CN115963089A - 高效双通路圆偏振荧光光谱测量系统 - Google Patents
高效双通路圆偏振荧光光谱测量系统 Download PDFInfo
- Publication number
- CN115963089A CN115963089A CN202111182310.6A CN202111182310A CN115963089A CN 115963089 A CN115963089 A CN 115963089A CN 202111182310 A CN202111182310 A CN 202111182310A CN 115963089 A CN115963089 A CN 115963089A
- Authority
- CN
- China
- Prior art keywords
- circular polarization
- optical fiber
- polarization fluorescence
- sample
- fluorescence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明涉及样品光学检测领域,具体地说是高效双通路圆偏振荧光光谱测量系统,其中白光光源、被测样品、物镜、二向色镜、可移动反射镜、1/4波片、50:50分束镜、格兰棱镜、高通滤波片、聚焦镜和Y型光纤输入端头依次呈一线排列,显微成相时,可移动反射镜二移入系统,圆偏振荧光光谱测量时,可移动反射镜二移出系统,激发光源出射的连续激光经退偏器退偏为自然光,所述自然光经二向色镜反射与物镜聚焦至被测样品,被测样品受激发辐射圆偏振荧光,所述圆偏振荧光经1/4波片转化为线偏振荧光,所述线偏振荧光经过圆偏振荧光采集模块入射至荧光光谱采集系统。本发明可以同时对被测样品进行左旋圆偏振荧光与右旋圆偏振荧光进行采集,极大提升系统效率。
Description
技术领域
本发明涉及样品光学检测领域,具体说是高效双通路圆偏振荧光光谱测量系统。
背景技术
圆偏振荧光光谱测量系统是利用退偏的激发光激发样品分子特征谱段后,收集齐辐射的圆偏振荧光光强的过程。对圆偏振荧光光谱的探测可以辅助分析材料的发光特性。
目前已报道的圆偏振荧光光谱测量系统中,激发光源可选择氙灯、LED光源等,当采用氙灯或LED光源作为激发光时,激发光源光谱覆盖较宽,即使采用聚焦的方式对被测样品进行激发,也无法将激发光聚焦的足够小以满足对不均匀分布样品特定位置的圆偏振荧光光谱测量,也无法实现在多次测量中的原位原位的要求,为了解决上述问题,可以考虑采用激光光源作为激发光源,由于激光单色性好,在聚焦时可以获得更小的焦点直径,使得当焦点位于被测样品特定位置时,可以选择性的对该区域进行圆偏振荧光光谱测量,配合显微成像技术,也可以实现多次测量中的原位圆偏振荧光光谱测量。
在圆偏振荧光光谱的偏振特性分析中,通常采用先后采集样品荧光中的左旋荧光光谱与右旋荧光光谱方式,通过数学分析获得光谱的非对称系数,这种方法由于需要先后采集左旋荧光光谱与右旋荧光光谱,采集速度较慢。
通过以上分析可以发现,在现有成果中,对于高效率的圆偏振荧光光谱测量仍然有待解决。
发明内容
本发明的目的在于提供一种高效圆偏振荧光光谱测量系统,在测量前利用显微成像实现对样品区的显微成像与对焦,通过这种方法实现对不均匀分布样品特定位置的圆偏振荧光测量,并且提供了一种能够同时对被测样品左旋荧光光谱与右旋荧光光谱进行采集的方法,提升采集速度。
本发明为实现上述目的所采用的技术方案是:
高效双通路圆偏振荧光光谱测量系统,包括:
激光光源发生系统、二向色镜、物镜、白光光源、可移动反射镜二、1/4波片、50:50分束镜、圆偏振荧光采集模块一、圆偏振荧光采集模块二、Y型光纤、光谱采集系统以及显微成像系统;
其中:白光光源、物镜、二向色镜、可移动反射镜二、1/4波片、50:50分束镜以及圆偏振荧光采集模块一依次呈一线排列;
所述光源发生系统设于二向色镜的入射光路上,所述物镜和白光光源之间设有用于放置被测样品的空间;
所述可移动反射镜二的反射光路上设有显微成像系统;
所述50:50分束镜的透射光路上设有圆偏振荧光采集模块一,反射光路上设有圆偏振荧光采集模块二,所述50:50分束镜的透射光路和反射光路的相互垂直;所述圆偏振荧光采集模块一和圆偏振荧光采集模块二通过Y型光纤连接光谱采集系统。
对被测样品进行显微成像时,所述可移动反射镜二位于二向色镜和1/4波片之间,白光光源发出的白光照亮被测样品,使被测样品依次经过物镜、二向色镜、可移动反射镜二后在显微成像系统中成像。
对被测样品进行圆偏振荧光光谱测量时,所述可移动反射镜二移出一线排列,激光光源发生系统发出的自然激发光束依次经过二向色镜、物镜照射在被测样品上,使被测样品受激发后发出圆偏振荧光光束,依次经过物镜、二向色镜、1/4波片,经过50:50分束镜分束到圆偏振荧光采集模块一和圆偏振荧光采集模块二,再经过Y型光纤发送至光谱采集系统。
所述激光光源发生系统包括连续激光光源一以及依次设在连续激光光源一发出的连续激光光束光路上的反射镜一、反射镜二、反射镜三、退偏器,使连续激光光源一发出的连续激光光束经过退偏器退偏为自然激发光束射入二向色镜。
还包括连续激光光源二和可移动反射镜一,当可移动反射镜一设于反射镜一和反射镜二之间时,使连续激光光源二发出的连续激光光束依次经过可移动反射镜一、反射镜二、反射镜三、退偏器退偏为自然激发光束射入二向色镜。
所述圆偏振荧光采集模块一和圆偏振荧光采集模块二均包括格兰棱镜、高通滤波片以及聚焦镜,经过所述50:50分束镜分束后的圆偏振荧光光束依次经过格兰棱镜、高通滤波片以及聚焦镜射入Y型光纤。
所述显微成像系统包括包括反射镜四、聚焦镜三、CCD相机、第二数据传输线、第二计算机,其中,CCD相机通过第二数据传输线与第二计算机相连,所述反射镜四、聚焦镜三、CCD相机依次设于可移动反射镜二的反射光路上。
所述光谱采集系统包括顺序连接的CCD光谱仪、第一数据传输线、第一计算机,所述CCD光谱仪通过Y型光纤分别与圆偏振荧光采集模块一和圆偏振荧光采集模块二相连。
所述Y型光纤包括Y型光纤输入端头一、Y型光纤输入光纤一、Y型光纤输入端头二、Y型光纤输入光纤二、Y型光纤输入端熔接点、Y型光纤输出光纤、Y型光纤输出端头,其中,圆偏振荧光采集模块一依次通过Y型光纤输入端头一、Y型光纤输入光纤一连接Y型光纤输入端熔接点;圆偏振荧光采集模块二依次通过Y型光纤输入端头二、Y型光纤输入光纤二连接Y型光纤输入端熔接点,Y型光纤输入端熔接点依次通过Y型光纤输出光纤、Y型光纤输出端头连接光谱采集系统。
高效双通路圆偏振荧光光谱测量方法,包括以下步骤:
对被测样品进行显微成像时,可移动反射镜二移动到二向色镜和1/4波片之间,白光光源发出的白光照亮被测样品,被测样品依次经过物镜、二向色镜、可移动反射镜二后在显微成像系统中成像;
对被测样品进行圆偏振荧光光谱测量时,所述可移动反射镜二移出一线排列,激光光源发生系统发出的自然激发光束依次经过二向色镜、物镜照射在被测样品上,被测样品受激发后发出圆偏振荧光光束,依次经过物镜、二向色镜、1/4波片,经过50:50分束镜分束到圆偏振荧光采集模块一和圆偏振荧光采集模块二,再经过Y型光纤发送至光谱采集系统。
本发明具有以下有益效果及优点:
1.本发明设有可移动反射镜一与可移动反射镜二,所述可移动反射镜一可以实现激发波长切换的功能,当可移动反射镜一移入系统时,连续激光光源二作为激发光源,当可移动反射镜二移出系统时,连续激光光源一作为激发光源,可移动反射镜二可以实现荧光光谱采集与显微成像之间的切换功能,当可移动反射镜二移入系统时,被测样品在显微成像系统成像,可以进行样品的显微成像与微区对焦,当可移动反射镜二移出系统时,被测样品被激发光源激发,光谱采集系统对被测样品的左旋荧光光谱与右旋荧光光谱进行采集。
2.本发明设有光轴互相垂直的格兰棱镜一与格兰棱镜二,且系统中1/4波片光轴与所述格兰棱镜一与格兰棱镜二夹角均为45°,因此系统可以同时采集被测样品的左旋荧光光谱与右旋荧光光谱,提升了系统的采集效率,弥补了现有技术必须先后采集左旋荧光光平与右旋荧光光谱效率低的不足。
附图说明
图1本发明的结构示意图;
图2a本发明圆偏振荧光采集模块一格兰棱镜光轴与1/4波片光轴的位置关系;
图2b本发明圆偏振荧光采集模块二格兰棱镜光轴与1/4波片光轴的位置关系;
图3a本发明Y型光纤输入端与输出端光纤排布示意图;
图3b本发明Y型光纤输入端与输出端光纤排布示意图;
图3c本发明Y型光纤输入端与输出端光纤排布示意图;
图4本发明CCD光谱仪光谱采集示意图;
图5本发明获得的被测样品圆偏振荧光光谱示意图;
其中,1为连续激光光源一,2为连续激光光源二,3为反射镜一,4为可移动反射镜一,5为反射镜二,6为反射镜三,7为退偏器,8为二向色镜,9为物镜,10为被测样品,11为白光光源,12为可移动反射镜二,13为1/4波片,14为50:50分束镜,15为格兰棱镜一,16为高通滤波片一,17为聚焦镜一,18为Y型光纤输入端头一,19为Y型光纤输入光纤一,20为格兰棱镜二,21为高通滤波片二,22为聚焦镜二,23为Y型光纤输入端头二,24为Y型光纤输入光纤二,25为Y型光纤输入端熔接点,26为Y型光纤输出光纤,27为Y型光纤输出端头,28为CCD光谱仪,29为第一数据传输线,30为第一计算机,31为反射镜四,32为聚焦镜三,33为CCD相机,34为第二数据传输线,35为第二计算机,181为Y型光纤输入端头一18的截面放大示意图,221为Y型光纤输入端头二22的截面放大示意图,271为Y型光纤输出端头的截面放大示意图,281为凹面镜,282为分光光栅,283为双排CCD阵列,2831为CCD阵列的放大示意图。
具体实施方式
下面结合附图及实施例对本发明做进一步的详细说明。
如图1所示,本发明包括1、连续激光光源一,1、连续激光光源二,3、反射镜一,4、可移动反射镜一,5、反射镜二,6、反射镜三,7、退偏器,8、二向色镜,9、物镜,10、被测样品,11、白光光源,12、可移动反射镜二,13、1/4波片,14、50:50分束镜,圆偏振荧光采集模块一,圆偏振荧光采集模块二,Y型光纤,光谱采集系统以及显微成像系统,其中白光光源11,被测样品10,物镜9,二向色镜8,可移动反射镜二12,1/4波片13,50:50分束镜14以及圆偏振荧光采集模块一呈一线排列即沿光路方向依次排列,对被测样品10进行显微成像时,可移动反射镜二12移入系统,白光光源11发出的白光照亮被测样品10,被测样品10经过物镜9,二向色镜8以及可移动反射镜二12后在显微成像系统中成像,对被测样品进行圆偏振荧光光谱测量时,可移动反射镜12移出系统,可移动反射镜一4根据需要切换连续激光光源1与连续激光光源二2,当可移动反射镜一4移入系统时,采用连续激光光源二2作为激发光源,当可移动反射镜一4移出系统时,采用连续激光光源一1作为激发光源,选定激发光源后,所述激发光源出射的连续激光光束经反射镜二5与反射镜三6反射后射入退偏器7,经退偏器7退偏为无偏振特性的自然激发光束,所述自然激发光束波长低于二向色镜8的阈值波长,当所述自然激发光束入射至二向色镜8是二向色镜8反射所述自然激发光束至被测样品10,被测样品10经所述自然激发光束激发后发出圆偏振荧光光束,所述圆偏振荧光光束波长高于二向色镜8的阈值波长而透射过二向色镜8,所述透射过二向色镜8的圆偏振荧光光束透射过1/4波片13转化为线偏振荧光光束,所述线偏振荧光光束入射至50:50分束镜14,50:50分束镜将所述线偏振荧光光束分束为能量相等的透射线偏振荧光光束和反射线偏振荧光光束,所述透射线偏振荧光光束与所述反射线偏振荧光光束分别入射至所述圆偏振荧光采集模块一与所述圆偏振荧光采集模块二,所述圆偏振荧光采集模块一与所述圆偏振荧光采集模块二分别采集被测样品10受激发辐射的荧光光束中的左旋圆偏振荧光与右旋圆偏振荧光,并将所述左旋圆偏振荧光与所述右旋圆偏振荧光输入至Y型光纤输入端头一18与Y型光纤输入端头二23,所述左旋圆偏振荧光与所述右旋圆偏振荧光经所述Y型光纤传输后,输入至光谱采集系统,所述光谱采集系统对所述左旋圆偏振荧光与所述右旋圆偏振荧光进行光谱采集与分析,最终获得被测样品10的圆偏振荧光光谱信息。所述被测样品(10)可以是旋涂的固体样品,可以是金刚石对顶砧高压模块,可以是真空低温样品。其中,高压是指被测样品所处环境高于标准大气压的压强,该环境由金刚石对顶砧提供。低温是指温度低于室温的环境温度,该环境由真空腔体配合冷却棒提供。
如图2a~图2b所示,当被测样品10倍激发光激发辐射圆偏振荧光光束时,所述圆偏振荧光光束由左旋圆偏振光束与右旋圆偏振光束组成,由于所述左旋圆偏振光束与所述右旋圆偏振光束具有不同光失旋转方向,因此当左旋圆偏振光束与右旋圆偏振光束透射过1/4波片13后,转化为2束偏振方向互相垂直的线偏振光束,通过调节格兰棱镜一15与格兰棱镜二20的光轴方向,使格兰棱镜一15与格兰棱镜二20的光轴方向互相垂直且透过率最大,此时透射过格兰棱镜一15与格兰棱镜二20的线偏振光束分别对应所述圆偏振荧光光束的左旋圆偏振光速与右旋圆偏振光束。
如图3a~图3c所示,Y型光纤输入端头一18与Y型光纤输入端头二23均由7根光纤熔接而成,所述7根光纤呈圆周排布,Y型光纤输出端头27由14根光纤熔接而成,所述14根光纤分别对应Y型光纤输入端头一18的7根光纤与Y型光纤输入端头二23的7根光纤,所述14根光纤呈线性垂直排布,其中Y型光纤输入端头一18对应的7根光纤排布在所述线性排布的14根光纤上部,Y型光纤输入端头二23对应的7根光纤排布在所述线性排布的14根光纤下部。
如图1所示,透射过格兰棱镜一15的线偏振荧光光束透射过高通滤波片18后,滤除所述线偏振荧光光束中掺杂的激发光束,经聚焦镜17聚焦金Y型光纤输入端头一18,Y型光纤输入端头18内的光纤排布如图3所示,所述聚焦的线偏振荧光光束可以高效率耦合进Y型光纤输入端头18,透射过格兰棱镜二20的线偏振荧光光束以相同的原理入射进Y型光纤输入端头23。
如图4所示,Y型光纤输出端头27由14根呈线性排布的光纤熔接而成,Y型光纤输入端头一18与Y型光纤输入端头二23接收到的荧光光束经Y型光纤传输至Y型光纤输出端头27,Y型光纤输出端头27耦合进CCD光谱仪28,CCD光谱仪28由凹面镜281,分光光栅282以及双排CCD阵列283组成,Y型光纤输出端头27出射的发散的荧光光束经凹面镜281准直后传输至分光光栅282,分光光栅282将所述准直后的荧光光束在波长方向进行分光,所述分光后的荧光光束入射至双排CCD阵列283,双排CCD阵列283对所述分光后的荧光光束进行强度探测,通过光电转化将光强转化为电信号,Y型光纤输出端头27中位于上部的7根光纤输出的荧光光束被双排CCD阵列283中的上排阵列探测,Y型光纤输出端头27中位于下部的7根光纤输出的荧光光束被双排CCD阵列283中的下排阵列探测,因此双排CCD阵列283可以同时对被测样品10受激发辐射的圆偏振荧光光束中的左旋圆偏振荧光与右旋圆偏振荧光进行探测。
如图1所示,CCD光谱仪28同时对被测样品10的左旋圆偏振荧光与右旋圆偏振荧光进行光谱采集,CCD光谱仪28的双排CCD阵列283分别将被测样品10的左旋圆偏振荧光与右旋圆偏振荧光的光信号转化为电信号,所述电信号经过第一计算机30进行处理,可以获得被测样品10的左旋圆偏振荧光光谱与右旋圆偏振荧光光谱。
本发明的工作原理为:
如图1所示,在显微成像过程中,可移动反射镜二12被移入系统,白光光源11照亮被测样品10,被测样品10经过物镜9,二向色镜8以及可移动反射镜12后在显微成像系统成像,所述显微成像系统由反射镜四31,聚焦镜三32,CCD相机33,第二数据传输线34和第二计算机组成,被测样品10放置于具有X,Y,Z三个移动自由度的平移台上,显微成像过程中,通过调节所述平移台的调节旋钮调节所述XYZ的自由度,并以此来调整被测样品10的位置,是被测样品10能在CCD相机33上成清晰完整的像,第二计算机35对所述清晰完整的像进行显示。
如图1所示,在圆偏振荧光光谱采集过程中,可移动反射镜二12倍移出系统,可移动反射镜一4通过移入或移出系统进行激发光源的切换,当可移动反射镜一4移入系统时,连续激光光源二2作为系统的激发光源,当可移动反射镜一4移出系统时,连续激光光源一1作为系统的激发光源,所述激发光源出射的连续激光经过反射镜一5和反射镜二6的反射后,透射过退偏器7,退偏器将所述连续激光退偏为不具有偏振特性的自然光束,所述自然光束经二向色镜8反射后,由物镜9聚焦于被测样品10上,被测样品10经所述自然光束激发后辐射圆偏振荧光,所述圆偏振荧光由左旋圆偏振荧光与右旋圆偏振荧光组成。
如图2a~图2b所示,在圆偏振荧光偏振转化过程中,所述圆偏振荧光经物镜9准直后透射过二向色镜8后入射至1/4波片13,1/4波片13将所述圆偏振荧光转化为偏振方向互相垂直的线偏振荧光,所述偏振方向互相垂直的线偏振荧光经50:50分束镜14分束为能量相等的透射光束与反射光束,所述透射光束与反射光束分别入射至左旋圆偏振荧光采集模块与右旋圆偏振荧光采集模块,左旋圆偏振荧光采集模块与右旋圆偏振荧光采集模块中的格兰棱镜15与格兰棱镜20分别透射所述偏振方向互相垂直的线偏振荧光,透射过格兰棱镜15与格兰棱镜20的线偏振荧光经高通滤波片16与高通滤波片21滤波,波长大于高通滤波片16与高通滤波片21阈值波长的所述线偏振荧光可以透射过高通滤波片16与高通滤波片21,透射过高通滤波片16与高通滤波片21的线偏振荧光经聚焦镜一17与聚焦镜二22聚焦进Y型光纤输入端头18与Y型光纤输入端头23。
如图3a~图3c所示,在荧光采集与传播过程中,Y型光纤由2根输入光纤与1根输出光纤组成,所述输入光纤由7根光纤熔接而成,所述7根光纤呈现6根光纤圆周围绕中心1根光纤的排布方式,所述输出光纤由14根光纤熔接而成,所述14根光纤分别来自于所述2根输入光纤,且所述14根光纤呈线垂直性排布,在荧光采集过程中,所述线偏振荧光经聚焦镜一17与聚焦镜二22聚焦进Y型光纤输入端头18与Y型光纤输入端头23,聚焦进Y型光纤输入端头18与Y型光纤输入端头23的所述线偏振荧光经所述Y型光纤传输后经Y型光纤输出端27输出,经Y型光纤输出端27输出的线性偏振荧光耦合入射进CCD光谱仪28。
如图4所示,在光谱采集与分析过程中,从Y型光纤输出端27输出的荧光耦合进CCD光谱仪28后,所述荧光呈一Y型光纤输出端27为顶点的角发散光束,所述角发散光束经凹面镜281准直为平行光束后传输至分光光栅282,分光光栅282将所述平行光束在波长方向进行水平衍涉分光,所述水平衍涉分光后的光束传输至双排CCD阵列283,双排CCD阵列283将所述衍涉分光后的光束的光强信息转化为电信号,由于Y型光纤输出端头27中的14根光纤呈线性垂直排布,经过一系列的准直与衍涉后,入射至双排CCD阵列283的光束为在水平方向波长分光,在垂直方向仍然保持与Y型光纤输出端头27的14根光纤的垂直排布一致。
如图1所示,在信号收集与处理过程中,CCD光谱仪28将输入荧光光电转化为电信号后,所述电信号经第一数据传输线29传输至第一计算机30,第一计算机30处理所述电信号并将所述电信号进行可视化。
如图5所示,底部曲线为所述软件显示出的是被测样品10的左旋圆偏振荧光光束对应的所述线偏振荧光光谱,其中横坐标为波长纵坐标为对应波长的线偏振荧光光谱相对光强,即IL,中间曲线为被测样品10的左旋圆偏振荧光光束光谱相对光强与右旋圆偏振荧光光束光谱相对光强差值,即Δ=IL-IR,顶部曲线为被测样品的荧光光谱的非对称系数,即通过对所述非对称系数的分析,即可获得被测样品10的圆偏振荧光光谱特性。
在利用本发明进行被测样品圆偏振荧光光谱测量前,需要先利用标准样进行系统定标,本发明在进行被测样品进行测量时,完成被测样品显微成像与选区对焦后,再进行被测样品的圆偏振荧光光谱测量。
本实施例中,连续激光光源一1优选为波长355nm连续激光,连续激光光源二2优选为波长405nm连续激光,二向色镜8优选为临界波长410nm,物镜9优选为焦距200nm,被测样品优选为金刚石对顶砧高压模块,白光光源11优选为LED白光光源,高通滤波片16与高通滤波片21优选为临界波长430nm。
Claims (10)
1.高效双通路圆偏振荧光光谱测量系统,其特征在于,包括:
激光光源发生系统、二向色镜(8)、物镜(9)、白光光源(11)、可移动反射镜二(12)、1/4波片(13)、50:50分束镜(14)、圆偏振荧光采集模块一、圆偏振荧光采集模块二、Y型光纤、光谱采集系统以及显微成像系统;
其中:白光光源(11)、物镜(9)、二向色镜(8)、可移动反射镜二(12)、1/4波片(13)、50:50分束镜(14)以及圆偏振荧光采集模块一依次呈一线排列;
所述光源发生系统设于二向色镜(8)的入射光路上,所述物镜(9)和白光光源(11)之间设有用于放置被测样品(10)的空间;
所述可移动反射镜二(12)的反射光路上设有显微成像系统;
所述50:50分束镜(14)的透射光路上设有圆偏振荧光采集模块一,反射光路上设有圆偏振荧光采集模块二,所述50:50分束镜(14)的透射光路和反射光路的相互垂直;所述圆偏振荧光采集模块一和圆偏振荧光采集模块二通过Y型光纤连接光谱采集系统。
2.根据权利要求1所述的高效双通路圆偏振荧光光谱测量系统,其特征在于,对被测样品进行显微成像时,所述可移动反射镜二(12)位于二向色镜(8)和1/4波片(13)之间,白光光源(11)发出的白光照亮被测样品(10),使被测样品依次经过物镜(9)、二向色镜(8)、可移动反射镜二(12)后在显微成像系统中成像。
3.根据权利要求1所述的高效双通路圆偏振荧光光谱测量系统,其特征在于,对被测样品进行圆偏振荧光光谱测量时,所述可移动反射镜二(12)移出一线排列,激光光源发生系统发出的自然激发光束依次经过二向色镜(8)、物镜(9)照射在被测样品(10)上,使被测样品(10)受激发后发出圆偏振荧光光束,依次经过物镜(9)、二向色镜(8)、1/4波片(13),经过50:50分束镜(14)分束到圆偏振荧光采集模块一和圆偏振荧光采集模块二,再经过Y型光纤发送至光谱采集系统。
4.根据权利要求1所述的高效双通路圆偏振荧光光谱测量系统,其特征在于,所述激光光源发生系统包括连续激光光源一(1)以及依次设在连续激光光源一(1)发出的连续激光光束光路上的反射镜一(3)、反射镜二(5)、反射镜三(6)、退偏器(7),使连续激光光源一(1)发出的连续激光光束经过退偏器(7)退偏为自然激发光束射入二向色镜(8)。
5.根据权利要求4所述的高效双通路圆偏振荧光光谱测量系统,其特征在于,还包括连续激光光源二(2)和可移动反射镜一(4),当可移动反射镜一(4)设于反射镜一(3)和反射镜二(5)之间时,使连续激光光源二(2)发出的连续激光光束依次经过可移动反射镜一(4)、反射镜二(5)、反射镜三(6)、退偏器(7)退偏为自然激发光束射入二向色镜(8)。
6.根据权利要求1所述的高效双通路圆偏振荧光光谱测量系统,其特征在于,所述圆偏振荧光采集模块一和圆偏振荧光采集模块二均包括格兰棱镜、高通滤波片以及聚焦镜,经过所述50:50分束镜(14)分束后的圆偏振荧光光束依次经过格兰棱镜、高通滤波片以及聚焦镜射入Y型光纤。
7.根据权利要求1所述的高效双通路圆偏振荧光光谱测量系统,其特征在于,所述显微成像系统包括包括反射镜四(31)、聚焦镜三(32)、CCD相机(33)、第二数据传输线(34)、第二计算机(35),其中,CCD相机(33)通过第二数据传输线(34)与第二计算机(35)相连,所述反射镜四(31)、聚焦镜三(32)、CCD相机(33)依次设于可移动反射镜二(12)的反射光路上。
8.根据权利要求1所述的高效双通路圆偏振荧光光谱测量系统,其特征在于,所述光谱采集系统包括顺序连接的CCD光谱仪(28)、第一数据传输线(29)、第一计算机(30),所述CCD光谱仪(28)通过Y型光纤分别与圆偏振荧光采集模块一和圆偏振荧光采集模块二相连。
9.根据权利要求1所述的高效双通路圆偏振荧光光谱测量系统,其特征在于,所述Y型光纤包括Y型光纤输入端头一(18)、Y型光纤输入光纤一(19)、Y型光纤输入端头二(23)、Y型光纤输入光纤二(24)、Y型光纤输入端熔接点(25)、Y型光纤输出光纤(26)、Y型光纤输出端头(27),其中,圆偏振荧光采集模块一依次通过Y型光纤输入端头一(18)、Y型光纤输入光纤一(19)连接Y型光纤输入端熔接点(25);圆偏振荧光采集模块二依次通过Y型光纤输入端头二(23)、Y型光纤输入光纤二(24)连接Y型光纤输入端熔接点(25),Y型光纤输入端熔接点(25)依次通过Y型光纤输出光纤(26)、Y型光纤输出端头(27)连接光谱采集系统。
10.高效双通路圆偏振荧光光谱测量方法,其特征在于,包括以下步骤:
对被测样品进行显微成像时,可移动反射镜二(12)移动到二向色镜(8)和1/4波片(13)之间,白光光源(11)发出的白光照亮被测样品(10),被测样品依次经过物镜(9)、二向色镜(8)、可移动反射镜二(12)后在显微成像系统中成像;
对被测样品进行圆偏振荧光光谱测量时,所述可移动反射镜二(12)移出一线排列,激光光源发生系统发出的自然激发光束依次经过二向色镜(8)、物镜(9)照射在被测样品(10)上,被测样品(10)受激发后发出圆偏振荧光光束,依次经过物镜(9)、二向色镜(8)、1/4波片(13),经过50:50分束镜(14)分束到圆偏振荧光采集模块一和圆偏振荧光采集模块二,再经过Y型光纤发送至光谱采集系统。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111182310.6A CN115963089A (zh) | 2021-10-11 | 2021-10-11 | 高效双通路圆偏振荧光光谱测量系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111182310.6A CN115963089A (zh) | 2021-10-11 | 2021-10-11 | 高效双通路圆偏振荧光光谱测量系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115963089A true CN115963089A (zh) | 2023-04-14 |
Family
ID=87362261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111182310.6A Pending CN115963089A (zh) | 2021-10-11 | 2021-10-11 | 高效双通路圆偏振荧光光谱测量系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115963089A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117129426A (zh) * | 2023-08-08 | 2023-11-28 | 华东师范大学 | 一种超快时间分辨圆偏振发射光谱仪 |
-
2021
- 2021-10-11 CN CN202111182310.6A patent/CN115963089A/zh active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117129426A (zh) * | 2023-08-08 | 2023-11-28 | 华东师范大学 | 一种超快时间分辨圆偏振发射光谱仪 |
CN117129426B (zh) * | 2023-08-08 | 2024-08-13 | 华东师范大学 | 一种超快时间分辨圆偏振发射光谱仪 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10823679B2 (en) | Scanning type laser induced spectrum analysis and detection system | |
CN216284937U (zh) | 一种高效双通路圆偏振荧光光谱测量系统 | |
US9846122B2 (en) | Optical metrology system for spectral imaging of a sample | |
CN107192702B (zh) | 分光瞳激光共焦cars显微光谱测试方法及装置 | |
CN211652548U (zh) | 基于光电倍增管的高灵敏度拉曼光谱仪 | |
CN106124483A (zh) | 一种紧凑的激光诱导击穿光谱测量系统 | |
CN111650180B (zh) | 一种基于信号编码和空间压缩的拉曼光谱成像系统 | |
US9739716B2 (en) | Method for regulating the relative position of an analyte in relation to a light beam | |
JP4392990B2 (ja) | 電子顕微鏡および分光システム | |
CN110987900A (zh) | 基于光电倍增管的高灵敏度拉曼光谱仪 | |
CN112229606A (zh) | 光学元件多模态原位缺陷测量装置和测量方法 | |
CN113484293B (zh) | 基于单光子计数法的显微圆偏振荧光光谱探测系统及方法 | |
CN104390943A (zh) | 一种同时获得外观图像和元素分布影像的显微成像系统 | |
CN215493172U (zh) | 基于单光子计数法的显微圆偏振荧光光谱探测系统 | |
CN116660285B (zh) | 一种晶圆特征光谱在线检测装置 | |
CN115963089A (zh) | 高效双通路圆偏振荧光光谱测量系统 | |
CN111982884A (zh) | 一种紧凑型266nm短波紫外拉曼光谱仪 | |
CN116465867A (zh) | 一种基于超结构表面的热波暗场荧光共焦显微测量装置 | |
CN214472708U (zh) | 基于三维可调多光程结构的吸收击穿光谱组合测量系统 | |
CN106770154B (zh) | 空间自调焦激光差动共焦拉曼光谱探测方法与装置 | |
CN113030063A (zh) | 一种小型针尖增强拉曼光谱测量装置及其检测方法 | |
CN115046933B (zh) | 微区圆二色谱及圆偏振发光的测试装置 | |
CN215179684U (zh) | 一种基于spp热电光镊的多光束拉曼成像系统 | |
CN210571973U (zh) | 一种带有光镊的显微拉曼系统 | |
CN106645097A (zh) | 一种用于激光探针成分分析仪的光路系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |