CN115950482A - A time-division multiplexing optical fiber sensing system for temperature and vibration measurement - Google Patents
A time-division multiplexing optical fiber sensing system for temperature and vibration measurement Download PDFInfo
- Publication number
- CN115950482A CN115950482A CN202211663624.2A CN202211663624A CN115950482A CN 115950482 A CN115950482 A CN 115950482A CN 202211663624 A CN202211663624 A CN 202211663624A CN 115950482 A CN115950482 A CN 115950482A
- Authority
- CN
- China
- Prior art keywords
- light
- detection
- coupler
- optical fiber
- enters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 34
- 238000005259 measurement Methods 0.000 title claims abstract description 22
- 238000001514 detection method Methods 0.000 claims abstract description 48
- 230000003287 optical effect Effects 0.000 claims abstract description 47
- 239000000835 fiber Substances 0.000 claims description 23
- 238000001069 Raman spectroscopy Methods 0.000 claims description 11
- 230000003321 amplification Effects 0.000 claims description 11
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 11
- 238000001914 filtration Methods 0.000 claims description 7
- 230000010355 oscillation Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 16
- 238000006243 chemical reaction Methods 0.000 abstract description 8
- 238000011897 real-time detection Methods 0.000 abstract description 4
- 230000009471 action Effects 0.000 abstract description 3
- 238000012545 processing Methods 0.000 abstract description 3
- 238000000253 optical time-domain reflectometry Methods 0.000 description 9
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000001237 Raman spectrum Methods 0.000 description 1
- 230000000320 anti-stroke effect Effects 0.000 description 1
- 238000000098 azimuthal photoelectron diffraction Methods 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
技术领域technical field
本发明涉及传感技术领域,具体涉及一种时分复用的温度、振动测量光纤传感系统。The invention relates to the field of sensing technology, in particular to a time-division multiplexing optical fiber sensing system for temperature and vibration measurement.
背景技术Background technique
相位敏感光时域反射计(Phase-sensitive Optical Time DomainReflectometer,Φ-OTDR)作为一种分布式光纤振动传感器,具有监测距离长、定位精度高以及多点振动同时监测等优势,是重大设施安全预警监测领域的研究热点和发展趋势。原理为通过对后向散射曲线采集与处理,检测振动信号对光相位和强度的影响,实现对振动信号的定位、还原。As a distributed optical fiber vibration sensor, phase-sensitive optical time domain reflectometer (Phase-sensitive Optical Time Domain Reflectometer, Φ-OTDR) has the advantages of long monitoring distance, high positioning accuracy and simultaneous monitoring of multi-point vibration. It is a major facility safety early warning Research hotspots and development trends in the monitoring field. The principle is to detect the influence of the vibration signal on the optical phase and intensity by collecting and processing the backscattering curve, and realize the positioning and restoration of the vibration signal.
拉曼光时域反射技术(Raman Optical Time-Domain Reflectometry,ROTDR)基于光纤广泛的可工作温度范围,可用于分布式高低温检测。原理为入射脉冲光产生后向拉曼散射光,其光强随光纤温度的变化而变化,对探测到的后向拉曼散射光进行解调,光电探测器完成光电转化,转化后的微弱电信号经信号放大电路放大,由数据采集卡采集并传输给计算机,通过数据处理便可获得光纤沿线的温度。工程上应用于矸石山火险预警、电缆温度检测、带式输送机火险预警以及隧道火险预警等场景。Raman Optical Time-Domain Reflectometry (ROTDR) is based on the wide operating temperature range of optical fibers and can be used for distributed high and low temperature detection. The principle is that the incident pulsed light generates backward Raman scattered light, and its light intensity changes with the temperature of the fiber. The detected backward Raman scattered light is demodulated, and the photodetector completes the photoelectric conversion. The signal is amplified by the signal amplification circuit, collected by the data acquisition card and transmitted to the computer, and the temperature along the optical fiber can be obtained through data processing. In engineering, it is applied to scenarios such as gangue hill fire warning, cable temperature detection, belt conveyor fire warning, and tunnel fire warning.
但两种系统对光源和光纤的要求限制了两系统的复用。ROTDR由于拉曼光的强度低,所以适用能够提供更高的功率的宽谱光源,且多用多模光纤,以增强散射光强度;Φ-OTDR系统中的瑞利散射光的强度相对更高,要用窄线宽光源,且为了减少振荡模式数量,一般使用单模光纤。目前已有的复用方案很难同时满足两个系统的要求,复用效果不佳。However, the requirements of the two systems on light sources and optical fibers limit the multiplexing of the two systems. Due to the low intensity of Raman light, ROTDR is suitable for a wide-spectrum light source that can provide higher power, and multi-mode fiber is often used to enhance the intensity of scattered light; the intensity of Rayleigh scattered light in the Φ-OTDR system is relatively higher. A narrow linewidth light source is used, and in order to reduce the number of oscillation modes, a single-mode fiber is generally used. It is difficult for existing multiplexing schemes to meet the requirements of two systems at the same time, and the multiplexing effect is not good.
现有的两种系统的复用技术中,CN201810775655,一种分布式光纤袋式除尘器漏袋定位检测装置及其方法,使用多纤芯光纤测量,实现的是单光缆检测,并没有真正将这两种方法结合到同一光源及光纤内使用;Among the existing multiplexing technologies of two systems, CN201810775655, a leaky bag location detection device and method for a distributed optical fiber bag filter, uses multi-core optical fiber measurement to achieve single optical cable detection, and does not really integrate These two methods are used in combination with the same light source and optical fiber;
一种温度、应变、振动一体化的光纤传感装置CN20211105755利用并联窄带滤波-级联放大的方法来驱动该系统,以达到温度振动一体化传感测量,但这种方式用到了三个光源,并且结构复杂,提高了成本。An optical fiber sensing device integrating temperature, strain and vibration CN20211105755 uses a parallel narrow-band filter-cascade amplification method to drive the system to achieve temperature and vibration integrated sensing and measurement, but this method uses three light sources, And the structure is complex, which increases the cost.
一种温度、应变、振动一体化的光纤传感装置CN201810584400,现有的双参数检测方案中能够使用单一光源和单一光纤同时进行分布式声学和温度探测的系统,其单利用Φ-OTDR。在每一个长周期内,每隔一段时间阶梯式改变一次脉冲光的波长,通过分析一个长周期内包含不同波长的反射信号,从而获得温度信号。这种方式虽然光学通路搭建简便,但是测量速度慢。CN201810584400 is an optical fiber sensing device integrating temperature, strain and vibration. In the existing dual-parameter detection scheme, a single light source and a single optical fiber can be used to simultaneously perform distributed acoustic and temperature detection systems, which only use Φ-OTDR. In each long period, the wavelength of the pulsed light is changed stepwise at intervals, and the temperature signal is obtained by analyzing the reflected signals with different wavelengths in a long period. Although this method is simple to set up the optical channel, but the measurement speed is slow.
发明内容Contents of the invention
本发明提出的一种时分复用的温度、振动测量光纤传感系统,可至少解决上述技术问题之一,用于油气管线、电缆等大型结构的长距离分布式温度和振动双参数检测。A time-division multiplexing temperature and vibration measurement optical fiber sensing system proposed by the present invention can solve at least one of the above technical problems, and is used for long-distance distributed temperature and vibration dual-parameter detection of large structures such as oil and gas pipelines and cables.
为实现上述目的,本发明采用了以下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种时分复用的温度、振动测量光纤传感系统,包括光源发出连续光进入光开关,光开关经上位机控制,可选择输入波分复用器或1*2耦合器二,当选择输入波分复用器时,连续光经过波分复用器的滤波和掺铒光纤的放大,出来的光波长为适合进行振动检测的连续光;滤波后的光会在隔离器的作用下在波分复用器、掺铒光纤、光隔离器组成的闭环回路内进行循环放大;该放大后的连续光经1*2耦合器一进入1*2耦合器二,接下来进入调制器进行连续光的调制,进入光放大器进行放大,此时的光为处理完成的检测光,该检测光通过环形器进入检测光纤,后向散射光通过环形器进入波分复用器进行滤波,将携带振动信号的光分离出来,之后进入干涉仪,干涉仪出来两路信号分别由光电二极管一和光电二极管二进行光电转换,电信号由采集卡进行数据采集,最后在上位机里进行数据处理。A time-division multiplexing optical fiber sensor system for temperature and vibration measurement, including a light source that emits continuous light into an optical switch, the optical switch is controlled by a host computer, and can choose to input a wavelength division multiplexer or a 1*2 coupler. When the wavelength division multiplexer is used, the continuous light is filtered by the wavelength division multiplexer and amplified by the erbium-doped fiber, and the wavelength of the emitted light is continuous light suitable for vibration detection; Circular amplification is performed in a closed loop composed of multiplexer, erbium-doped fiber, and optical isolator; the amplified continuous light enters 1*2 coupler 1 through 1*2 coupler 1, and then enters the modulator for continuous light The modulated light enters the optical amplifier for amplification. The light at this time is the processed detection light. The detection light enters the detection fiber through the circulator, and the backscattered light enters the wavelength division multiplexer through the circulator for filtering, and will carry the vibration signal The light is separated and then enters the interferometer. The two signals from the interferometer are photoelectrically converted by photodiode 1 and
进一步地,还包括当光开关选择直接输入1*2耦合器二时,连续光从1*2耦合器二进入调制器进行连续光的调制,进入光放大器进行放大,此时的光为处理完成的检测光;该检测光通过环形器进入检测光纤,后向散射光通过环形器进入波分复用器进行滤波,将两路拉曼光分离出来,分离出来的拉曼光经雪崩光电二极管一和雪崩光电二极管进行光电转换,电信号由采集卡进行数据采集,最后在上位机里进行数据处理。Further, it also includes that when the optical switch selects to directly input the 1*2
由上述技术方案可知,本发明公开的一种时分复用的温度、振动测量光纤传感系统,包括光源发出连续光进入光开关,光开关经上位机控制,可选择输入波分复用器或1*2耦合器二,当选择输入1*2耦合器二时,进行温度检测;当选择输入波分复用器时,连续光经过波分复用器的滤波和掺铒光纤的放大,出来的为适合进行振动检测的连续光;滤波后的光会在隔离器的作用下进行循环放大;该放大后的连续光经耦合器进入调制器和放大器进行调制和放大,通过环形器进入检测光纤,返回的后向散射光根据不同的检测模式,分别进入波分复用器和干涉仪,经光电转换后,由采集卡进行数据采集,最后在上位机里进行数据处理。本发明采用时分复用的方法,对双参数的测量速度快,可以实现实时检测。It can be known from the above technical solution that the present invention discloses a time-division multiplexed temperature and vibration measurement optical fiber sensor system, which includes a light source that emits continuous light and enters an optical switch. 1*2
总的来说,本发明的时分复用的温度、振动测量光纤传感系统,本发明的振动和温度检测分别使用对这两种参数变化较为敏感的波段的光,检测的准确性高。本发明的光路结构相对简单,使用单一光源和单模光纤,成本低。本发明采用时分复用的方法,对双参数的测量速度快,可以实现实时检测。In general, the time-division multiplexed temperature and vibration measurement optical fiber sensor system of the present invention, the vibration and temperature detection of the present invention respectively use the light of the wavelength band that is more sensitive to the changes of these two parameters, and the detection accuracy is high. The optical path structure of the present invention is relatively simple, uses a single light source and single-mode optical fiber, and has low cost. The invention adopts the method of time-division multiplexing, has fast measurement speed of double parameters, and can realize real-time detection.
附图说明Description of drawings
图1是本发明实施例的总体结构示意图;Fig. 1 is the overall structural representation of the embodiment of the present invention;
图2是本发明实施例的振动检测模块示意图Fig. 2 is the schematic diagram of the vibration detection module of the embodiment of the present invention
图3是本发明实施例的温度检测模块示意图Fig. 3 is the schematic diagram of the temperature detection module of the embodiment of the present invention
1、光源2、光开关3、波分复用器(WDM)4、掺铒光纤5、光隔离器6、1*2耦合器一7、1*2耦合器二8、调制器9、光放大器10、环形器11、测量光纤12、波分复用器(WDM)13、雪崩光电二极管一(APD)14、雪崩光电二极管二(APD)15、干涉仪16、光电二极管一(PD)17、光电二极管二(PD)18、采集卡19、上位机。1.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments.
如图1所示,本实施例所述的时分复用的温度、振动测量光纤传感系统,具体为一种Φ-OTDR和ROTDR结合进行双参数检测的系统,通过对光源的直接利用(用于温度检测)和半导体激光器变换波长(用于振动检测)相结合,实现仅利用单个光源和单模光纤,完成分布式温度和振动测量。总体结构如图1所示。As shown in Figure 1, the time-division multiplexing temperature and vibration measurement optical fiber sensing system described in this embodiment is specifically a system in which Φ-OTDR and ROTDR are combined to perform dual-parameter detection. For temperature detection) and semiconductor laser wavelength conversion (for vibration detection) combined to achieve distributed temperature and vibration measurement using only a single light source and single-mode fiber. The overall structure is shown in Figure 1.
光源1发出连续光进入光开关2,光开关2经上位机19控制,可选择输入波分复用器(WDM)3或1*2耦合器7,当选择输入波分复用器(WDM)3时,连续光经过波分复用器(WDM)3的滤波和掺铒光纤4的放大,出来的光波长为适合进行振动检测的连续光。滤波后的光会在5隔离器的作用下在波分复用器(WDM)3、掺铒光纤4、光隔离器5组成的闭环回路内进行循环放大。该放大后的连续光经1*2耦合器一6进入1*2耦合器二7,接下来进入调制器8进行连续光的调制,进入光放大器9进行放大,此时的光为处理完成的检测光。该检测光通过环形器10进入检测光纤,后向散射光通过环形器10进入波分复用器(WDM)12进行滤波,将携带振动信号的光分离出来,之后进入干涉仪15,干涉仪15出来两路信号分别由光电二极管(PD)一16和光电二极管(PD)二17进行光电转换,电信号由采集卡18进行数据采集,最后在上位机19里进行数据处理。The light source 1 emits continuous light and enters the
当光开关2选择直接输入1*2耦合器二7时,连续光从1*2耦合器二7进入调制器8进行连续光的调制,进入光放大器9进行放大,此时的光为处理完成的检测光。该检测光通过环形器10进入检测光纤,后向散射光通过环形器10进入波分复用器(WDM)12进行滤波,将两路拉曼光分离出来,分离出来的拉曼光经雪崩光电二极管一(APD)13和雪崩光电二极管二(APD)14进行光电转换,电信号由采集卡18进行数据采集,最后在上位机19里进行数据处理。When the
在测温系统中,所用波长低于单模光纤的一般截止波长1260nm,此时光纤中存在多个振荡模式,散射光的强度也会增强。这种方法利用了单模光纤的工作特性,满足了两个测量系统的要求。In the temperature measurement system, the wavelength used is lower than the general cut-off wavelength of single-mode fiber 1260nm. At this time, there are multiple oscillation modes in the fiber, and the intensity of scattered light will also increase. This method takes advantage of the operating characteristics of single-mode fiber and meets the requirements of both measurement systems.
光源发出的连续光由光开关控制,可以分别进入两套系统中,若光开关控制进入波分复用器(WDM)3,该系统可实现Φ-OTDR的功能,称为模式一,如图2;若光开关控制直接向前进入1*2耦合器7二,该系统可实现ROTDR的功能,称为模式二,如图3。The continuous light emitted by the light source is controlled by an optical switch and can enter two systems respectively. If the optical switch controls and enters the wavelength division multiplexer (WDM) 3, the system can realize the function of Φ-OTDR, which is called mode 1, as shown in the figure 2. If the optical switch control directly enters the 1*2 coupler 72, the system can realize the function of ROTDR, which is called
本发明的工作过程具体如下:Working process of the present invention is specifically as follows:
光源发出连续激光,进入光开关。光开关和上位机相连,由上位机控制光开关的选择。由于温度变化相比于扰动变化是一个缓慢的过程,所以在时长方面,Φ-OTDR比ROTDR时间长,可以模式一波长取10ms,模式二取1ms。The light source emits continuous laser light, which enters the optical switch. The optical switch is connected with the host computer, and the selection of the optical switch is controlled by the host computer. Since the temperature change is a slow process compared with the disturbance change, in terms of duration, Φ-OTDR takes longer than ROTDR, and the wavelength of mode 1 can be 10ms, and the wavelength of
以下具体说明:The specific instructions are as follows:
模式一:Mode one:
1、光源发出的连续光,经过1*2光开关。当光开关接通通往3的通路时,即进入了滤波放大部分,通过波分复用器的选波、掺铒光纤和谐振腔的放大,得到波长适用于Φ-OTDR系统检测的连续光,通过耦合器6输出到光调制器。1. The continuous light emitted by the light source passes through the 1*2 optical switch. When the optical switch is connected to the channel leading to 3, it enters the filtering and amplifying part. Through the wave selection of the wavelength division multiplexer, the amplification of the erbium-doped fiber and the resonant cavity, the continuous light with a wavelength suitable for detection by the Φ-OTDR system is obtained. , output to the optical modulator through the coupler 6.
2、连续光被光调制器调制成矩形脉冲,经过光放大器放大,通过环形器进入测量光纤。2. The continuous light is modulated into a rectangular pulse by the optical modulator, amplified by the optical amplifier, and enters the measuring fiber through the circulator.
3、后向散射光通过环形器进入波分复用器,将瑞利散射光分离出来。瑞利散射光经由干涉仪产生两路干涉信号,干涉信号经过PD的光电转换,进入采集卡。3. The backscattered light enters the wavelength division multiplexer through the circulator to separate the Rayleigh scattered light. The Rayleigh scattered light generates two interference signals through the interferometer, and the interference signals enter the acquisition card through the photoelectric conversion of the PD.
4、对于该部分数据的处理方法,首先通过数组重构,分离出来每个脉冲周期的数据,通过差分来定位扰动点,扰动点位置确定后即可提取该点的数据并用解调算法处理,得到扰动处的相位信号。4. For the processing method of this part of data, firstly, the data of each pulse cycle is separated through array reconstruction, and the disturbance point is located by difference. After the disturbance point position is determined, the data of this point can be extracted and processed by demodulation algorithm. Get the phase signal at the disturbance.
模式二:Mode two:
1、当光开关2接通1*2耦合器二7时,连续光被光调制器调制成矩形脉冲,经过光放大器放大,通过环形器进入测量光纤。1. When the
2、光纤的后向散射光经环形器进入波分复用器,将斯托克斯光(Stokes)和反斯托克斯光(Anti-Stokes)分离出来,经过两个APD进行光电转换,信号进入采集卡。2. The backscattered light of the optical fiber enters the wavelength division multiplexer through the circulator, separates the Stokes light (Stokes) and the anti-Stokes light (Anti-Stokes), and performs photoelectric conversion through two APDs. The signal goes to the capture card.
3、拉曼散射光中,反斯托克斯光对温度变化敏感,斯托克斯光则与温度关系很小,因此采用Strokes/Anti-Strokes比值法得到光纤链路上的温度变化。3. Among Raman scattered light, anti-Stokes light is sensitive to temperature changes, while Stokes light has little relationship with temperature. Therefore, the temperature change on the optical fiber link is obtained by using the Strokes/Anti-Strokes ratio method.
本发明实施例的光源可以使用任意波长的可产生拉曼光谱的激光器来代替;谐振腔的波分复用器的工作波长可以使用任意可检测到瑞利散射光的其他可用光;半导体激光器改变波长的方法可以使用改变半导体激光器工作温度或输入电流的方法达到相同的目的;干涉仪可以使用平衡式干涉仪(如Sagnac干涉仪)或非平衡干涉仪(MZ干涉仪);Φ-OTDR系统中,可以使用外差检测或相干检测等方式,也可以不使用干涉仪,直接对单路信号检测;ROTDR系统中,由于反斯托克斯光对温度变化敏感,而斯托克斯光对温度不敏感,因此可以只采集反斯托克斯光,利用单路信号检测。The light source of the embodiment of the present invention can be replaced by a laser of any wavelength that can produce Raman spectra; the working wavelength of the wavelength division multiplexer of the resonator can use any other available light that can detect Rayleigh scattered light; the semiconductor laser changes The wavelength method can use the method of changing the operating temperature or input current of the semiconductor laser to achieve the same purpose; the interferometer can use a balanced interferometer (such as Sagnac interferometer) or an unbalanced interferometer (MZ interferometer); in the Φ-OTDR system , you can use heterodyne detection or coherent detection, or directly detect a single signal without using an interferometer; in the ROTDR system, because anti-Stokes light is sensitive to temperature changes, and Stokes light is sensitive to temperature Insensitive, so it is possible to collect only anti-Stokes light and use single-channel signal detection.
综上所述,本发明的时分复用的温度、振动测量光纤传感系统,本发明的振动和温度检测分别使用对这两种参数变化较为敏感的波段的光,检测的准确性高。本发明的光路结构相对简单,使用单一光源和单模光纤,成本低。本发明采用时分复用的方法,对双参数的测量速度快,可以实现实时检测。To sum up, the time-division multiplexing optical fiber sensing system for temperature and vibration measurement of the present invention, the vibration and temperature detection of the present invention use light in the wavelength bands that are more sensitive to the changes of these two parameters, and the detection accuracy is high. The optical path structure of the present invention is relatively simple, uses a single light source and single-mode optical fiber, and has low cost. The invention adopts the method of time-division multiplexing, has fast measurement speed of double parameters, and can realize real-time detection.
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。The above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still be described in the foregoing embodiments Modifications are made to the recorded technical solutions, or equivalent replacements are made to some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211663624.2A CN115950482B (en) | 2022-12-23 | 2022-12-23 | Time division multiplexing temperature and vibration measurement optical fiber sensing system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211663624.2A CN115950482B (en) | 2022-12-23 | 2022-12-23 | Time division multiplexing temperature and vibration measurement optical fiber sensing system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115950482A true CN115950482A (en) | 2023-04-11 |
CN115950482B CN115950482B (en) | 2024-07-12 |
Family
ID=87297655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211663624.2A Active CN115950482B (en) | 2022-12-23 | 2022-12-23 | Time division multiplexing temperature and vibration measurement optical fiber sensing system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115950482B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006112926A (en) * | 2004-10-15 | 2006-04-27 | Furukawa Electric Co Ltd:The | Optical fiber chromatic dispersion value and nonlinear constant measurement method, optical fiber chromatic dispersion value and nonlinear constant measurement device, fiber manufacturing method, dispersion distribution measurement method, measurement error compensation method, measurement condition identification method |
US20130020486A1 (en) * | 2010-04-13 | 2013-01-24 | China Jiliang University | Distributed optical fiber sensor based on roman and brillouin scattering |
CN107238415A (en) * | 2017-07-27 | 2017-10-10 | 中国地质大学(武汉) | For detecting the temperature of fully distributed fiber and the sensor of vibration position |
CN107664541A (en) * | 2017-09-18 | 2018-02-06 | 南京大学 | A kind of distributed optical fiber vibration and Temperature fusion sensor-based system and method |
CN107917738A (en) * | 2017-12-26 | 2018-04-17 | 南京大学(苏州)高新技术研究院 | A kind of while measurement temperature, strain and the distributed optical fiber sensing system of vibration |
CN108663138A (en) * | 2018-05-16 | 2018-10-16 | 湖北三江航天万峰科技发展有限公司 | A kind of distributed fiber optic temperature and the sensor-based system and method for vibration |
CN111780859A (en) * | 2020-08-11 | 2020-10-16 | 浙江长芯光电科技有限公司 | Distributed optical fiber sensing detection system |
US10880007B1 (en) * | 2019-08-15 | 2020-12-29 | Saudi Arabian Oil Company | Simultaneous distributed temperature and vibration sensing using multimode optical fiber |
-
2022
- 2022-12-23 CN CN202211663624.2A patent/CN115950482B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006112926A (en) * | 2004-10-15 | 2006-04-27 | Furukawa Electric Co Ltd:The | Optical fiber chromatic dispersion value and nonlinear constant measurement method, optical fiber chromatic dispersion value and nonlinear constant measurement device, fiber manufacturing method, dispersion distribution measurement method, measurement error compensation method, measurement condition identification method |
US20130020486A1 (en) * | 2010-04-13 | 2013-01-24 | China Jiliang University | Distributed optical fiber sensor based on roman and brillouin scattering |
CN107238415A (en) * | 2017-07-27 | 2017-10-10 | 中国地质大学(武汉) | For detecting the temperature of fully distributed fiber and the sensor of vibration position |
CN107664541A (en) * | 2017-09-18 | 2018-02-06 | 南京大学 | A kind of distributed optical fiber vibration and Temperature fusion sensor-based system and method |
CN107917738A (en) * | 2017-12-26 | 2018-04-17 | 南京大学(苏州)高新技术研究院 | A kind of while measurement temperature, strain and the distributed optical fiber sensing system of vibration |
CN108663138A (en) * | 2018-05-16 | 2018-10-16 | 湖北三江航天万峰科技发展有限公司 | A kind of distributed fiber optic temperature and the sensor-based system and method for vibration |
US10880007B1 (en) * | 2019-08-15 | 2020-12-29 | Saudi Arabian Oil Company | Simultaneous distributed temperature and vibration sensing using multimode optical fiber |
CN111780859A (en) * | 2020-08-11 | 2020-10-16 | 浙江长芯光电科技有限公司 | Distributed optical fiber sensing detection system |
Non-Patent Citations (1)
Title |
---|
张在宣;金尚忠;王剑锋;刘红林;孙忠周;龚华平;余向东;张文生;: "分布式光纤拉曼光子温度传感器的研究进展", 中国激光, no. 11, 10 November 2010 (2010-11-10) * |
Also Published As
Publication number | Publication date |
---|---|
CN115950482B (en) | 2024-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101603856B (en) | Long-distance distributed optical fiber vibration sensing system and method thereof | |
CN107505041B (en) | Phase demodulation device and method based on phase sensitive optical time domain reflectometer | |
CN102589593B (en) | Phase sensitive type optical time domain reflection sensing system and method | |
CN105783762B (en) | The brillouin distributed optical fiber sensing device and method of chaos correlation method positioning | |
CN107238412B (en) | A kind of while monitoring vibration, stress, temperature distributed fiberoptic sensor | |
CN108663138B (en) | Distributed optical fiber temperature and vibration sensing system and method | |
CN108507662B (en) | Optical fiber distributed sensing method and device based on multi-wavelength dual optical pulse | |
CN107607135A (en) | A kind of chaos Brillouin light time domain/coherent field convergence analysis device and method | |
CN105371941B (en) | Distributed optical fiber vibration sensing detection method based on optical circulator | |
CN104792342A (en) | Distributed optical fiber sensing device with two parameter measuring functions | |
CN111323144B (en) | Distributed Optical Fiber Sensing System for Simultaneous Measurement of Temperature, Strain and Vibration | |
CN103913186A (en) | Multiparameter distributed type optical fiber sensing system based on Rayleigh scattering and Raman scattering | |
WO2017035850A1 (en) | Synchronous and line-shared demodulation system and sensing system for optical fiber sensing network integration | |
CN107976264A (en) | A kind of fiber raman scattering light is used for districution temperature and fiber grating while demodulating system and method | |
CN112945285A (en) | System and method for fusing phase-sensitive optical time domain reflectometer and Brillouin optical time domain reflectometer | |
KR101310783B1 (en) | Distributed optical fiber sensor and sensing method using simultaneous sensing of brillouin gain and loss | |
CN102607736B (en) | A kind of fiber grating combines the sensing arrangement of brillouin scattering signal detection | |
CN115371716A (en) | Distributed optical fiber sensor multi-signal detection method | |
KR101889351B1 (en) | Spatially-selective brillouin distributed optical fiber sensor with increased effective sensing points and sensing method using brillouin scattering | |
CN206974448U (en) | The joint Raman of both-end detection and the distribution type optical fiber sensing equipment of Brillouin scattering | |
CN103175555B (en) | Multi-parameter distributed fiber-optic sensor based on multi-mechanism fusion | |
CN103616090B (en) | A kind of brillouin distributed optical fiber sensing temp measuring system eliminating optical fiber attenuation | |
CN107727122B (en) | Distributed optical fiber sensing device with combined Raman and Brillouin scattering for double-ended detection | |
CN207215172U (en) | For detecting the temperature of fully distributed fiber and the sensor of vibration position | |
CN115950482B (en) | Time division multiplexing temperature and vibration measurement optical fiber sensing system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |