定DCI格式1_0,并且如果1比特值是“1”,则可以确定DCI格式X。尽管为了方便起见已经使用1比特提供了描述,但是DCI格式1_0和DCI格式X可以通过多个比特来区分,或者可以通过特定码点的组合来确定。
II.RedCap UE的PRACH配置和RAR接收方法
本实施例涉及一种在UE的初始小区接入和随机接入过程中多个PRACH配置和由于多个PRACH配置引起的随机接入响应(RAR)接收的方法。
通常,UE可以经由SIB从基站接收用于随机接入的一个PRACH配置。作为参考,系统信息块可以配置一个上行链路初始BWP。这里,初始上行链路BWP是UE在随机接入过程期间使用的BWP。一个上行链路初始BWP包括一个PRACH配置。
PRACH配置可以包括以下信息中的至少一个。
-在时域中发送PRACH时机的时隙
-在时域中发送PRACH时机的时隙内PRACH时机开始的符号
-PRACH时机位于频域中的子载波
-PRACH时机的数目,即频域中的PRACH时机的集合
-码域中的由前导使用的序列
这里,一个PRACH时机可以包括多达64个前导。每个前导可以被指配有0、1、…、63之一的索引。
基站可以配置附加的上行链路载波以向UE提供更高的覆盖。这被称为补充UL载波(SUL载波)。基站也可以为SUL配置PRACH,并且UE可以通过SUL的PRACH接入上行链路小区。作为参考,SIB可以为SUL配置一个上行链路初始BWP。这里,初始上行链路BWP是UE在随机接入过程期间使用的BWP。一个PRACH配置可以被包括在一个初始上行链路BWP中。
在下文中,在本公开中,为了区分SUL载波和正常上行链路载波,正常上行链路载波被称为正常UL载波(NUL载波)。除非另有说明,否则本公开中公开的实施例可以在没有NUL/SUL差异的情况下应用。
如果UE接收到NUL载波中的PRACH配置和SUL载波中的PRACH配置两者,则UE能够通过NUL载波的PRACH执行随机接入,并且通过SUL载波的PRACH执行随机接入。也就是说,UE可以通过向基站发送NUL载波的PRACH和SUL载波的PRACH中的一个来执行随机接入过程。
UE可以基于PRACH信息来选择一个前导,并且可以将所选择的前导发送给基站。此后,随机接入的粗略过程如下。
UE可以在传输前导之后的预定时间内监视从基站发送的PDCCH。这里,UE可以监视用RA-RNTI加扰的PDCCH。这里,RA-RNTI值是根据由UE发送的前导确定的值,并且稍后将描述获得特定RA-RNTI值的方法。当接收到用RA-RNTI加扰的PDCCH时,UE可以接收由PDCCH调度的PDSCH。PDSCH可以是TC-RNTI值和用于调度消息3 PUSCH的信息。UE可以根据调度信息向基站发送消息3 PUSCH。UE可以从基站接收用于调度消息4 PDSCH的PDCCH。这里,可以用TC-RNTI值对PDCCH进行加扰。当接收到用TC-RNTI值加扰的PDCCH时,UE可以接收由PDCCH调度的消息4PDSCH,并且可以取决于PDSCH是否被成功接收来向基站发送HARQ-ACK。
UE在上述随机接入过程中获得RA-RNTI的方法如下。
[等式1]
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id
其中,s_id是PRACH时机的第一OFDM符号的索引(0≤s_id<14),t_id是系统帧中PRACH时机的第一时隙的索引(0≤t_id<80),f_id是频域中PRACH时机的索引(0≤f_id<8),并且u1_carrier_id是用于随机接入前导传输的上行链路载波的索引(对于NUL载波为0,对于SUL载波为1)。
UE和基站可以基于等式1来获得RA-RNTI。如果两个UE在不同的PRACH时机中发送前导,则每个UE的s_id、t_id或f_id中的至少一个值是不同的。因此,由于已经在不同PRACH时机中发送前导的两个UE监视用不同RA-RNTI加扰的PDCCH,因此可以区分前导和对应的PDCCH。另外,即使不同的UE具有相同的s_id、t_id和f_id,如果一个UE在NUL载波中发送前导并且另一UE在SUL载波中发送前导,则两个UE可以根据ul_carrier_id值监视用不同RA-RNTI加扰的PDCCH。因此,可以区分两个UE的前导和对应的PDCCH。
两个UE的RA-RNTI值相同的情况是在相同载波(NUL和SUL之一)中具有相同s_id、t_id或f_id的PRACH时机中发送前导的情况。在这种情况下,如果两个UE在PRACH时机中发送的前导彼此不同,则可以根据前导的ID来区分前导。更具体地,由于两个UE具有相同的RA-RNTI值,因此两个UE监视用相同的RA-RNTI值加扰的PDCCH。如果两个UE接收到用RA-RNTI值加扰的PDCCH,则可以接收由PDCCH调度的PDSCH。这里,PDSCH可以包括随机接入前导标识符(RAPID)。如果RAPID与由UE本身发送的前导的索引相同,则UE可以识别出随机接入响应(RAR)对应于由其发送的前导。因此,可以经由RAPID来区分已经发送了不同前导的两个UE。
以这种方式,每个UE可以基于前导的索引和由UE本身发送的PRACH的PRACH时机来接收向其发送的RAR。然而,可能存在UE无法基于前导的索引和由UE本身发送的PRACH的PRACH时机来确定向其发送的RAR的情况。下面公开了解决该问题的实施例。
为了支持诸如RedCap UE的新类型的UE,基站可以附加地为RedCap UE配置新的PRACH配置。在下文中,为了方便起见,用于传统类型UE的PRACH配置被称为传统PRACH配置,并且用于RedCap UE的新配置的PRACH配置被称为新PRACH配置。基站向RedCap UE提供新PRACH配置的理由或动机如下。
-理由1:基站可以取决于UE类型在随机接入过程期间不同地执行调度方案。例如,基站可以重复地发送包括RAR的PDSCH和包括消息4的消息4PDSCH,以便增加RedCap UE的下行链路覆盖。另外,基站可以指示包括消息3的消息3PUSCH的重复传输,以便增加RedCap UE的上行链路覆盖。如上所述,为了调度RedCap UE,基站需要识别UE类型。这通过RedCap UE根据单独的新PRACH配置发送PRACH是可能的。
-理由2:基站可以取决于UE类型使用不同的PRACH格式。例如,可以使用具有高覆盖的PRACH格式来增加RedCap UE的上行链路覆盖,并且正常UE可以使用具有低覆盖的PRACH格式。为此,可以向RedCap UE提供单独的新PRACH配置。
-理由3:通常,RedCap UE的数目可能大于正常UE的数目。为此,当正常UE和RedCapUE根据相同的PRACH配置执行随机接入时,由于大量RedCap UE的随机接入尝试,少量正常UE的随机接入变得困难。因此,为了确保正常UE的成功随机接入,需要分开RedCap UE的随机接入和正常UE的随机接入。这通过提供RedCap UE的单独的新PRACH配置是可能的。
-理由4:对于RedCap UE,存在周期性地发送数据的应用。例如,无线传感器以规则的间隔发送测量的数据。因此,UE很可能周期性地尝试随机接入。基站能够经由适合于RedCap UE的特性的PRACH配置来减少PRACH开销。为此,可以向RedCap UE提供新的PRACH配置。
在下文中,公开了一种基站向RedCap UE提供新PRACH配置的方法。
图22示出了图示根据本公开的另一实施例的PRACH资源配置的图。图22(a)是与第一方法有关的图,而图22(b)是与第二方法有关的图。
根据第一方法,RedCap UE可以经由从基站发送的SIB来接收新PRACH配置。
更具体地,SIB可以为一个上行链路小区(NUL或SUL)配置一个上行链路初始BWP。这里,上行链路初始BWP是UE在随机接入过程期间使用的BWP,并且也可以被称为初始上行链路BWP。一个上行链路初始BWP可以包括现有的传统PRACH配置和新PRACH配置。作为参考,可以存在一个或多个新PRACH配置。为了方便起见,如果存在多个新PRACH配置,则可以指配索引以区分相应的新PRACH配置。为方便起见,索引可以从0开始。
根据第二方法,RedCap UE可以经由从基站发送的SIB来接收多个初始上行链路BWP。这里,每个上行链路初始BWP可以包括PRACH配置。更具体地,SIB可以为一个上行链路小区(NUL或SUL)配置现有上行链路初始BWP和新上行链路初始BWP。这里,每个上行链路初始BWP可以包括一个PRACH配置。具体地,现有上行链路初始BWP可以包括传统PRACH配置,并且新的上行链路初始BWP可以包括新PRACH配置。UE可以选择多个上行链路初始BWP中的一个,以便发送PRACH。在这种情况下,所选择的上行链路初始BWP是UE在随机接入过程期间使用的BWP。作为参考,可以存在一个或多个新的上行链路初始BWP。为了方便起见,如果存在多个新的上行链路初始BWP,则可以指配索引以区分相应的新的上行链路初始BWP的新PRACH配置。为方便起见,索引可以从0开始。
基于第一方法或第二方法,可以向RedCap UE提供一个或多个新PRACH配置。这里,RedCap UE可以经由多个新PRACH配置中的一个PRACH配置来执行随机接入。
假定基站已经为UE提供了传统PRACH配置和一个新PRACH配置。两个UE中的一个UE可以根据传统PRACH配置来发送前导,并且另一个UE可以根据新PRACH配置来发送前导。根据传统PRACH配置和新PRACH配置,由两个UE发送的前导可以在时间、频率和码中的至少一个方面不同,因此,基站可以区分由两个UE发送的前导。因此,基站需要向两个UE中的每一个UE发送用于随机接入的RAR。
如上所述,UE可以通过使用前导的索引或与其自己的前导相对应的RA-RNTI来确定UE本身需要接收的RAR。然而,如果一个UE根据传统PRACH配置发送前导并且另一UE根据新PRACH配置发送前导,则在以下情况下,两个UE不能确定要接收的RAR。
例如,如果根据一个UE的传统PRACH配置选择的前导的s_id、t_id和f_id与根据另一UE的新PRACH配置选择的前导的s_id、t_id和f_id相同,则两个UE基于相同的RA-RNTI值监视用于调度RAR的PDCCH。在这种情况下,如果由一个UE根据传统PRACH配置选择的前导的索引和由另一UE根据新PRACH配置选择的前导的索引相同,则两个UE确定具有相同RAPID的RAR。因此,两个UE将RAR确定为它们自己的RAR,并且因此具有相同的消息3PUSCH调度许可和TC-RNTI值。
在下文中,由于如上所述当基站提供新PRACH配置时可能发生问题,因此下面公开了用于解决该问题的方法。
根据第一方法,可以根据发送了哪一PRACH配置的前导来确定RA-RNTI值。如果UE发送传统PRACH配置的前导,则UE可以如下确定RA-RNTI值。
[等式2]
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8
其中,s_id是PRACH时机的第一OFDM符号的索引(0≤s_id<14),t_id是系统帧中PRACH时机的第一时隙的索引(0≤t_id<80),f_id是频域中PRACH时机的索引(0≤f_id<8),并且ul_carrier_id是用于随机接入前导传输的上行链路载波的索引(对于NUL载波为0,对于SUL载波为1)。
UE可以基于新PRACH配置来执行简化的随机接入过程,以便减少基于传统PRACH配置的随机接入过程的延迟。该过程被称为2步随机接入过程。为了方便起见,2步随机接入过程中的PRACH配置被称为2步PRACH。2步随机接入过程大致如下。
UE可以向基站发送使用为2步随机接入过程配置的PRACH信息选择的一个前导和数据。然后,UE可以在某个时间段内监视从基站发送的PDCCH。这里,UE可以监视用MsgB-RNTI加扰的PDCCH。这里,MsgB-RNTI值是根据由UE发送的前导确定的值,并且稍后将描述获得特定MsgB-RNTI值的方法。当接收到用MsgB-RNTI加扰的PDCCH时,UE可以接收由PDCCH调度的PDSCH,并且可以取决于是否成功接收PDSCH来向基站发送HARQ-ACK。
所描述的MsgB-RNTI可以被解释为执行2步随机接入过程的UE的RA-RNTI。因此,如果由一个UE根据2步PRACH配置选择的前导的索引与根据新PRACH配置选择的前导的索引相同,则两个UE确定具有相同RAPID的RAR,因此发生UE不能确定要接收的RAR的问题。
如果UE发送2步PRACH配置的前导,则UE可以如下确定MsgB-RNTI值。
[等式3]
MsggB-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id+14×80×8×2
其中,s_id是PRACH时机的第一OFDM符号的索引(0≤s_id<14),t_id是系统帧中PRACH时机的第一时隙的索引(0≤t_id<80),f_id是频域中PRACH时机的索引(0≤f_id<8),并且ul_carrier_id是用于随机接入前导传输的上行链路载波的索引(对于NUL载波为0,对于SUL载波为1)。
在一个方面,如果UE发送新PRACH配置的前导,则UE可以如下确定RA-RNTI值。
[等式4]
RA-RNTI=X+1+s_id+14×t_id+14×80×f_id+14×80×8×(新PRACH配置索引)
这里,新PRACH配置索引是指配给每个新PRACH配置的索引,并且可以从0开始。X可以根据用于获得RA-RNTI的等式2可以具有的最大值来确定。如果s_id=13、t_id=79、f_id=7和ul_carrier_id=1是可能的,则可以确定X=17920,其是根据等式2可获得的最大值。
根据该示例获得的RA-RNTI具有以下特征。
如果UE发送传统PRACH配置的前导,则根据等式2,RA-RNTI的值是1至X=17920中的一个值。如果UE发送新PRACH配置的前导,则RA-RNTI的值是根据等式4的大于或等于X+1的值。因此,已经发送了传统PRACH配置的前导的UE和已经发送了新PRACH配置的前导的UE可以监视具有不同RA-RNTI值的PDCCH。因此,基站可以通过使用不同的RA-RNTI来为两个UE调度不同的RAR。
在另一个方面,用于获得RA-RNTI的等式可以表示如下。
[等式5]
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ID
这里,由ID指示的内容如下。
-ID=0:NUL载波中的传统PRACH
-ID=1:SUL载波中的传统PRACH
-ID=2:具有第一索引的新PRACH
-ID=3:具有第二索引的新PRACH
-ID=...
在该示例中,当提供多个新PRACH配置时,新PRACH配置的最大数目是5。也就是说,新PRACH的索引是0、1、2、3和4中的一个。作为参考,第一索引是最低索引,而第二索引是次低索引。这里,可以在每个新PRACH中唯一地指配索引。索引可以经由用于选择每个新PRACH的更高层信号(或RRC信号)来配置,或者可以根据每个新PRACH的配置来导出。可以基于新PRACH配置的时间信息和频率信息中的至少一个来导出索引。
在另一方面,如果UE发送新PRACH配置的前导,则UE可以如下确定RA-RNTI值。
[等式6]
RA-RNTI=X+1+s_id+14×t_id+14×80×f_id+14×80×8×(新PRACH配置索引)
这里,新PRACH配置索引是指配给每个新PRACH配置的索引,并且可以从0开始。X可以根据用于获得RA-RNTI的等式3可以具有的最大值来确定。如果s_id=13、t_id=79、f_id=7和ul_carrier_id=1是可能的,则可以根据等式3确定X=35840。
根据该示例获得的RA-RNTI具有以下特征。
如果UE发送新PRACH配置的前导,则根据等式3,RA-RNTI的值是1至X=35840中的一个值。如果UE发送新PRACH配置的前导,则RA-RNTI的值是根据等式6的大于或等于X+1的值。因此,已经发送了传统PRACH配置的前导的UE和已经发送了新PRACH配置的前导的UE可以监视具有不同RA-RNTI值的PDCCH。因此,基站可以通过使用不同的RA-RNTI来为两个UE调度不同的RAR。
在另一方面,用于获得RA-RNTI的等式可以表示如下。
[等式7]
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ID
这里,由ID指示的内容如下。
-ID=0:NUL载波中的传统PRACH
-ID=1:SUL载波中的传统PRACH
-ID=2:NUL载波中的2步PRACH
-ID=3:SUL载波中的2步PRACH
-ID=4:具有第一索引的新PRACH
-ID=5:具有第二索引的新PRACH
在该实施例中,当提供多个新PRACH配置时,新PRACH配置的最大数目是2。也就是说,新PRACH的索引是0和1中的一个。作为参考,第一索引是最低索引,而第二索引是次低索引。这里,可以在每个新PRACH中唯一地指配索引。索引可以经由用于选择每个新PRACH的更高层信号(或RRC信号)来配置,或者可以根据每个新PRACH的配置来导出。可以基于新PRACH配置的时间信息和频率信息中的至少一个来导出索引。
作为参考,RedCapUE可以经由SIB配置有计算RA-RNTI的方法。例如,可以经由SIB配置为使用等式4或6(或等式5或7)中的一个。作为另一示例,即使SIB中没有单独的指示,也可以将其配置为根据2步RACH配置来使用等式4或6(或等式5或7)中的一个。例如,如果配置了2步RACH,则可以通过等式6(或等式7)来计算RA-RNTI值,否则,可以通过等式4(或等式5)来计算RA-RNTI值。此外,仅当已经配置了2步RACH并且2步RACH的PRACH资源与RedCap UE的PRACH资源重叠时,才通过等式6(或等式7)计算RA-RNTI值,否则,可以通过等式4(或等式5)计算RA-RNTI值。
根据第二方法,可以根据已经发送了哪个PRACH配置的前导来不同地确定用于监视PDCCH的搜索空间。如果UE发送传统PRACH配置的前导,则UE可以在第一搜索空间中基于RA-RNTI值来监视PDCCH,以便接收RAR。如果UE发送新PRACH配置的前导,则UE可以在第二搜索空间中基于RA-RNTI值来监视PDCCH,以便接收RAR。这里,可以基于用于获得RA-RNTI的等式1来确定RA-RNTI值。也就是说,不同的UE可以全部监视具有相同RA-RNTI值的PDCCH,但是可以通过在不同搜索空间中监视PDCCH来接收与由UE本身发送的前导相对应的RAR。
更具体地,可以如下用信号通知UE。UE可以经由从基站发送的SIB来接收用于随机接入的新PRACH配置和与新PRACH配置相对应的搜索空间配置。这里,经由搜索空间配置,UE可以识别以下信息。
-根据周期和偏移信息配置搜索空间的时隙
-配置搜索空间的连续时隙的数目
-搜索空间在时隙内开始的符号
-要在搜索空间中监视的PDCCH聚合等级(AL)和每AL的PDCCH候选的数目
-需要在搜索空间中监视的DCI格式
与新PRACH配置相对应的搜索空间与CORESET#0相关联。因此,与传统PRACH配置的前导相对应的搜索空间和与新PRACH配置的前导相对应的搜索空间可以与相同的CORESET#0相关联,并且因此可以具有相同的频域信息、CCE到REG映射和CORESET持续时间。
如果未配置与新PRACH相对应的单独搜索空间,则UE可以在与传统PRACH相对应的搜索空间中监视PDCCH以用于RAR接收。在这种情况下,当监视PDCCH时,RA-RNTI值可以基于在第一方法中提出的用于获得RA-RNTI的等式或用于获得RA-RNTI的等式1。
根据第三方法,可以取决于UE已经发送了哪个PRACH配置的前导来不同地确定用于监视PDCCH的CORESET。如果UE发送传统PRACH配置的前导,则UE可以在第一CORESET的搜索空间中基于RA-RNTI值来监视PDCCH,以便接收RAR。如果UE发送新PRACH配置的前导,则UE可以在第二CORESET的搜索空间中基于RA-RNTI值来监视PDCCH,以便接收RAR。这里,可以基于用于获得RA-RNTI的等式1来确定RA-RNTI值。也就是说,UE监视具有相同RA-RNTI值的PDCCH,但是可以通过在不同CORESET的搜索空间中监视PDCCH来接收与由UE本身发送的前导相对应的RAR。
更具体地,可以如下用信号通知UE。UE可以经由从基站发送的SIB,接收用于随机接入的新PRACH配置和与新PRACH配置相对应的CORESET配置。这里,经由CORESET配置,UE可以识别以下信息。
-CORESET所在的频率信息。这可以以6个连续PRB的集合为单位来标识。
-CORESET中包括的REG和CCE之间的映射。这可以是局部化映射或分布式映射。
-CORESET中包括的符号的数目。这可以是1个符号,或者可以是2或3个连续符号。
根据第四方法,可以根据UE已发送哪个PRACH配置的前导来不同地确定用于随机接入的下行链路(DL)初始BWP。如果UE发送传统PRACH配置的前导,则UE可以在第一下行链路初始BWP中基于RA-RNTI值来监视PDCCH,以便接收RAR。如果UE发送新PRACH配置的前导,则UE可以在第二下行链路初始BWP中基于RA-RNTI值来监视PDCCH,以便接收RAR。这里,可以基于用于获得RA-RNTI的等式1来确定RA-RNTI值。在每个下行链路初始BWP中,可以配置用于监视PDCCH的CORESET和搜索空间。也就是说,UE监视具有相同RA-RNTI值的PDCCH,但是可以通过在不同初始下行链路BWP中监视PDCCH来接收与由UE本身发送的前导相对应的RAR。
III.RedCap UE的跳频方法
图23示出了图示时域中的物理上行链路共享信道的调度的图,而图24示出了图示频域中的物理上行链路共享信道的调度的图。
基于图23和图24,将描述UE发送物理上行链路共享信道(PUSCH)的方法。
UE可以通过物理上行链路共享信道来发送上行链路数据。UE可以使用在经由物理下行链路控制信道(PDCCH)的接收递送的下行链路控制信息(DCI)中调度物理上行链路共享信道的传输的方法(动态许可(DG))或者根据从基站预先配置的资源和传输方法来发送物理上行链路共享信道的方法(配置许可(CG))来发送上行链路数据。
经由UE的PDCCH接收递送的下行链路控制信息(DCI)可以包括PUSCH调度信息。该调度信息可以包括时域信息(下文中,时域资源指配(TDRA))和频域信息(频域资源指配(FDRA))。UE可以基于控制资源集和搜索空间信息来解释经由PDCCH接收递送的DCI,并且可以执行由DCI指示的操作。DCI可以包括用于调度物理上行链路共享信道(PUSCH)的DCI格式0_0、0_1或0_2之一。
由DCI格式0_0、0_1或0_2中的TDRA字段指示的PUSCH的时域信息包括以下内容。K2是从基站接收PDCCH的时隙与UE发送PUSCH的时隙之间的偏移值。起始和长度指示值(SLIV)是在由K2指示的时隙中通过联合编码PUSCH的起始符号索引(S)和PUSCH的符号长度(L)而获得的值。
当在时隙n中接收到用于调度PUSCH的DCI格式0_0、0_1或0_2时,UE确定为时隙floor(n*2μPUSCH/n*2μPDCCH)+K2。其中,μPUSCH和μPDCCH分别是调度PUSCH的小区和接收PDCCH的小区的子载波间隔(SCS)。
例如,参考图23(a),接收PDCCH的小区的子载波间隔和调度PUSCH的小区的子载波间隔相同,因此当UE在时隙n中接收PDCCH时,例如,当UE接收到k2值为4的指示时,UE确定调度PUSCH的时隙是时隙n+K2=n+4。
可以将A和B的两种映射类型应用于由UE发送的物理上行链路共享信道。通过PUSCH的起始符号索引和符号长度的联合编码获得的SLIV具有取决于PUSCH映射类型的不同值范围。在PUSCH映射类型A中,仅包括DMRS符号的资源分配是可能的,并且根据由更高层指示的值,DMRS符号位于时隙的第三OFDM符号或第四OFDM符号中。也就是说,在PUSCH映射类型A的情况下,PUSCH的起始符号索引(S)是0,并且根据DMRS符号的位置,PUSCH的长度(L)可以具有从4到14的值之一(对于扩展CP为12)。在PUSCH映射类型B的情况下,DMRS符号总是PUSCH的第一符号,并且因此S可以具有从0到13的值(对于扩展CP为11),并且L可以具有从1到14的值之一(对于扩展CP为12)。此外,一个PUSCH不能跨越时隙边界,因此S和L的值需要满足S+L14(对于扩展CP,为12)。
图23(b)图示了根据PUSCH映射类型的PUSCH示例。从顶部开始顺序地,UE确定第三符号是DMRS符号、起始符号索引(S)是0且长度(L)是7的映射类型A PUSCH;第四符号是DMRS符号、起始符号索引(S)是0且长度(L)是7的映射类型A PUSCH;以及第一符号是DMRS符号、起始符号索引(S)是5且长度(L)是5的映射类型B PUSCH被调度。由DCI格式0_0、0_1或0_2中的FDRA字段指示的PUSCH的频域信息可以根据频率资源分配类型被划分为两种类型。
第一类型是频率资源分配类型0,其中,通过根据为UE配置的BWP中包括的RB的数目组合固定数目的PRB来生成资源块组(RBG),并且以RBG为单位用位图指示UE,以便确定是否使用RBG。从更高层配置包括在一个RBG中的PRB的数目,并且随着包括在为UE配置的BWP中的RB的数目变得更大,配置更多的PRB。例如,参考图24(a),当为UE配置的BWP大小是72个PRB并且一个RBG包括4个PRB时,UE从PRB 0以升序将四个PRB确定为一个RBG。也就是说,如果根据RBG 0包括PRB 0至PRB 3并且RBG 1包括PRB4至PRB 7的顺序执行映射直到RBG 17,则UE每RBG接收1比特(0或1),总共18比特,以便确定是否使用对应的RBG中的PRB。在这种情况下,如果比特值为0,则UE确定不在RBG中的任何PRB中调度PUSCH,并且如果比特值为1,则UE确定在RBG中的所有PRB中调度PUSCH。可替代地,可以相反地应用比特值。
第二类型是频率资源分配类型1,并且可以指示关于根据UE的活动BWP或初始BWP的大小分配的连续PRB的信息。该信息是通过联合编码连续PRB的起始索引(S)和长度(L)获得的资源指示值(RIV)。例如,参考图24(b),如果UE的BWP大小是50个PRB并且从PRB2到PRB11调度PUSCH,则连续PRB的起始索引是2并且其长度是10。通过接收RIV=Nsize BWP*(L-1)+S=50*(10-1)+2=452,UE可以确定为其调度PUSCH的连续PRB的起始索引和长度分别是2和10。
仅对于用于调度PUSCH的DCI格式0_1或0_2,UE可以从更高层被配置为仅使用PUSCH的两种频率资源分配类型中的一种或动态地使用这两种类型。如果被配置为动态地使用两种类型,则UE可以经由DCI格式0_1或0_2中的FDRA字段的最高有效位(MSB)的1比特来确定类型之一以调度PUSCH。
支持被配置为支持上行链路URLLC传输等的基于许可(配置许可)的上行链路共享信道传输方案,并且该方案也被称为免许可传输。所配置的基于许可的上行链路传输方案是这样的方案,其中,当基站经由更高层(即,RRC信令)为UE配置可用于上行链路传输的资源时,UE通过对应的资源发送上行链路共享信道。根据经由DCI的激活或释放的可用性,该方案可以分为两种类型。
类型1-基于配置许可的传输方案是用于在更高层中配置用于预先配置的基于许可的传输的资源和传输方案的方案。
类型2-基于配置许可的传输方案是如下的方案:在更高层中配置所配置的基于许可的传输,其中,从通过物理下行链路控制信道递送的DCI指示用于传输的资源和方案。
所配置的基于许可的上行链路传输方案可以支持URLLC传输,并且因此支持在多个时隙中的重复传输,以便确保高可靠性。在这种情况下,冗余版本(RV)序列被配置有{0,0,0,0},{0,2,3,1}和{0,3,0,3}中的一个,并且在第n个重复传输中,使用对应于第(mod(n-1,4)+1)值的RV。配置有重复传输的UE可以仅在RV值为0的时隙中开始重复传输。然而,如果RV序列是{0,0,0,0},并且在8个时隙中执行重复传输,则不能在第8时隙中开始重复传输。当达到在更高层中配置的重复传输的数目时、当时段结束时、或者当接收到具有相同HARQ过程ID的UL许可时,UE终止重复传输。这里,UL许可是指用于调度PUSCH的DCI。
为了提高无线通信系统中基站和UE之间的物理上行链路共享信道的接收和传输可靠性,UE可以被配置有来自基站的上行链路共享信道的重复传输。这通过参考图25进行描述。
图25示出了图示根据示例的物理上行链路共享信道的重复传输的图。
参考图25,UE能够执行的PUSCH重复传输可以被划分为两种类型。
首先,UE的PUSCH重复传输类型A的传输过程如下。当UE通过用于调度PUSCH的PDCCH,从基站接收DCI格式0_1或0_2时,在K个连续时隙中PUSCH重复传输是可能的。这里,UE可以被配置有来自更高层的K值,或者K值可以被添加到DCI的TDRA字段以便被接收。例如,参考图25(a),如果假定UE在时隙n中接收用于调度PUSCH的PDCCH,并且从通过PDCCH接收的DCI格式接收作为K2值的2和作为K值的4,则UE在时隙n+K2(即n+2)中开始发送PUSCH,并且UE从时隙n+2到时隙n+2+K-1(即n+5)重复发送PUSCH。在这种情况下,在每个时隙中发送PUSCH的时间和频率资源与由DCI指示的时间和频率资源相同。也就是说,可以在时隙内的相同符号和PRB中发送PUSCH。
随后,用于支持低延迟PUSCH重复传输以便满足URLLC要求等的PUSCH重复传输类型B的UE传输过程如下。可以经由TDRA字段从基站向UE指示PUSCH的起始符号(S)和PUSCH的长度(L)。这里,使用所指示的起始符号和长度获得的PUSCH不是实际PUSCH,而是临时获得的PUSCH,并且被称为标称PUSCH。另外,可以经由TDRA字段向UE指示所指示的标称PUSCH的标称重复次数(N)。UE可以确定与经由TDRA字段指示的包括标称PUSCH的标称PUSCH一样多的标称重复次数(N)。这里,与标称PUSCH一样多的标称重复次数(N)具有相同的长度,即L,并且标称PUSCH在时间轴上是连续的而没有单独的符号。
UE可以从标称PUSCH中确定实际发送的(实际)PUSCH。可以基于一个或多个实际发送的(实际)PUSCH来确定一个标称PUSCH。基站可以为UE指示或配置在PUSCH重复传输类型B中不可用的符号。这被称为无效符号。UE可以从标称PUSCH中排除无效符号。如上所述,标称PUSCH在符号中连续确定,但是当排除无效符号时可以不连续地确定。可以基于除无效符号之外的一个标称PUSCH中的连续符号来确定实际发送的(实际)PUSCH。这里,如果连续符号跨越时隙边界,则可以基于边界划分和确定实际发送的(实际)PUSCH。
作为参考,无效符号可以至少包括由基站为UE配置的DL符号。
例如,参考图25(b),假定UE被调度有具有从第一时隙(时隙n)的第12个OFDM符号开始的5个符号的长度的PUSCH传输,并且被指示有四次类型B重复传输。标称PUSCH如下。第一标称PUSCH(标称#1)包括符号(n,11)、符号(n,12)、符号(n,13)、符号(n+1,0)和符号(n+1,1)。第二标称PUSCH(标称#2)包括符号(n+1,2)、符号(n+1,3)、符号(n+1,4)、符号(n+1,5)和符号(n+1,6)。第三标称PUSCH(标称#3)包括符号(n+1,7)、符号(n+1,8)、符号(n+1,9)、符号(n+1,10)和符号(n+1,11)。第四标称PUSCH(标称#4)包括符号(n+1,12)、符号(n+1,13)、符号(n+2,0)、符号(n+2,1)和符号(n+2,2)。这里,符号(n,K)表示时隙n的符号k。对于正常CP,符号k索引从0开始到13,对于扩展CP,符号k索引从0开始到11。
假定在时隙n+1的符号6和符号7中配置或指示无效符号。根据由基站配置或指示的无效符号,排除第二标称PUSCH(标称#2)的最后一个符号,并且排除第三标称PUSCH(标称#3)的第一符号。
第一标称PUSCH(标称#1)通过时隙边界被划分为两个实际发送的(实际)PUSCH(实际#1和实际#2)。通过组合除了无效符号之外的连续符号,将第二标称PUSCH(标称#2)和第三标称PUSCH(标称#3)划分为相应的实际发送的(实际)PUSCH(实际#3和实际#4)。最后,第四标称PUSCH(标称#4)通过时隙边界被划分为两个实际发送的(实际)PUSCH(实际#5和实际#6)。UE最终发送实际发送的(实际)PUSCH。
一个实际发送的(实际)PUSCH需要包括至少一个DMRS符号,并且当配置PUSCH重复传输类型B时,可以省略具有一个符号的全长的实际发送的(实际)PUSCH而不发送。这是因为在具有一个符号的实际发送的(实际)PUSCH的情况下,不能发送除了DMRS之外的信息。
为了获得频域中的分集增益,可以为UE配置跳频。
对于PUSCH重复传输类型A,可以为UE配置在时隙内执行跳频的时隙内跳频和针对每个时隙执行跳频的时隙间跳频中的一个。如果为UE配置时隙内跳频,则UE在用于PUSCH传输的时隙中在时域中将PUSCH分成两半,以便在调度的PRB中发送PUSCH的一半,并且在通过将偏移值添加到调度的PRB而获得的PRB中发送另一半。在这种情况下,经由更高层根据活动BWP大小配置两个或四个偏移值,并且可以经由DCI向UE指示其中一个值。如果为UE配置时隙间跳频,则UE在具有偶数时隙索引的时隙中的调度的PRB中发送PUSCH,并且在通过将偏移值与奇数时隙中的调度的PRB相加而获得的PRB中发送PUSCH。
对于PUSCH重复传输类型B,可以配置在标称PUSCH边界处执行跳频的重复间跳频和在每个时隙中执行跳频的时隙间跳频之一。如果为UE配置重复间跳频,则UE在调度的PRB中发送与奇数编号的标称PUSCH相对应的实际发送的(实际)PUSCH,并且在通过将偏移值添加到调度的PRB而获得的PRB中发送与偶数编号的标称PUSCH相对应的实际发送的(实际)PUSCH。在这种情况下,经由更高层根据活动BWP大小配置两个或四个偏移值,并且可以经由DCI向UE指示其中一个值。如果为UE配置时隙间跳频,则UE在调度的PRB中发送具有偶数时隙索引的时隙的实际发送的(实际)PUSCH,并且在通过将偏移值添加到调度的PRB而获得的PRB中发送奇数编号时隙的实际发送的(实际)PUSCH。
当执行PUSCH重复传输时,如果被调度用于PUSCH传输的符号在特定时隙中与半静态配置的DL符号或被配置用于SS/PBCH块接收的符号位置重叠,则UE不在对应时隙中执行重叠的PUSCH传输,并且不将传输延迟到后续时隙。
基于图26,将描述UE发送物理上行链路控制信道(PUCCH)的方法。
图26是图示物理上行链路控制信道的调度的图。
参考图26,当UE接收用于调度物理上行链路控制信道的DCI格式1_0、1_1或1_2时,UE需要发送调度的上行链路控制信道。物理上行链路控制信道可以包括上行链路控制信息(UCI),并且UCI可以包括HARQ-ACK、SR和CSI信息。HARQ-ACK信息可以是关于信道是否已被成功接收的两种类型的HARQ-ACK信息。当经由DCI格式1_0、1_1或1_2调度物理下行链路共享信道(PDSCH)时,第一类型可以指示用于物理下行链路共享信道(PDSCH)的接收是否成功的HARQ-ACK。当DCI格式1_0、1_1或1_2是指示半静态物理下行链路共享信道(SPS PDSCH)的释放的DCI时,第二类型可以指示用于DCI格式1_0、1_1或1_2的接收是否成功的HARQ-ACK。
为了发送用于递送HARQ-ACK的PUCCH,包括在DCI格式1_0、1_1或1_2中的PDSCH-to-HARQ_feedback定时指示符字段可以指示K1值,该K1值是关于需要发送调度的上行链路控制信道的时隙的信息的值。这里,K1值可以是非负整数值。DCI格式1_0的K1值可以指示{0,1,2,3,4,5,6,7}中的一个值。可以从更高层配置或设置能够由DCI格式1_1或1_2指示的K1值。
UE可以如下确定用于包括第一类型的HARQ-ACK信息的上行链路控制信道的传输的时隙。UE可以确定与对应于HARQ-ACK信息的物理下行链路共享信道(PDSCH)的最后一个符号重叠的上行链路时隙。当该上行链路时隙的索引为m时,UE在其中发送包括HARQ-ACK信息的物理上行链路控制信道的上行链路时隙可以为m+K1。这里,上行链路时隙的索引是基于发送上行链路控制信道的上行链路BWP的子载波间隔的值。
作为参考,如果UE配置有下行链路时隙聚合,则结束符号指示在接收到物理下行链路共享信道(PDSCH)的时隙之中的最后一个时隙中调度的PDSCH的最后符号。
参考图26,假定接收PDCCH的DL BWP的子载波间隔、调度PDSCH的DL BWP的子载波间隔以及发送PUCCH的UL BWP的子载波间隔相同。假定UE在时隙n中从基站接收用于PDSCH和PUCCH的调度的PDCCH,其中,由PDCCH递送的DCI指示K0=2和K1=3。如果在时隙n+K0(即n+2)中已经接收到PDSCH的最后一个符号,则UE需要在时隙n+2+K1(即n+5)中通过PUCCH发送PDSCH的HARQ-ACK。
为了确保NR系统中的宽覆盖,UE可以被配置为在2、4或8个时隙中重复发送长PUCCH(PUCCH格式1、3和4)。如果UE被配置为重复发送PUCCH,则在每个时隙中重复发送相同的UCI。这将参考图27进行描述。
图27是图示物理上行链路控制信道的重复传输的图。
参考图27,当PDSCH接收在时隙n中结束并且K1=2时,UE在时隙n+K1(即n+2)中发送PUCCH。在这种情况下,如果PUCCH重复发送的数目对于UE被配置并且被设置为Nrepeat PUCCH=4,则从时隙n+2到时隙n+5重复发送PUCCH。重复发送的PUCCH的符号配置是相同的。也就是说,重复发送的PUCCH从每个时隙中的相同符号开始,并且包括相同数目的符号。
为了获得频域中的分集增益,可以为UE配置跳频。可以配置在时隙内执行跳频的时隙内跳频和针对每个时隙执行跳频的时隙间跳频。如果为UE配置时隙内跳频,则UE在用于PUCCH传输的时隙中,在时域中将PUCCH分成两半,以便在第一PRB中发送PUCCH的一半,并且在第二PRB中发送另一半。在这种情况下,可以经由用于配置PUCCH资源的更高层为UE配置第一PRB和第二PRB。当为UE配置时隙间跳频时,UE在具有偶数编号的时隙索引的时隙中在第一PRB中发送PUCCH,并且在具有奇数编号的时隙索引的时隙中在第二PRB中发送PUCCH。
当执行PUCCH重复传输时,如果PUCCH传输所需的符号在特定时隙中与半静态配置的DL符号或被配置用于接收SS/PBCH块的符号位置重叠,则UE不在对应时隙中发送PUCCH,并且将传输延迟到后续时隙,使得如果PUCCH符号与半静态配置的DL符号或被配置用于接收SS/PBCH块的符号位置在对应时隙中不重叠,则UE发送PUCCH。
当发送PUSCH或PUCCH时,UE可以使用跳频方案来执行传输,以便获得频率分集增益。这里,跳频方案是指在第零PRB集合中发送PUSCH或PUCCH,并且在第一PRB集合中发送PUSCH或PUCCH。作为参考,在本公开的描述中,在第零PRB集合中发送的PUSCH或PUCCH被称为跳0,并且在第一PRB集合中发送的PUSCH或PUCCH被称为跳1。在本公开中,仅描述了直至两个跳(跳0和跳1),但是可以进一步增加跳数。
当UE发送PUSCH或PUCCH时,确定跳0的第零PRB集合和跳1的第一PRB集合的方法如下。
对于RRC连接之前的PUCCH,可以如下进行确定。作为参考,RRC连接之前的PUCCH是用于HARQ-ACK的传输的PUCCH,HARQ-ACK是包括Msg4的PDSCH接收成功响应。
UE从16个PUCCH资源当中选择一个PUCCH资源。在这种情况下,基于包括在用于PUCCH的调度的DCI格式中的PUCCH资源指示符或已经接收到DCI格式的控制信道元素(CCE)的索引来确定选择。如果所选择的PUCCH资源的索引是rPUCCH,则该索引可以具有值0、1、…、15。
如果rPUCCH是0,1,…,7当中的一个值,则所选PUCCH资源的跳0的第零PRB集合的索引是
Figure BDA0004107269170000781
并且跳1的第一PRB集合的索引是
Figure BDA0004107269170000782
如果rPUCCH是8、9、…、15当中的一个值,则所选择的PUCCH资源的跳0的第零PRB集合的索引是
Figure BDA0004107269170000783
并且跳1的第一PRB集合的索引是
Figure BDA0004107269170000784
这里,Nsize BWP是包括在用于PUCCH的传输的活动BWP中的PRB的数目。这里,如果PUCCH发送Msg4 PDSCH的HARQ-ACK,则活动BWP是初始UL BWP。该初始UL BWP是用于UE的小区接入的UL BWP,并且在系统信息块(SIB1)中配置。NCS是初始循环移位索引的数目,并且RBBWP offset和初始循环移位索引如表4所示。
[表4]
Figure BDA0004107269170000791
这里,如果跳0的第零PRB集合开始的RB的索引是0,则这指示UE的活动BWP的最低PRB。作为参考,如果PUCCH发送Msg4PDSCH的HARQ-ACK,则活动BWP是初始UL BWP。也就是说,跳0的第零PRB集合开始的RB的索引被解释为初始UL BWP的索引。
对于RRC连接之后的PUCCH,可以如下进行确定。
PUCCH的跳0的第零PRB集合的最低PRB的索引和跳1的第一PRB集合的最低PRB的索引可以经由RRC信号被配置为用于UE的PUCCH资源。也就是说,如果用一个PUCCH资源指示,则UE可以通过使用在PUCCH资源中配置的跳0的第零PRB集合的最低PRB的索引和跳1的第一PRB集合的最低PRB的索引来发送跳0和跳1。这里,如果PRB的索引是0,则这指示UE的活动BWP的最低PRB。也就是说,PRB的索引被解释为UE的活动BWP的索引。
对于PUSCH,可以如下进行确定。
UE可以经由用于调度PUSCH的DCI或用于激活PUSCH的DCI/RRC信号来确定跳0的第零PRB集合。这里,用于调度PUSCH的DCI或用于激活PUSCH的DCI/RRC信号可以包括频域资源指配(FDRA)字段。FDRA字段可以包括跳0的第零PRB集合开始的RB的索引以及连续RB的数目。这里,如果跳0的第零PRB集合开始的RB的索引是0,则这指示UE的活动BWP的最低PRB。也就是说,跳0的第零PRB集合开始的RB的索引被解释为UE的活动BWP的索引。UE需要确定跳1的第一PRB集合开始的RB的索引。这可以经由以下等式来确定。
Figure BDA0004107269170000801
这里,RBstart(0)表示跳0的第零PRB集合开始的RB的索引,而RBstart(1)表示跳1的第一PRB集合开始的RB的索引。RBoffset表示跳0的第零PRB集合与跳1的第一PRB集合之间的PRB间隙。基站可以为UE配置和指示RBoffset,并且RBoffset的值可以是0,1,…,NBWP size-1中的一个。NBWP size表示包括在UE的活动BWP中的PRB的数目。如果跳1的第一PRB集合开始的RB的索引是0,其中,使用等式获得该索引,则这指示UE的活动BWP的最低PRB。也就是说,跳1的第一PRB集合开始的RB的索引(RBstart(1))被解释为UE的活动BWP的索引。
当PUSCH发送Msg3时,RBoffset可以具有以下值之一。如果初始UL BWP的大小小于50个RB,则RBoffset可以是
Figure BDA0004107269170000802
Figure BDA0004107269170000803
之中的一个值,并且如果初始UL BWP的大小大于50个RB,则RBoffset可以是
Figure BDA0004107269170000804
Figure BDA0004107269170000805
之中的一个值。这里,对于Msg3 PUSCH,由于初始UL BWP是活动BWP,因此NBWP size是初始UL BWP中包括的RB的数目。
在上述跳频方案中,跳0的第零PRB集合和跳1的第一PRB集合位于活动BWP内。作为参考,在RRC连接之前的PUSCH(即,Msg3PUSCH)和PUCCH(即,发送Msg4 PDSCH的HARQ-ACK的PUCCH)的情况下,活动BWP是初始UL BWP。然而,在以下情况下,UE可能需要在除了活动BWP之外的频带中的跳频。
第一示例是UE支持的RF带宽显著小于小区支持的带宽的情况。例如,参考图28。
图28是图示跳频的图。
参考图28,假定UE的RF带宽支持高达20MHz,并且小区支持的带宽支持100MHz。由于UE的RF带宽支持高达20MHz,因此UE的活动BWP可以仅支持高达20MHz。因此,如果根据上述方案使用跳频方案,则可获得的频率分集增益可能很小。
-在第二示例中,即使UE支持的RF带宽不小,UE也需要保持小的活动BWP的带宽以降低能耗。在这种情况下,如在第一示例中,如果根据上述方案使用跳频方案,则可获得的频率分集增益可能很小。
为了基于如上所述的活动BWP内的跳频来提高传输,可以考虑以下跳频。
图29是图示宽带跳频的图。
参考图29(a),UE的跳0的第一PRB集合和跳1的第二PRB集合可以远离特定频率。在这种情况下,一个跳可以位于活动BWP内。更具体地,跳0的第零PRB集合位于UE的活动BWP内,但是跳1的第一PRB集合可以位于UE的活动BWP之外的频带中。相反,跳1的第一PRB集合位于UE的活动BWP内,但是跳0的第零PRB集合可以位于UE的活动BWP之外的频带中。作为另一示例,参考图18(b),UE的跳0的第一PRB集合和跳1的第二PRB集合可以远离特定频率。在这种情况下,两个跳可以位于活动BWP之外的频带中。更具体地,跳0的第零PRB集合和跳1的第一PRB集合可以位于UE的活动BWP之外的频带中。
如图29的示例所示,公开了UE通过其在活动BWP之外的频带中发送一个或两个跳的信令方案。
对于RRC连接之前的PUCCH,可以如下进行确定。
如果rPUCCH是0,1,…,7当中的一个值,则所选PUCCH资源的跳0的第零PRB集合的索引是
Figure BDA0004107269170000821
而跳1的第一PRB集合的索引是
Figure BDA0004107269170000822
如果rPUCCH是8,9,…,15当中的一个值,则所选的PUCCH资源的跳0的第零PRB集合的索引是
Figure BDA0004107269170000823
而跳1的第一PRB集合的索引是
Figure BDA0004107269170000824
这里,NBWP size是包括在用于PUCCH的传输的特定BWP中的PRB的数目。这里,如果PUCCH发送Msg4 PDSCH的HARQ-ACK,则特定BWP是正常UE的初始UL BWP。正常UE的初始UL BWP是用于正常UE的小区接入的UL BWP,并且在系统信息块(SIB1)中配置。作为参考,上述第一或第二示例中的UE具有带宽小于正常UE的初始UL BWP的带宽的活动BWP。也就是说,UE可以基于大于UE可以具有的活动BWP的带宽的带宽来确定跳0的第零PRB集合和跳1的第一PRB集合。这里,如果跳0的第零PRB集合开始的RB的索引是0,则这指示特定BWP的最低PRB。也就是说,如果跳0的第零PRB集合开始的RB的索引是0,则这指示正常UE的初始UL BWP的最低PRB。
对于RRC连接之后的PUCCH,可以如下进行确定。
PUCCH的跳0的第零PRB集合的最低PRB的索引和跳1的第一PRB集合的最低PRB的索引可以经由RRC信号被配置为用于UE的PUCCH资源。也就是说,如果用一个PUCCH资源指示,则UE可以通过使用在PUCCH资源中配置的跳0的第零PRB集合的最低PRB的索引和跳1的第一PRB集合的最低PRB的索引来发送跳0和跳1。这里,如果PRB的索引是0,则这指示UE的特定BWP的最低PRB。也就是说,PRB的索引被解释为UE的特定BWP的索引。这里,特定BWP可以是以下之一。
作为特定BWP的示例,UE可以配置有来自基站的特定BWP。UE可以配置有来自基站的特定BWP开始的RB的索引或包括在BWP中的PRB的数目。在这种情况下,可以基于UE的活动BWP的起始RB索引来配置特定BWP的起始RB索引。也就是说,可以配置特定BWP的起始RB索引与UE的活动BWP的起始RB索引之间的差。
作为特定BWP的示例,UE可以假定小区的最大BWP。小区的最大BWP可以如下确定。在初始接入小区时,UE配置有与小区公共PRB索引0相对应的PRB的频率位置。从小区公共PRB索引0开始的275个连续PRB可以被分组在一起,以便被确定为小区的最大BWP。也就是说,任何BWP都被包括在小区的最大BWP中。通过以这种方式使用小区的最大BWP,基站可以执行跳频并且以小区的任意频率向UE发送PUCCH。
作为特定BWP的示例,UE可以使用正常UE的初始UL BWP。正常UE的初始UL BWP是用于正常UE的小区接入的UL BWP,并且在系统信息块(SIB1)中配置。作为参考,上述第一或第二示例中的UE具有带宽小于正常UE的初始UL BWP的带宽的活动BWP。
对于PUSCH,可以如下进行确定。
(1)第一实施例
图30是图示根据本公开的实施例的宽带跳频的图。
参考图30,UE可以经由用于调度PUSCH的DCI或用于激活PUSCH的DCI/RRC信号来确定跳0的第零PRB集合。这里,用于调度PUSCH的DCI或用于激活PUSCH的DCI/RRC信号可以包括频域资源指配(FDRA)字段。FDRA字段可以包括跳0的第零PRB集合开始的RB的索引以及连续RB的数目。这里,如果跳0的第零PRB集合开始的RB的索引是0,则这指示UE的活动BWP的最低PRB。也就是说,跳0的第零PRB集合开始的RB的索引被解释为UE的活动BWP的索引。UE需要确定跳1的第一PRB集合开始的RB的索引。这可以经由以下等式来确定。
RBstart(1)=(RBstart(O)+RBoffset)
这里,RBstart(0)表示跳0的第零PRB集合开始的RB的索引,而RBstart(1)指示跳1的第一PRB集合开始的RB的索引。RBoffset表示跳0的第零PRB集合与跳1的第一PRB集合之间的PRB间隙。基站可以为UE配置和指示RBoffset,并且RBoffset的值可以是正数、0和负数中的一个。更具体地,RBoffset的值可以是-274,-273,...,0,...,273和274中的一个。如果跳1的第一PRB集合开始的RB的索引是0,其中,使用等式获得索引,则这指示UE的活动BWP的最低PRB。也就是说,跳1的第一PRB集合开始的RB的索引(RBstart(1))被解释为UE的活动BWP的索引。如果跳1的第一PRB集合开始的RB的索引是负数,则这指示比UE的活动BWP的频带更低的频带的PRB。例如,如果跳1的第一PRB集合开始的RB的索引是-A,则这指示比UE的活动BWP的最低PRB低A个PRB的PRB。
(2)第二实施例
图31是图示根据本公开的另一实施例的宽带跳频的图。
参考图31,UE可以经由用于调度PUSCH的DCI或用于激活PUSCH的DCI/RRC信号来确定跳0的第零PRB集合。这里,用于调度PUSCH的DCI或用于激活PUSCH的DCI/RRC信号可以包括频域资源指配(FDRA)字段。FDRA字段可以包括跳0的第零PRB集合开始的RB的索引以及连续RB的数目。这里,如果跳0的第零PRB集合开始的RB的索引是0,则这指示UE的活动BWP的最低PRB。也就是说,跳0的第零PRB集合开始的RB的索引被解释为UE的活动BWP的索引。UE需要确定跳1的第一PRB集合开始的RB的索引。
这可以经由以下等式来确定。
Figure BDA0004107269170000851
这里,RBstart(0)表示跳0的第零PRB集合开始的RB的索引,而RBstart(1)指示跳1的第一PRB集合开始的RB的索引。RBoffset表示跳0的第零PRB集合与跳1的第一PRB集合之间的PRB间隙。基站可以为UE配置和指示RBoffset。UE可以被配置有来自基站的特定BWP,其中,跳1的第一PRB集合可以位于该特定BWP中。该特定BWP可以包括NVBWP size个PRB。该特定BWP可以包括UE的活动BWP。RBoffset VBWP表示UE的活动BWP的最低PRB的索引与特定BWP的最低索引之间的差。
如果跳1的第一PRB集合开始的RB的索引是0,其中,使用等式获得索引,则这指示UE的活动BWP的最低PRB。也就是说,跳1的第一PRB集合开始的RB的索引(RBstart(1))被解释为UE的活动BWP的索引。如果跳1的第一PRB集合开始的RB的索引是负数,则这指示比UE的活动BWP的频带更低的频带的PRB。例如,如果跳1的第一PRB集合开始的RB的索引是-A,则这指示比UE的活动BWP的最低PRB低A个PRB的PRB。
(3)第三实施例
图32是图示根据本公开的另一实施例的宽带跳频的图。
参考图32,在上述第一或第二实施例中,UE确定跳0的第零PRB集合和跳1的第一PRB集合的频率位置。在这种情况下,UE的活动BWP是固定的。本公开的第三实施例提出了一种UE在频带中移动活动BWP的方法。UE可以经由用于调度PUSCH的DCI或用于激活PUSCH的DCI/RRC信号来确定跳0的第零PRB集合。这里,用于调度PUSCH的DCI或用于激活PUSCH的DCI/RRC信号可以包括频域资源指配(FDRA)字段。FDRA字段可以包括跳0的第零PRB集合开始的RB的索引以及连续RB的数目。这里,如果跳0的第零PRB集合开始的RB的索引是0,则这指示UE的活动BWP的最低PRB。也就是说,跳0的第零PRB集合开始的RB的索引被解释为UE的活动BWP的索引。UE需要确定跳1的第一PRB集合开始的RB的索引。
为此,UE的活动BWP的频域可如下改变。
Figure BDA0004107269170000861
其中,NBWP start,μ(0)表示已经发送跳0的活动BWP的最低PRB索引,而NBWP start,μ(1)表示用于跳1的传输的新活动BWP的最低PRB索引。RBoffset BWP表示已经发送跳0的活动BWP的最低PRB索引与用于传输跳1的新活动BWP的最低PRB索引之间的间隙。Ncell-BW size是小区中包括的PRB的数目。跳1的第一PRB集合开始的RB索引如下。
RBstart(1)=RBstart(O)
也就是说,跳0的第零PRB集合开始的RB索引和跳1的第一PRB集合开始的RB索引是相同的。然而,由于发送跳0的活动BWP和发送跳1的活动BWP不同,因此以不同的频率发送两个跳。也就是说,如果跳1的第一PRB集合开始的RB的索引是0,则这指示UE的新活动BWP的最低PRB。也就是说,跳1的第一PRB集合开始的RB的索引被解释为UE的新活动BWP的索引。
(4)第四实施例
图33是图示根据本公开的实施例的宽带跳频的图。
参考图33,在前述第三实施例中,UE根据RBoffset BWP值在频域中移动活动BWP。在第四实施例中,通过在第零活动BWP中发送跳0并将跳1改变为第二活动BWP来启用跳频。UE可以经由用于调度PUSCH的DCI或用于激活PUSCH的DCI/RRC信号来确定跳0的第零PRB集合。这里,用于调度PUSCH的DCI或用于激活PUSCH的DCI/RRC信号可以包括频域资源指配(FDRA)字段。FDRA字段可以包括跳0的第零PRB集合开始的RB的索引以及连续RB的数目。这里,如果跳0的第零PRB集合开始的RB的索引是0,则这指示UE的活动BWP的最低PRB。也就是说,跳0的第零PRB集合开始的RB的索引被解释为UE的活动BWP的索引。UE需要确定跳1的第一PRB集合开始的RB的索引。UE可以被指示或配置有第二活动BWP,以便确定跳1的第一PRB集合开始的RB的索引。这里,第二活动BWP可以具有与发送跳0的活动BWP的频域或子载波间隔不同的频域或子载波间隔。UE可以通过将由FDRA字段指示的先前获得的RB的起始索引解释为第二活动BWP的索引来获得跳1的第一PRB集合的起始索引。跳1的第一PRB集合中包括的PRB的数目等于跳0的第零PRB集合中包括的PRB的数目。
在上述第一和第二实施例中,UE在UE的RF带宽之外的频带中发送信道和信号。在这种情况下,UE的RF需要从先前频带中的传输移动到新频带中的传输。用于此的时间可以被称为RF切换时间。UE需要足够的RF切换时间。也就是说,基站应当确保UE有足够的RF切换时间。
RF切换时间可以以时间为单位给出。例如,RF切换时间可以以x毫秒(ms)或x微秒(us)来配置。可替代地,RF切换时间可以被给出为x个样本。在这种情况下,如果一个样本的持续时间以Ts(秒)表示,则其值为Ts=1/(Δfref·Nf,ref)),其中Δfref=15·103Hz并且Nf,ref=2048。如果一个样本的持续时间以Tc(秒)表示,则其值为Tc=1/((Δfmax·Nmax)),其中Δfmax=480·103,Nf=4096。
可以针对每个频带不同地配置持续时间。UE可以确定与作为时间单元给出的值相对应的符号的数目。例如,如果给定值是x ms,则UE可以通过将x ms除以一个符号长度(symbol_duration)来确定与x ms相对应的符号的数目。也就是说,符号的数目是x ms/symbol_duration。作为参考,可以如下获得symbol_duration。
当使用正常CP时,OFDM符号的长度对于每个符号可以是不同的。这是因为循环前缀(CP)的长度是不同的。更具体地,当使用正常CP时,CP长度如下所示。如果子帧中的OFDM符号索引是0或7*2μ,则CP长度是144*κ*2+16*κ,并且对于剩余的OFDM符号索引,CP长度是144*κ*2。其中,μ是子载波间隔配置,如果子载波间隔为15KHz,则其为0,如果子载波间隔为30KHz,则其为1,如果子载波间隔为60KHz,则其为2,而如果子载波间隔为120KHz,则其为3。此外,κ=Ts/Tc=64。
符号长度中的短长度可以用作用于获得符号数目的symbol_duration。也就是说,symbol_duration是144*κ*2*Tc(秒)。短长度的使用是为了获得用于确保RF切换时间的最小符号。
作为另一示例,当发送上行链路信道时,UE可以使用不同的后续波束来执行传输,以便获得波束分集。在这种情况下,UE需要时间来执行从第一波束到第二波束的波束切换。这可以被称为波束切换时间。UE应当满足波束切换时间。为此,基站可以类似于RF切换时间来配置UE的波束切换所需的时间,并且UE可以确定波束切换时间所需的符号数目。
在本公开的以下描述中,用于确保RF切换时间或波束切换时间的符号数目由G表示。作为参考,如果UE需要通过跳频进行RF切换并且需要通过波束改变进行波束切换,则可以基于RF切换时间或波束切换时间的总和或最大值来确定G值。UE不能在G个符号期间发送上行链路信号。
本公开要实现的任务是一种当发送上行链路信道或信号时,布置不能发送上行链路信号/信道的G个符号的方法。下面公开了用于此的方法。
另外,在本公开中,为了方便起见,将描述布置G个符号以满足跳频之间的RF切换时间的方法。该方法可以被解释为通过用波束改变代替跳频来布置G个符号以满足波束切换时间的方法。
图34图示了根据示例的PUSCH重复类型B。
参考图34,UE被调度为从时隙0的符号8(S=8)开始将长度为4(L=4)的PUSCH重复四次(K=4)。如图34(a)所示,UE可以通过捆绑从时隙0的符号8开始的每个4个符号集合来生成4个标称重复。这里,标称重复0包括时隙0的符号8、9、10和11,标称重复1包括时隙0的符号12和13以及时隙1的符号0和1,标称重复2包括时隙1的符号2、3、4和5,并且标称重复3包括时隙1的符号6、7、8和9。
如图34(b)所示,在时隙边界处划分标称重复(尽管图中未示出,但是可以在UL传输无效的符号周围发生划分),在一个时隙中组合连续符号,并且因此可以生成实际重复。参考图34(b),标称重复1可以被划分为两个实际重复。因此,UE可以用5个实际重复来发送PUSCH。更具体地,实际重复0包括时隙0的符号8、9、10和11,实际重复1包括时隙0的符号12和13,实际重复2包括时隙1的符号0和1,实际重复3包括时隙1的符号2、3、4和5,而实际重复4包括时隙1的符号6、7、8和9。
在随后的附图中,仅示出了实际重复的索引。也就是说,如果指示0,则这显示0的实际重复。
在图34中,UE针对每个标称重复执行跳频。也就是说,在跳0的第零PRB集合中发送偶数编号的索引的标称重复,并且在跳1的第一PRB集合中发送奇数编号的索引的标称重复。为了便于描述本公开,针对每个标称重复描述了跳频,但是本公开的方案适用于其它跳频方案。
UE需要G个符号用于在跳频期间的RF切换。也就是说,在跳0的第零PRB集合中的传输与跳1的第一PRB集合1中的传输之间需要至少G个符号。公开了一种用于确保G个符号的方案。图35被参考为本公开的PUSCH重复类型B的第一实施例。
图35示出了图示根据本公开的实施例的间隙符号被布置在类型B PUSCH重复中的在前标称重复中的图。
参考图35,UE可以不在紧接在跳频之前的G个符号中发送PUSCH,并且将这些符号用作间隙。参考图35(a),如果G=1,则UE可以不在紧接在跳频之前的一个符号中发送PUSCH,并且可以使用该符号作为用于RF切换的间隙。参考图35(b),如果G=2,则UE可以不在紧接在跳频之前的两个符号中发送PUSCH,并且可以使用这些符号作为用于RF切换的间隙。跳频发生在标称重复0(时隙0的符号8、9、10和11)和标称重复1(时隙0的符号12和13以及时隙1的符号0和1)之间。因此,根据本公开的实施例,紧接在跳频之前的标称重复0的最后G个符号可以被确定为不发送PUSCH的符号。因此,当确定实际重复时,可以排除不发送PUSCH的符号。(当确定实际重复时,可以将不发送PUSCH的符号确定为无效符号)。
参考图35(a),当G=1时,时隙0的符号11、时隙1的符号1和时隙1的符号5可以被确定为不发送PUSCH的符号。因此,UE可以通过组合时隙0的符号8、9和10来配置实际重复0,通过组合时隙0的符号12和13来配置实际重复1,通过组合时隙1的符号2、3和4来配置实际重复2,并且通过组合时隙1的符号6、7、8和9来配置实际重复3。作为参考,由于时隙1的符号0是1个符号,因此不发送PUSCH。该符号被称为孤立符号。
参考图35(b),当G=2时,时隙0的符号10和11、时隙1的符号0和1以及时隙1的符号4和5可以被确定为不发送PUSCH的符号。因此,UE可以通过组合时隙0的符号8和9来配置实际重复0,通过组合时隙0的符号12和13来配置实际重复1,通过组合时隙1的符号2和3来配置实际重复2,并且通过组合时隙1的符号6、7、8和9来配置实际重复3。
本公开的PUSCH重复类型B的第二实施例如图36所示。
图36示出了图示根据本公开的实施例的间隙符号被布置在类型B PUSCH重复中的后续标称重复中的图。
参考图36,UE可以不在紧接在跳频之后的G个符号中发送PUSCH,并且使用这些符号作为用于RF切换的间隙。参考图36(a),如果G=1,则UE可以不在紧接在跳频之后的一个符号中发送PUSCH,并且可以使用该符号作为用于RF切换的间隙。参考图36(b),如果G=2,则UE可以不在紧接在跳频之后的两个符号中发送PUSCH,并且可以使用这些符号作为用于RF切换的间隙。跳频发生在标称重复0(时隙0的符号8、9、10和11)和标称重复1(时隙0的符号12和13以及时隙1的符号0和1)之间。因此,根据本公开的实施例,紧接在跳频之后的标称重复1的前G个符号可以被确定为不发送PUSCH的符号。因此,当确定实际重复时,可以排除不发送PUSCH的符号。(当确定实际重复时,可以将不发送PUSCH的符号确定为无效符号)。
参考图36(a),当G=1时,时隙0的符号12、时隙1的符号2和时隙1的符号6可以被确定为不发送PUSCH的符号。因此,UE可以通过组合时隙0的符号8、9、10和11来配置实际重复0,通过组合时隙1的符号0和1来配置实际重复1,通过组合时隙1的符号3、4和5来配置实际重复2,以及通过组合时隙1的符号7、8和9来配置实际重复3。作为参考,由于时隙0的符号13是1个符号,因此不发送PUSCH。该符号被称为孤立符号。
参考图36(b),当G=2时,时隙0的符号12和13、时隙1的符号2和3、以及时隙1的符号6和7可以被确定为不发送PUSCH的符号。因此,UE可以通过组合时隙0的符号8、9、10和11来配置实际重复0,通过组合时隙1的符号0和1来配置实际重复1,通过组合时隙1的符号4和5来配置实际重复2,并且通过组合时隙1的符号8和9来配置实际重复3。
当与第一实施例相比时,第二实施例具有以下优点。当诸如在URLLC系统中需要低延迟时,优选的是在尽可能多的在前(在时间上在前)符号中发送PUSCH。当比较第一实施例的第一实际重复中包括的符号的数目和第二实施例的第一实际重复中包括的符号的数目时,由于在第二实施例中没有用作间隙的符号,因此可以使用更多的符号来发送PUSCH。因此,基站具有在较早时间点正确接收PUSCH的高概率。
然而,在第一实施例和第二实施例中,G个符号在一个标称重复中不用于PUSCH传输,因此重复具有不同数目的符号。例如,在图35(b)中,实际重复0、1和2占用2个符号,但是实际重复3占用4个符号。因此,PUSCH接收性能可能由于重复之间的符号数目的差而劣化。
本公开的PUSCH重复类型B的第三实施例如图37所示。
图37是图示根据本公开的实施例的间隙符号被分布式地布置在类型B PUSCH重复中的图。
参考图37,UE可以不在紧接在跳频之前的f(G/2)个符号中发送PUSCH,并且可以不在紧接在跳频之后的G-f(G/2)个符号中发送PUSCH。f(G/2)是floor(G/2)、ceil(G/2)和round(G/2)中的至少一种。也就是说,在第三实施例中,能够通过将可用于紧接在跳频之前的标称重复和紧接在跳频之后的标称重复的相同数目的符号不用于PUSCH传输来减小重复之间的符号数目的差。
参考图37,当G=2时,时隙0的符号11和12、时隙1的符号1和2、以及时隙1的符号5和6可以被确定为不发送PUSCH的符号。因此,UE可以通过组合时隙0的符号8、9和10来配置实际重复0,通过组合时隙1的符号3和4来配置实际重复1,并且通过组合时隙1的符号7、8和9来配置实际重复2。作为参考,由于时隙0的符号13是1个符号,因此不发送PUSCH。另外,由于时隙1的符号0是1个符号,因此不发送PUSCH。
参考图37,根据第三实施例,可以识别出UE的每次重复的符号数目相似。在图37中,实际重复0和2占用3个符号,并且实际重复1占用2个符号。然而,在图37中,时隙0的符号13和时隙1的符号0是不发送PUSCH的孤立符号。因此,减少了用于PUSCH的符号的总数。需要一种解决此问题的方法。
作为本公开的PUSCH重复类型B的第四实施例,UE可以将紧接在跳频之前的实际重复的符号的数目与紧接在跳频之后的实际重复的符号的数目进行比较,以便确定不发送PUSCH的G个符号。这里,首先在具有较大数目的符号的实际重复中,一些或所有符号可以被确定为不发送PUSCH的符号。具体方法如下。
作为第一方法,UE将紧接在跳频之前的实际重复的符号的数目与紧接在跳频之后的实际重复的符号的数目进行比较,以便在具有更大数目的符号的实际重复中将G个符号确定为不发送PUSCH的符号。这里,当紧接在跳频之前的实际重复的符号的数目是N1,并且紧接在跳频之后的实际重复的符号的数目是N2时,可以如下确定G个符号。
-如果N1≥N2,则将紧接在跳频之前的实际重复的最后G个符号确定为不发送PUSCH的符号。
-如果N1<N2,则将紧接在跳频之后的实际重复的前G个符号确定为不发送PUSCH的符号。
作为第二方法,UE将紧接在跳频之前的实际重复的符号的数目(N1)与紧接在跳频之后的实际重复的符号的数目(N2)进行比较,以便在具有更大数目的符号的实际重复中确定一个符号是不发送PUSCH的符号。如果实际重复是紧接在跳频之前的实际重复,则该一个符号是实际重复的最后一个符号,并且如果实际重复是紧接在跳频之后的实际重复,则该一个符号是实际重复的第一个符号。重复该操作,直到获得G个符号。更具体地,如下获得G个符号。
-假定g1=0和g2=0。
-如果g1+g2<G,则重复下述过程。如果N1-g1≥N2-g2,则g1=g1+1。如果N1-g1<N2-g2,则g2=g2+1。
-紧接在跳频之前的实际重复的最后g1个符号被确定为不发送PUSCH的符号。
-紧接在跳频之后的实际重复的前g2个符号被确定为不发送PUSCH的符号。
作为另一第三方法,可以如下确定G个符号。
-如果N1≥N2且N1-N2≥G,则紧接在跳频之前的实际重复的最后G个符号被确定为不发送PUSCH的符号。
-如果N1≥N2且N1-N2<G,则紧接在跳频之前的实际重复的最后N1-N2+f((G-(N1-N2))/2)个符号被确定为不发送PUSCH的符号,并且紧接在跳频之后的实际重复的前G-(N1-N2)-f((G-(N1-N2))/2)个符号被确定为不发送PUSCH的符号。
-如果N1<N2且N2-N1≥G,则紧接在跳频之后的实际重复的前G个符号被确定为不发送PUSCH的符号。
-如果N1<N2且N2-N1<G,紧接在跳频之前的实际重复的最后G-(N2-N1)-f((G-(N2-N1))/2)个符号被确定为不发送PUSCH的符号,并且紧接在跳频之后的实际重复的前N2-N1+f((G-(N2-N1))/2)个符号被确定为不发送PUSCH的符号。
本公开的PUSCH重复类型B的第四实施例如图38所示。
图38示出了图示根据本公开的实施例的间隙符号被布置在类型B PUSCH重复中具有大量符号的标称重复中的图。
根据第一方法,UE如下确定不发送PUSCH的符号。首先,UE假定G=0(不考虑间隙)并获得实际重复。这里,所获得的实际重复如图34(b)所示。这里,所获得的实际重复是中间过程,并且为了方便起见,被称为中间实际重复,并且如下获得根据不发送PUSCH的符号的实际发送的实际重复。
根据图34(b),存在五个中间实际重复,并且其索引是0、1、2、3和4。跳频发生在中间实际重复0和1之间,跳频发生在中间实际重复2和3之间,并且跳频发生在中间实际重复3和4之间。首先,确定在时间上最提前的跳频间隙。中间实际重复0包括4个符号,并且中间实际重复1包括2个符号。因此,包括更多符号的中间实际重复0的最后G个符号被确定为不发送PUSCH的符号。确定在时间上下一个最提前的跳频间隙。中间实际重复2包括2个符号,并且中间实际重复3包括4个符号。因此,包括更多符号的中间实际重复3的前G个符号被确定为不发送PUSCH的符号。最后,确定时间上最晚跳频的间隙。中间实际重复3包括3个符号(当G=1时,参考图38(a))或2个符号(当G=2时,参考图38(b)),并且中间实际重复4包括4个符号。因此,包括更多符号的中间实际重复4的前G个符号被确定为不发送PUSCH的符号。UE可以通过从中间实际重复中排除不发送PUSCH的所确定的符号来确定实际重复。
根据本公开的PUSCH重复类型B的第四实施例,具有较长长度的实际重复中的一些符号被确定为不发送PUSCH的符号。因此,总体上,减小了实际重复的长度。因此,一个实际重复不能具有较低的码率。需要一种解决此问题的方法。
作为本公开的PUSCH重复类型B的第五实施例,UE可以将紧接在跳频之前的实际重复的符号的数目与紧接在跳频之后的实际重复的符号的数目进行比较,以便确定不发送PUSCH的G个符号。这里,首先在具有较小数目的符号的实际重复中,一些或所有符号可以被确定为不发送PUSCH的符号。具体方法如下。
作为第一方法,UE将紧接在跳频之前的实际重复的符号的数目与紧接在跳频之后的实际重复的符号的数目进行比较,以便在具有较少符号数目的实际重复中确定G个符号是不发送PUSCH的符号。这里,当紧接在跳频之前的实际重复的符号的数目是N1,并且紧接在跳频之后的实际重复的符号的数目是N2时,可以如下确定G个符号。
-如果N1≥N2,则紧接在跳频之后的实际重复的前G个符号被确定为不发送PUSCH的符号。
如果N1<N2,则紧接在跳频之前的实际重复的最后G个符号被确定为不发送PUSCH的符号。
-作为第二方法,UE将紧接在跳频之前的实际重复的符号的数目(N1)与紧接在跳频之后的实际重复的符号的数目(N2)进行比较,以便在具有较少符号数目的实际重复中确定一个符号是不发送PUSCH的符号。如果实际重复是紧接在跳频之前的实际重复,则该一个符号是实际重复的最后一个符号,并且如果实际重复是紧接在跳频之后的实际重复,则该一个符号是实际重复的第一个符号。重复该操作,直到获得G个符号。更具体地,如下获得G个符号。
-假定g1=0和g2=0。
-如果g1+g2<G,则重复下述过程。如果N1-g1≥N2-g2,则g2=g2+1。如果N1-g1<N2-g2,则g1=g1+1。
-紧接在跳频之前的实际重复的最后g1个符号被确定为不发送PUSCH的符号。
-紧接在跳频之后的实际重复的前g2个符号被确定为不发送PUSCH的符号。
作为另一第三方法,可以如下确定G个符号。
-如果N1≥N2且N2≥G,则紧接在跳频之后的实际重复的前G个符号被确定为不发送PUSCH的符号。
-如果N1≥N2且N2<G,则紧接在跳频之后的实际重复的所有N2个符号被确定为不发送PUSCH的符号,并且紧接在跳频之前的实际重复的最后G-N2个符号被确定为不发送PUSCH的符号。
-如果N1<N2且N1≥G,紧接在跳频之前的实际重复的最后G个符号被确定为不发送PUSCH的符号。
-如果N1<N2且N1<G,紧接在跳频之前的实际重复的所有N1个符号被确定为不发送PUSCH的符号,并且紧接在跳频之后的实际重复的前G-N1个符号被确定为不发送PUSCH的符号。
本公开的PUSCH重复类型B的第五实施例如图39所示。
图39示出了图示根据本公开的实施例的间隙符号被布置在类型B PUSCH重复中具有少量符号的标称重复中的图。
根据第一方法,UE如下确定不发送PUSCH的符号。首先,UE假定G=0(不考虑间隙)并获得实际重复。这里,所获得的实际重复如图34(b)所示。这里,所获得的实际重复是中间过程,并且为了方便起见,被称为中间实际重复,并且如下获得根据不发送PUSCH的符号的实际发送的实际重复。
根据图34(b),存在五个中间实际重复,并且其索引是0、1、2、3和4。跳频发生在中间实际重复0和1之间,跳频发生在中间实际重复2和3之间,并且跳频发生在中间实际重复3和4之间。首先,确定在时间上最提前的跳频间隙。中间实际重复0包括4个符号,并且中间实际重复1包括2个符号。因此,包括更少符号的中间实际重复1的前G个符号被确定为不发送PUSCH的符号。确定在时间上下一个最提前的跳频间隙。中间实际重复2包括2个符号,并且中间实际重复3包括4个符号。因此,包括更少符号的中间实际重复2的最后G个符号被确定为不发送PUSCH的符号。最后,确定时间上最晚的跳频的间隙。中间实际重复3包括4个符号,并且中间实际重复4包括4个符号。因此,由于中间实际重复3和4具有相同数目的符号,因此在前的中间实际重复3的最后G个符号被确定为不发送PUSCH的符号。UE可以通过从中间实际重复中排除不发送PUSCH的所确定的符号来确定实际重复。作为参考,当G=1时,中间实际重复1和2中的每一个包括一个符号。因此,该一个符号是不发送PUSCH的孤立符号。
参考图39,可以识别UE发送具有包括更多符号的实际重复的PUSCH。然而,根据图39(a),如果G个符号在包括少量符号的中间实际重复中不可用于PUSCH传输,则可能存在作为孤立符号的一个剩余符号。由于这种孤立,减少了用于PUSCH传输的符号总数。需要一种解决此问题的方法。
作为本公开的PUSCH重复类型B的第六实施例,UE可以将紧接在跳频之前的实际重复的符号的数目与紧接在跳频之后的实际重复的符号的数目进行比较,以便确定不发送PUSCH的G个符号。这里,首先在具有较小数目的符号的实际重复中,一些或所有符号可能被确定为不发送PUSCH的符号。然而,如果实际重复具有2个符号,则在对应的实际重复中可以不再确定不发送PUSCH的符号,并且可以在具有更多符号的实际重复中确定不发送PUSCH的符号。具体方法如下。
作为第一方法,UE将紧接在跳频之前的实际重复的符号的数目与紧接在跳频之后的实际重复的符号的数目进行比较,以便在具有更少数目的符号的实际重复中确定G个符号是不发送PUSCH的符号。这里,当紧接在跳频之前的实际重复的符号的数目是N1,并且紧接在跳频之后的实际重复的符号的数目是N2时,可以如下确定G个符号。
-如果N1≥N2且N2-G≥2,则紧接在跳频之后的实际重复的前G个符号被确定为不发送PUSCH的符号。
-如果N1≥N2且N2-G<2,则紧接在跳频之后的实际重复的前N2-2个符号被确定为不发送PUSCH的符号。紧接在跳频之前的实际重复的最后G-(N2-2)个符号被确定为不发送PUSCH的符号。
-如果N1<N2且N1-G≥2,则紧接在跳频之前的实际重复的最后G个符号被确定为不发送PUSCH的符号。
-如果N1<N2且N1-G<2,则紧接在跳频之前的实际重复的最后N1-2个符号被确定为不发送PUSCH的符号,并且紧接在跳频之后的实际重复的前G-(N1-2)个符号被确定为不发送PUSCH的符号。
作为第二方法,UE将紧接在跳频之前的实际重复的符号的数目(N1)与紧接在跳频之后的实际重复的符号的数目(N2)进行比较,以便在具有较少符号数目的实际重复中确定一个符号是不发送PUSCH的符号。如果实际重复是紧接在跳频之前的实际重复,则该一个符号是实际重复的最后一个符号,并且如果实际重复是紧接在跳频之后的实际重复,则该一个符号是实际重复的第一个符号。重复该操作,直到获得G个符号。更具体地,如下获得G个符号。
-假定g1=0和g2=0。
-如果g1+g2<G,则重复下述过程。如果N1-g1≥N2-g2≥2,则g2=g2+1。否则g1=g1+1。
-紧接在跳频之前的实际重复的最后g1个符号被确定为不发送PUSCH的符号。
-紧接在跳频之后的实际重复的前g2个符号被确定为不发送PUSCH的符号。
作为另一第三方法,可以如下确定G个符号。
-如果N1≥N2且N2-G≥2,则紧接在跳频之后的实际重复的前G个符号被确定为不发送PUSCH的符号。
-如果N1≥N2且N2-G<2,紧接在跳频之后的实际重复的前N2-2个符号被确定为不发送PUSCH的符号,并且紧接在跳频之前的实际重复的最后G-(N2-2)个符号被确定为不发送PUSCH的符号。
-如果N1<N2且N1-G≥2,则紧接在跳频之前的实际重复的最后G个符号被确定为不发送PUSCH的符号。
-如果N1<N2且N1-G<2,则紧接在跳频之前的实际重复的N1-2个符号被确定为不发送PUSCH的符号,并且紧接在跳频之后的实际重复的前G-(N1-2)个符号被确定为不发送PUSCH的符号。
本公开的PUSCH重复类型B的第六实施例如图40所示。
图40示出了图示本公开的实施例的间隙符号的布置以便孤立符号不会出现在类型B PUSCH重复中的图。
根据第一方法,UE如下确定不发送PUSCH的符号。首先,UE假定G=0(不考虑间隙)并获得实际重复。这里,所获得的实际重复如图34(b)所示。这里,所获得的实际重复是中间过程,并且为了方便起见,被称为中间实际重复,并且如下获得根据不发送PUSCH的符号的实际发送的实际重复。
根据图34(b),存在五个中间实际重复,并且其索引是0、1、2、3和4。跳频发生在中间实际重复0和1之间,跳频发生在中间实际重复2和3之间,并且跳频发生在中间实际重复3和4之间。首先,确定在时间上最提前的跳频间隙。中间实际重复0包括4个符号,并且中间实际重复1包括2个符号。因此,由于包括较少符号的中间实际重复1包括2个符号,因此该中间实际重复可以不再包括不发送PUSCH的符号(如果包括,则生成孤立符号)。因此,包括更多符号的中间实际重复0的最后G个符号被确定为不发送PUSCH的符号。确定在时间上下一个最提前的跳频间隙。中间实际重复2包括2个符号,并且中间实际重复3包括4个符号。由于包括较少符号的中间实际重复2包括2个符号,因此该中间实际重复可以不再包括不发送PUSCH的符号(如果包括,则生成孤立符号)。因此,包括更多符号的中间实际重复3的最后G个符号被确定为不发送PUSCH的符号。最后,确定时间上最近跳频的间隙。中间实际重复3包括3个符号(当图40(a)中G=1时)或2个符号(当图40(b)中G=2时),并且中间实际重复4包括4个符号。如果中间实际重复3包括3个符号(当图40(a)中的G=1时),则中间实际重复3的最后G=1个符号被确定为不发送PUSCH的符号。如果中间实际重复3包括2个符号(当图40(b)中的G=2时),则中间实际重复4的前G=2个符号被确定为不发送PUSCH的符号。
参考图40,可以识别出在由UE发送的实际重复中不再存在孤立符号。
在本公开的PUSCH重复类型B的第一至第六实施例中,在已经获得的标称重复或实际重复中,一些或所有符号被确定为不发送PUSCH的符号。然而,在这种情况下,UE实际用于PUSCH传输的符号的数目减少。因此,可能降低PUSCH传输的可靠性。需要解决该问题的方案。
根据本公开的PUSCH重复类型B的第七实施例,UE可以考虑G个符号来确定标称重复。更具体地,为了确定标称重复,UE从基站被指示或配置有第一标称重复的起始符号索引(S)的值、标称重复中包括的符号的数目(L)以及标称重复的数目(K)。UE通过组合从第一标称重复的起始符号索引(S)开始的L个符号来获得第一标称重复。然后,UE通过组合从后续符号开始的L个符号来获得第二标称重复。以这种方式,生成K个标称重复。
如果UE不能在跳频之间在G个符号内发送PUSCH,则UE可以如下确定标称重复。UE通过组合从第一标称重复的起始符号索引(S)开始的L个符号来获得第一标称重复。UE将从第一标称重复之后的符号开始的G个符号确定为不发送PUSCH的符号。然后,UE通过组合从后续符号开始的L个符号来进行第二标称重复。UE将从第一标称重复之后的符号开始的G个符号确定为不发送PUSCH的符号。以这种方式,生成K个标称重复。
图41示出了图示根据本公开的实施例的在类型B PUSCH重复中的标称重复之后添加间隙符号的图。
参考图41(a),S=8,L=4,K=4,G=1。UE通过组合时隙0的符号8、9、10和11来获得第一标称重复。UE将后续G=1符号(时隙0的符号12)确定为不发送PUSCH的符号。然后,UE通过组合时隙0的符号13和时隙1的符号0、1和2来获得第二标称重复。UE将后续G=1符号(时隙1的符号3)确定为不发送PUSCH的符号。然后,UE通过组合时隙1的符号4、5、6和7来获得第三标称重复。UE将后续G=1符号(时隙1的符号8)确定为不发送PUSCH的符号。最后,UE通过组合时隙1的符号9、10、11和12来获得第四标称重复。以这种方式获得的标称重复可以被划分为实际重复。
参考图41(b),S=8,L=4,K=4,并且G=2。UE通过组合时隙0的符号8、9、10和11来生成第一标称重复。UE将后续G=2个符号(时隙0的符号12和13)确定为不发送PUSCH的符号。然后,UE通过组合时隙1的符号0、1、2和3来获得第二标称重复。UE将后续G=2个符号(时隙1的符号4和5)确定为不发送PUSCH的符号。然后,UE通过组合时隙1的符号6、7、8和9来生成第三标称重复。UE将后续G=2个符号(时隙1的符号10和11)确定为不发送PUSCH的符号。最后,UE通过组合时隙1的符号12和13以及时隙2的符号0和1来获得第四标称重复。以这种方式获得的标称重复可以被划分为实际重复。
在本公开的PUSCH重复类型B的第七实施例中,在标称重复之间插入不发送PUSCH的符号。然而,标称重复中的一些符号可能不被发送。例如,不发送无效UL符号(DL符号、SSB符号、CORESET#0符号和经由RRC信号配置的符号)。另外,如果在标称重复的符号之中的一个时隙中存在一个连续符号,则该符号是孤立符号以便不被发送。因此,不总是需要在标称重复之间插入不发送PUSCH的符号。在下文中,公开了用于解决该问题的实施例。
在本公开的PUSCH重复类型B的第八实施例中,UE可以考虑G个符号、无效UL符号和孤立符号来确定标称重复和实际重复。更具体地,如果UE不能在跳频之间在G个符号内发送PUSCH,则UE可以确定第一标称重复。UE通过组合从第一标称重复的起始符号索引(S)开始的L个符号来进行第一标称重复。UE从第一标称重复获得实际重复。另外,UE将实际重复的最后一个符号之后的G个符号确定为不发送PUSCH的符号。然后,UE可以通过组合G个符号之后的L个符号来确定第二标称重复。UE从第二标称重复获得实际重复。UE将所获得的实际重复的最后一个符号之后的G个符号确定为不发送PUSCH的符号。以这种方式,UE获得K个标称重复并从K个标称重复获得实际重复。
图42示出了图示根据本公开的实施例的考虑类型B PUSCH重复中的无效UL符号和孤立符号的间隙符号的图。
参考图42(a),S=8,L=4,K=4,并且G=1。UE通过组合时隙0的符号8、9、10和11来获得第一标称重复。从第一标称重复获得实际重复。该实际重复包括时隙0的符号8、9、10和11。UE将后续G=1符号(时隙0的符号12)确定为不发送PUSCH的符号。然后,UE通过组合时隙0的符号13和时隙1的符号0、1和2来获得第二标称重复。从第二标称重复获得实际重复。该实际重复包括时隙1的符号0和1。作为参考,时隙0的符号13是孤立符号,因此被排除在实际重复之外,并且时隙1的符号2是无效UL符号,因此被排除在实际重复之外。因此,实际重复的最后一个符号是时隙1的符号1。在该符号之后的G=1符号(时隙1的符号2)被确定为不发送PUSCH的符号。以这种方式,UE获得K=4个标称重复,并从K=4个标称重复获得实际重复。
参考图42(b),S=8,L=4,K=4,并且G=2。UE通过组合时隙0的符号8、9、10和11来获得第一标称重复。从第一标称重复获得实际重复。该实际重复包括时隙0的符号8、9、10和11。UE将后续G=2个符号(时隙0的符号12和13)确定为不发送PUSCH的符号。然后,UE通过组合时隙1的符号0、1、2和3来获得第二标称重复。从第二标称重复获得实际重复。该实际重复包括时隙1的符号0和1。作为参考,时隙1的符号2是无效UL符号,因此从实际重复中排除。此外,时隙1的符号3是孤立符号,因此从实际重复中排除。因此,实际重复的最后一个符号是时隙1的符号1。在该符号之后的G=2个符号(时隙1的符号2和3)被确定为不发送PUSCH的符号。以这种方式,UE获得K=4个标称重复,并从K=4个标称重复获得实际重复。
已经通过示例的方式对本公开进行了以上描述,并且本公开所属领域的普通技术人员应当理解,在不改变其技术精神或基本特征的情况下,可以容易地将本公开修改为其他具体形式。因此,应当理解,上述实施例是说明性的,并不旨在在所有方面限制本公开。例如,以单一形式描述的每个元素可以以分布式形式实现,并且类似地,以分布式形式描述的元素也可以以组合形式实现。
本公开的范围由稍后要描述的权利要求而不是详细描述指示,并且从权利要求及其等同概念的含义和范围导出的所有改变或修改形式应被解释为包括在本公开的范围内。

Claims (20)

1.一种在无线通信系统中具有降低的性能的第一UE(降低能力UE),所述第一UE包括:
通信模块,所述通信模块被配置为接收用于配置在初始接入过程中使用的第一下行链路带宽部分(DL BWP)和第一上行链路带宽部分(上行链路BWP)的配置信息,接收指示用于传统类型的第二UE的第二UL BWP和第二DL BWP中的所述第一UE的BWP接入禁止的指示符,并且基于所述指示符,经由所述第一DL BWP、所述第一UL BWP、所述第二DL BWP和所述第二UL BWP中的至少一个执行所述初始接入过程;以及
处理器,所述处理器被配置为控制所述配置信息的接收、所述初始接入过程的执行以及所述指示符的接收,
其中,单独地配置所述第一UL BWP和所述第二UL BWP中的每一个,
所述初始接入过程包括随机接入过程,
所述第一UL BWP包括用于所述第一UE的随机接入过程的第一资源,以及
所述第一资源与用于所述第二UE的所述第二UL BWP上的随机接入过程的第二资源相同。
2.根据权利要求1所述的第一UE,其中,所述通信模块被配置为从与所述第二UE有关的第二同步信号块(SSB)获取关于基本控制资源集(CORESET)的信息。
3.根据权利要求2所述的第一UE,其中,所述通信模块被配置成经由系统信息块(系统信息块1(SIB1)),接收关于用于所述第一UE的CORESET的信息,用于所述第一UE的CORESET与用于所述第二UE的CORESET分开地定义。
4.根据权利要求2所述的第一UE,其中,所述通信模块被配置为接收用于所述第二UE的SIB1,
其中,所述SIB1包括关于用于执行所述第一UE的所述初始接入过程的系统信息的调度信息。
5.根据权利要求4所述的第一UE,其中,所述调度信息包括关于为执行所述第一UE的所述初始接入过程而激活的所述第一DL BWP的起始物理资源块(PRB)的信息。
6.根据权利要求2所述的第一UE,其中,所述通信模块被配置为接收用于所述第二UE的SIB1,
其中,所述SIB1包括用于所述第一UE的初始接入的随机接入过程的配置信息。
7.根据权利要求1所述的第一UE,其中,所述通信模块被配置成经由第一SSB来获取关于用于所述第一UE的CORESET的信息,所述第一SSB与关于所述第二UE的第二SSB分开地定义。
8.根据权利要求2所述的第一UE,其中,关于所述基本CORESET的信息包括8比特,并且
关于所述基本CORESET的信息的4比特指示关于配置所述基本CORESET的频域的信息,并且剩余的4比特指示关于用于监视所述基本CORESET的符号的信息。
9.根据权利要求8所述的第一UE,其中,构成关于所述基本CORESET的信息的8比特被所述第一UE和所述第二UE中的每一个识别为不同的信息。
10.根据权利要求1所述的第一UE,其中,所述通信模块被配置为从基站接收指示用于所述第一UE的所述第一资源的信息。
11.根据权利要求1所述的第一UE,其中,由基站提供的小区中可用的随机接入前导序列中的一些随机接入前导序列被用于所述第一UE,并且剩余的随机接入前导序列被用于所述第二UE。
12.根据权利要求2所述的第一UE,其中,所述通信模块被配置成基于关于所述基本CORESET的信息来获取关于用于所述第一UE的CORESET的信息。
13.根据权利要求2所述的第一UE,其中,在所述基本CORESET中,用于所述第一UE的第一PDCCH候选与用于所述第二UE的第二PDCCH候选分开地定义,以及
所述通信模块被配置成监视所述基本CORESET中的所述第一PDCCH候选。
14.一种在无线通信系统中具有降低的性能的第一UE(降低能力UE)的操作方法,所述方法包括:
接收用于配置在初始接入过程中使用的第一下行链路带宽部分(DL BWP)和第一上行链路带宽部分(上行链路BWP)的配置信息;
接收指示用于传统类型的第二UE的第二UL BWP和第二DL BWP中的所述第一UE的BWP接入禁止的指示符;以及
基于所述指示符,经由所述第一DL BWP、所述第一UL BWP、所述第二DL BWP和所述第二UL BWP中的至少一个执行所述初始接入过程;
其中,单独地配置所述第一UL BWP和所述第二UL BWP中的每一个,
所述初始接入过程包括随机接入过程,
所述第一UL BWP包括用于所述第一UE的随机接入过程的第一资源,以及
所述第一资源与用于所述第二UE的所述第二UL BWP上的随机接入过程的第二资源相同。
15.根据权利要求14所述的方法,进一步包括从与所述第二UE有关的第二同步信号块(SSB)获取关于基本控制资源集(CORESET)的信息。
16.根据权利要求15所述的方法,进一步包括经由系统信息块(系统信息块1(SIB1)),接收关于用于所述第一UE的CORESET的信息,用于所述第一UE的CORESET与用于所述第二UE的CORESET分开地定义。
17.根据权利要求15所述的方法,进一步包括接收用于所述第二UE的SIB1,
其中,所述SIB1包括关于用于执行所述第一UE的所述初始接入过程的系统信息的调度信息。
18.根据权利要求17所述的方法,其中,所述调度信息包括关于为执行所述第一UE的所述初始接入过程而激活的所述第一DL BWP的起始物理资源块(PRB)的信息。
19.根据权利要求15所述的方法,进一步包括接收用于所述第二UE的SIB1,
其中,所述SIB1包括用于所述第一UE的初始接入的随机接入过程的配置信息。
20.根据权利要求14所述的方法,包括经由第一SSB获取关于用于所述第一UE的CORESET的信息,所述第一SSB与关于所述第二UE的第二SSB分开地定义。
CN202180054544.4A 2020-08-04 2021-08-04 无线通信系统中用于初始小区接入的方法、装置和系统 Pending CN116018849A (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
KR20200097565 2020-08-04
KR10-2020-0097565 2020-08-04
KR10-2021-0004712 2021-01-13
KR20210004712 2021-01-13
KR10-2021-0025078 2021-02-24
KR20210025078 2021-02-24
KR20210065841 2021-05-21
KR10-2021-0065841 2021-05-21
PCT/KR2021/010309 WO2022031062A1 (ko) 2020-08-04 2021-08-04 무선 통신 시스템에서 초기 셀 접속 방법, 장치, 및 시스템

Publications (1)

Publication Number Publication Date
CN116018849A true CN116018849A (zh) 2023-04-25

Family

ID=80118281

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180054544.4A Pending CN116018849A (zh) 2020-08-04 2021-08-04 无线通信系统中用于初始小区接入的方法、装置和系统

Country Status (5)

Country Link
US (1) US20230189308A1 (zh)
JP (1) JP2023537023A (zh)
KR (1) KR20230005223A (zh)
CN (1) CN116018849A (zh)
WO (1) WO2022031062A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220104109A1 (en) * 2020-09-28 2022-03-31 Qualcomm Incorporated Techniques for adaptatively requesting on-demand system information
US11563535B2 (en) 2021-05-10 2023-01-24 Qualcomm Incorporated Power savings for reduced capability devices
WO2024024969A1 (ja) * 2022-07-29 2024-02-01 株式会社デンソー 装置および方法
WO2024024968A1 (ja) * 2022-07-29 2024-02-01 株式会社デンソー 装置および方法
CN115915418A (zh) * 2022-09-30 2023-04-04 中兴通讯股份有限公司 数据发送方法和接收方法、通信节点和存储介质
WO2024084829A1 (ja) * 2022-10-19 2024-04-25 株式会社Nttドコモ 端末及び通信方法
WO2024084839A1 (ja) * 2022-10-19 2024-04-25 株式会社Nttドコモ 端末及び通信方法
WO2024113282A1 (en) * 2022-11-30 2024-06-06 Mediatek Singapore Pte. Ltd. Indication/report repetition information's procedure for pucch harq feedback for msg4
CN116156599B (zh) * 2023-04-18 2023-08-01 翱捷科技股份有限公司 一种RedCap终端接入5G小区的方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10708015B2 (en) * 2014-02-10 2020-07-07 Lg Electronics Inc. Signal transmitting method for device-to-device (D2D) communication in wireless communication system and device therefor
WO2016122120A1 (ko) * 2015-01-26 2016-08-04 엘지전자 주식회사 무선 통신 시스템에서 멀티 qos 프리앰블을 이용하여 랜덤 액세스를 수행하는 방법 및 장치
KR102527276B1 (ko) * 2015-06-24 2023-05-02 한국전자통신연구원 접속 시간 분산 방식을 이용한 랜덤 액세스 방법 및 그 장치
WO2019164377A1 (ko) * 2018-02-23 2019-08-29 엘지전자 주식회사 무선 통신 시스템에서 초기 접속을 수행하는 방법 및 이를 위한 장치
WO2020145722A1 (ko) * 2019-01-11 2020-07-16 엘지전자 주식회사 Nr v2x에서 bwp 스위칭을 고려하여 sl 통신을 수행하는 방법 및 초기 접속 동작

Also Published As

Publication number Publication date
WO2022031062A1 (ko) 2022-02-10
KR20230005223A (ko) 2023-01-09
US20230189308A1 (en) 2023-06-15
JP2023537023A (ja) 2023-08-30

Similar Documents

Publication Publication Date Title
CN111567117B (zh) 无线通信系统的资源分配方法、装置和系统
CN111742510B (zh) 无线通信系统中发送上行链路控制信息的方法及使用其的装置
CN111316731B (zh) 无线通信系统中的上行链路传输和下行链路接收的方法、设备和系统
CN111587554B (zh) 无线通信系统的信道复用方法和复用的信道传输方法及使用该方法的设备
US12004161B2 (en) Data transmission method and reception method for wireless communication system and device using same
CN110268666B (zh) 无线通信系统中发送和接收参考信号和数据信道的方法、设备和系统
US20230189308A1 (en) Method, apparatus, and system for initial cell access in wireless communication system
US11832310B2 (en) Method for transmitting uplink channel in wireless communication system and apparatus therefor
CN113966587A (zh) 无线通信系统中的下行数据接收和harq-ack传输的方法、装置和系统
US20230247627A1 (en) Method, device, and system for transmitting physical uplink control channel in wireless communication system
CN114731688A (zh) 在无线通信系统中取消上行链路传输的方法、装置和系统
CN116134944A (zh) 在无线通信系统中发送上行链路信道的方法和装置
CN115362744A (zh) 在无线通信系统中执行上行链路/下行链路传输的方法和设备
CN116076042A (zh) 在无线通信系统中发送物理下行链路控制信道的方法及其装置
CN113228549B (zh) 在无线通信系统中生成harq-ack码本的方法以及使用该方法的装置
US20240236992A1 (en) Data transmission method and reception method for wireless communication system and device using same
CN118020266A (zh) 无线通信系统中发送上行链路信道的方法及其装置
CN116458247A (zh) 在无线通信系统中发送上行链路信道的方法及其装置
CN118120170A (zh) 在无线通信系统中用于为下行链路传输和上行链路传输分配harq进程号的方法、设备和系统
KR20240090236A (ko) 무선 통신 시스템에서 상향링크 채널을 전송하는 방법 및 이를 위한 장치
CN116584139A (zh) 无线通信系统中上行链路传输的方法、设备和系统
CN116584063A (zh) 在无线通信系统中发送上行链路控制信息的方法、设备和系统
CN117256114A (zh) 在无线通信系统中用于发送harq-ack码本的方法、装置和系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination