CN115938897A - Cathodoluminescence light-splitting device - Google Patents
Cathodoluminescence light-splitting device Download PDFInfo
- Publication number
- CN115938897A CN115938897A CN202210942314.8A CN202210942314A CN115938897A CN 115938897 A CN115938897 A CN 115938897A CN 202210942314 A CN202210942314 A CN 202210942314A CN 115938897 A CN115938897 A CN 115938897A
- Authority
- CN
- China
- Prior art keywords
- cathodoluminescence
- half mirror
- light
- splitting
- spectroscopic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005136 cathodoluminescence Methods 0.000 title claims abstract description 251
- 238000004611 spectroscopical analysis Methods 0.000 claims abstract description 26
- 238000004020 luminiscence type Methods 0.000 claims abstract description 16
- 239000013078 crystal Substances 0.000 claims description 66
- 238000010894 electron beam technology Methods 0.000 claims description 51
- 230000007246 mechanism Effects 0.000 claims description 24
- 238000001514 detection method Methods 0.000 claims description 17
- 230000003595 spectral effect Effects 0.000 claims description 8
- 230000001678 irradiating effect Effects 0.000 claims description 7
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 abstract description 78
- 238000010586 diagram Methods 0.000 description 24
- 238000004458 analytical method Methods 0.000 description 23
- 238000001228 spectrum Methods 0.000 description 15
- 230000008859 change Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000005286 illumination Methods 0.000 description 3
- 101710114762 50S ribosomal protein L11, chloroplastic Proteins 0.000 description 2
- 101710082414 50S ribosomal protein L12, chloroplastic Proteins 0.000 description 2
- 101710164994 50S ribosomal protein L13, chloroplastic Proteins 0.000 description 2
- 101710156159 50S ribosomal protein L21, chloroplastic Proteins 0.000 description 2
- 101710087140 50S ribosomal protein L22, chloroplastic Proteins 0.000 description 2
- 101710115003 50S ribosomal protein L31, chloroplastic Proteins 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000000504 luminescence detection Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000177 wavelength dispersive X-ray spectroscopy Methods 0.000 description 1
Images
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
技术领域technical field
本公开涉及一种阴极发光分光装置。The present disclosure relates to a cathodoluminescence spectroscopic device.
背景技术Background technique
以往,已知一种检测从试样放射的阴极发光来获得试样的晶格缺陷或杂质的分布等信息的技术。Conventionally, there is known a technique for detecting cathodoluminescence emitted from a sample to obtain information such as lattice defects and impurity distribution of the sample.
例如,在日本特开2000-206046号公报中公开了以下的阴极发光分光装置:通过对试样照射电子束来产生阴极发光,使用分光晶体对阴极发光进行分光。For example, Japanese Patent Application Laid-Open No. 2000-206046 discloses a cathodoluminescence spectroscopic device that generates cathodoluminescence by irradiating a sample with an electron beam, and then uses a spectroscopic crystal to disperse the cathodoluminescence.
发明内容Contents of the invention
在日本特开2000-206046号公报的阴极发光分光装置中,使用分光晶体作为分光器,因此需要将分光晶体本身配置在阴极发光分光装置的内部。因此,阴极发光分光装置需要设置用于配置分光晶体的空间,分光器有可能大型化。其结果,担心阴极发光分光装置本身也大型化。In the cathodoluminescence spectroscopic device disclosed in Japanese Patent Laid-Open No. 2000-206046, a spectroscopic crystal is used as a spectroscope, and therefore it is necessary to arrange the spectroscopic crystal itself inside the cathodoluminescent spectroscopic device. Therefore, the cathodoluminescence spectroscopic device needs to provide a space for arranging the spectroscopic crystal, and the spectroscopic device may be increased in size. As a result, there is a concern that the cathodoluminescence spectroscopic device itself may also increase in size.
本发明是为了解决这样的问题而完成的,其目的在于在阴极发光分光装置中实现用于对阴极发光进行分光的分光器的小型化。The present invention was made to solve such a problem, and an object of the present invention is to reduce the size of a spectroscope for splitting cathodoluminescence in a cathodoluminescence spectroscopic device.
本公开的阴极发光分光装置具备电子枪、聚光机构、分光元件、检测器以及控制装置。电子枪对试样照射电子束。聚光机构使通过向试样照射电子束而从试样放射的阴极发光会聚。分光元件构成为能够对通过聚光机构会聚后的阴极发光进行分光。检测器检测通过分光元件进行分光后的阴极发光的强度。控制装置从检测器接收检测结果来控制阴极发光分光装置。分光元件包括第一半反镜和第二半反镜。第二半反镜设置在与第一半反镜相向的位置。第一半反镜使通过聚光机构会聚后的阴极发光的一部分反射,并使通过聚光机构会聚后的阴极发光的一部分透过。第二半反镜使透过了第一半反镜的阴极发光的一部分反射,并使透过了第一半反镜的阴极发光的一部分透过。第一半反镜和第二半反镜使第一半反镜与第二半反镜之间的阴极发光发生干涉,从而使特定波长的阴极发光从第二半反镜透过。检测器对透过了第二半反镜的阴极发光的强度进行检测。The cathodoluminescence spectroscopic device of the present disclosure includes an electron gun, a light collecting mechanism, a spectroscopic element, a detector, and a control device. The electron gun irradiates the sample with electron beams. The condensing mechanism condenses cathodoluminescence emitted from the sample by irradiating the sample with electron beams. The spectroscopic element is configured to be able to split the cathodoluminescence condensed by the condensing mechanism. The detector detects the intensity of cathodoluminescence that has been split by the spectroscopic element. The control device receives the detection result from the detector to control the cathodoluminescence spectroscopic device. The light splitting element includes a first half mirror and a second half mirror. The second half mirror is arranged at a position opposite to the first half mirror. The first half mirror reflects a part of the cathodoluminescence condensed by the light condensing means, and transmits a part of the cathodoluminescence condensed by the light condensing means. The second half mirror reflects a part of the cathodoluminescence transmitted through the first half mirror, and transmits a part of the cathodoluminescence transmitted through the first half mirror. The first half mirror and the second half mirror interfere cathodoluminescence between the first half mirror and the second half mirror, thereby allowing cathodoluminescence of a specific wavelength to pass through the second half mirror. The detector detects the intensity of cathodoluminescence transmitted through the second half mirror.
根据与附图相关联地理解的本发明所涉及的以下的详细说明,本发明的上述目的、特征、方面及优点以及其它目的、特征、方面及优点会变得明确。The above-mentioned object, characteristics, aspects, and advantages of the present invention, and other objects, characteristics, aspects, and advantages of the present invention will become clear from the following detailed description related to the present invention to be understood in conjunction with the accompanying drawings.
附图说明Description of drawings
图1是示出实施方式1的阴极发光分光装置的概要的图。FIG. 1 is a diagram showing an outline of a cathodoluminescence spectroscopic device according to Embodiment 1. As shown in FIG.
图2是示出标准具元件和检测器的概要图。Fig. 2 is a schematic diagram showing an etalon element and a detector.
图3是示出标准具元件的多重干涉的图。FIG. 3 is a diagram showing multiple interferences of etalon elements.
图4是示出实施方式1的从试样放射的阴极发光的发光强度的显示例的图。4 is a diagram showing a display example of the luminescence intensity of cathodoluminescence emitted from a sample in Embodiment 1. FIG.
图5是示出实施方式2的阴极发光分光装置的概要的图。FIG. 5 is a diagram showing an outline of a cathodoluminescence spectroscopic device according to
图6是被照射了电子束的试样的立体图。Fig. 6 is a perspective view of a sample irradiated with electron beams.
图7是标准具元件和作为CCD的检测器的立体图。Fig. 7 is a perspective view of an etalon element and a detector as a CCD.
图8是示出实施方式2的从试样放射的阴极发光的发光强度的显示例的图。8 is a diagram showing a display example of the luminescence intensity of cathodoluminescence emitted from a sample in
图9是示出与图8的区域对应的受光元件的光谱的一例的图。FIG. 9 is a diagram showing an example of a spectrum of a light receiving element corresponding to the region in FIG. 8 .
图10是示出与图8的区域对应的受光元件的光谱的一例的图。FIG. 10 is a graph showing an example of a spectrum of a light receiving element corresponding to the region in FIG. 8 .
图11是示出与图8的区域对应的受光元件的光谱的一例的图。FIG. 11 is a graph showing an example of a spectrum of a light receiving element corresponding to the region in FIG. 8 .
图12是示出实施方式3的阴极发光分光装置的概要的图。FIG. 12 is a diagram showing an outline of a cathodoluminescence spectroscopic device according to
图13是用于说明实施方式3的电子束的入射角的图。FIG. 13 is a diagram for explaining incident angles of electron beams in
图14是示出实施方式4的阴极发光分光装置的结构的图。FIG. 14 is a diagram showing the configuration of a cathodoluminescence spectroscopic device according to
图15是示出使用了标准具元件的情况下的光谱的图。FIG. 15 is a graph showing spectra when an etalon element is used.
图16是示出使用了分光晶体的情况下的光谱的图。FIG. 16 is a graph showing spectra when a spectroscopic crystal is used.
图17是示出从标准具元件向分光晶体切换的分析处理的流程图。FIG. 17 is a flowchart showing analysis processing for switching from an etalon element to a spectroscopic crystal.
图18是对图像的叠加进行说明的图。FIG. 18 is a diagram illustrating superimposition of images.
具体实施方式Detailed ways
[实施方式1][Embodiment 1]
下面,参照附图来详细地说明本发明的实施方式。此外,对图中的相同或相当的部分标注相同的附图标记,不重复其说明。Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code|symbol is attached|subjected to the same or corresponding part in a figure, and the description is not repeated.
<阴极发光分光装置的整体结构><Overall structure of cathodoluminescence spectroscopic device>
图1是示出实施方式1的阴极发光分光装置100的概要的图。实施方式1的阴极发光分光装置100例如是使电子束扫描并照射到试样的扫描电子显微镜(Scanning ElectronMicroscope)。此外,阴极发光分光装置100不限于电子显微镜,只要是能够对试样照射电子束的装置即可。FIG. 1 is a diagram showing an outline of a cathodoluminescence
阴极发光分光装置100具备电子枪10、试样台15、反射镜20、聚光透镜25、标准具元件30、检测器40以及控制装置50。电子枪10具备电子源11、聚光透镜12、扫描线圈13以及物镜14。The
此外,在以后的说明中,将试样台15的法线方向设为Z轴方向,将与Z轴方向垂直的面规定为X轴和Y轴。另外,有时将各图中的Z轴的正方向称为上表面侧,将负方向称为下表面侧。Note that, in the following description, the normal direction of the
电子枪10对载置于试样台15的试样Sp1照射电子束EB1。载置于试样台15的试样Sp1的Z轴的正方向侧的面与试样台15的面平行。在电子枪10与试样Sp1之间配置有反射镜20。电子束EB1在通过了形成于反射镜20的开口20a之后向试样Sp1入射。The
电子源11是电子束EB1的激发源,通过被施加电压而射出电子束EB1。聚光透镜12使电子束EB1会聚。扫描线圈13使电子束EB1在试样Sp1上扫描。物镜14将电子束EB1缩小为微小直径。The
电子枪10收容在连接有真空排气机构的壳体内以使电子源11能够产生电子束EB1。即,壳体内保持有能够使电子源11产生电子的真空度。The
通过对试样Sp1照射电子束EB1,试样Sp1的价带的电子激发到导带。由此产生的空穴与电子复合,由此产生发光。该发光被称为阴极发光(Cathodoluminescence)。阴极发光从试样Sp1向全方位放射。另外,阴极发光包含多个波长。图1中的阴极发光CL1是向全方位放射的阴极发光中的朝向反射镜20放射的阴极发光。即,阴极发光CL1是从试样Sp1到反射镜20之间的阴极发光。By irradiating the sample Sp1 with the electron beam EB1 , the electrons in the valence band of the sample Sp1 are excited to the conduction band. The resulting holes recombine with electrons, thereby generating light emission. This luminescence is called cathode luminescence (Cathodoluminescence). Cathodoluminescence was emitted in all directions from the sample Sp1. Additionally, cathodoluminescence encompasses multiple wavelengths. The cathodoluminescence CL1 in FIG. 1 is the cathodoluminescence radiated toward the reflecting
反射镜20使从试样Sp1放射的阴极发光CL1反射。反射镜20使阴极发光CL1反射为阴极发光CL2。阴极发光CL2通过聚光透镜25而被会聚到标准具元件30处。即,阴极发光CL2是在被反射镜20反射之后直到被会聚到标准具元件30为止的阴极发光。此外,反射镜20和聚光透镜25对应于本公开的“聚光机构”。作为聚光机构的反射镜20和聚光透镜25也可以被一体地设置为反射镜透镜。The reflecting
标准具元件30构成为能够对通过反射镜20和聚光透镜25会聚后的阴极发光CL2进行分光。即,标准具元件30是仅使包含多个波长的阴极发光CL2中的特定波长的阴极发光CL2作为阴极发光CL3透过的分光器。以下,有时将阴极发光CL3的波长称为“分光后的波长”。标准具元件30被称为法布里-珀罗干涉仪。标准具元件30对应于本公开的“分光元件”。The
标准具元件30的长度方向的尺寸为5mm~15mm左右,宽度方向的尺寸为1mm~5mm左右。另一方面,用于对阴极发光进行分光的普通的分光晶体的尺寸比标准具元件的尺寸大。并且,具备分光晶体的阴极发光分光装置需要具备用于利用分光晶体进行分光的光学系统。收纳光学系统和分光晶体的分光器的长度方向的尺寸为1500mm~2500mm左右,宽度方向的尺寸为1500mm~2500mm左右。即,在配置标准具元件30的情况下所需要的空间比在配置分光晶体的情况下所需要的空间小。The dimension of the
检测器40检测通过标准具元件30进行分光后的阴极发光CL3的强度。实施方式1的检测器40是光电倍增器(PMT)。即,检测器40是所谓的光电倍增管。检测器40使用设置在内部的多个打拿极使光电子倍增,并检测微小的光的强度。The
控制装置50具备CPU 51(Central Processing Unit:中央处理单元)和存储器52来作为主要的构成要素。控制装置50也可以是由专用的硬件电路(例如,ASIC(ApplicationSpecific Integrated Circuit:专用集成电路)或FPGA(Field-Programmable GateArray:现场可编程门阵列)等)构成的结构。存储器例如通过ROM(Read Only Memory:只读存储器)、RAM(Random Access Memory:随机存取存储器)或HDD(Hard Disk Drive:硬盘驱动器)来实现。The
控制装置50与显示器60及输入装置70电连接。控制装置50例如使与阴极发光分光有关的信息显示于显示器60。与阴极发光分光有关的信息例如包含检测器40的检测结果、在分析装置中产生的错误信息等。控制装置50接收用户使用输入装置70输入的命令。输入装置70例如是键盘。显示器60和输入装置70也可以一体地形成为触摸面板。The
控制装置50所具备的结构中的至少一部分、显示器60或者输入装置70也可以与阴极发光分光装置100分开地构成,且构成为与阴极发光分光装置100之间双向地进行通信。At least a part of the configuration of the
控制装置50统一控制阴极发光分光装置100。控制装置50从检测器40接收检测值。控制装置50基于向扫描线圈13施加的电压值和从检测器40接收到的检测值,来计算试样Sp1中的任意位置处的阴极发光的发光强度。由此,控制装置50能够形成表示试样Sp1中的阴极发光的发光强度的分布的图像。控制装置50使形成的图像显示于显示器60。标准具元件30构成为能够将分光后的波长变更为任意的波长。The
<标准具元件的结构><Structure of etalon elements>
下面,使用图2和图3对标准具元件30的分光以及将分光后的波长变更为任意的波长的具体例进行说明。图2是示出标准具元件30和检测器40的概要图。标准具元件30包括半透半反镜31、半透半反镜32以及驱动装置33。半透半反镜31和半透半反镜32以隔开距离d的方式配置在彼此相向的位置。距离d被称为气隙。Next, a specific example of splitting light by the
半透半反镜31使被反射镜20反射的阴极发光CL2的一部分反射,并使被反射镜20反射的阴极发光CL2的一部分透过。半透半反镜32使透过了半透半反镜31的阴极发光的一部分反射,并使透过了半透半反镜31的阴极发光的一部分透过。检测器40对透过了半透半反镜32的阴极发光CL3进行检测。The
如图2所示,标准具元件30具备以包围半透半反镜32和半透半反镜31的方式配置的驱动装置33。驱动装置33构成为能够使半透半反镜32的位置或半透半反镜31的位置移动。As shown in FIG. 2 , the
实施方式1的驱动装置33构成为包括压电元件。压电元件是利用压电效应进行驱动的元件。对驱动装置33中包括的压电元件施加电压来按压半透半反镜31和半透半反镜32,由此距离d变化。即,控制装置50能够通过调整向驱动装置33中包括的压电元件施加的电压值来使距离d变化。The driving
由此,控制装置50能够调整要通过标准具元件30的阴极发光CL3的波长。此外,驱动装置33也可以不使用压电元件来使距离d变化。例如,驱动装置33也可以是包括马达或电磁致动器等的结构。Accordingly, the
图3是示出标准具元件30的多重干涉的图。如图3所示,被反射镜20反射的阴极发光CL2向半透半反镜31入射。阴极发光CL2的一部分透过半透半反镜31。在图3中,透过了半透半反镜31的阴极发光CL2被表示为阴极发光CLg。FIG. 3 is a diagram illustrating multiple interference of
阴极发光CLg在半透半反镜31与半透半反镜32之间反复进行反射。半透半反镜31和半透半反镜32通过使波长的整数倍为距离d的阴极发光CLg进行多次的反射来发生干涉。通过发生干涉,特定波长的阴极发光CLg相互增强。由此,标准具元件30能够仅使特定波长的阴极发光CL3从半透半反镜32透过。The cathode luminescence CLg is repeatedly reflected between the
图4是示出实施方式1的从试样Sp1放射的阴极发光的发光强度的显示例的图。如上所述,控制装置50对试样Sp1中的被照射了电子束EB1的位置的阴极发光的发光强度进行计算。控制装置50通过使电子束EB1扫描试样Sp1的整体来形成表示试样Sp1整体的阴极发光的发光强度的分布的图像。4 is a diagram showing an example display of the luminescence intensity of cathodoluminescence emitted from the sample Sp1 in Embodiment 1. FIG. As described above, the
在图4中示出了控制装置50将所形成的图像Im1显示于显示器60的例子。如图4所示,在显示器60中显示有从Z轴的正方向侧进行了俯视时的试样Sp1。FIG. 4 shows an example in which the
在实施方式1的阴极发光分光装置100中,向扫描线圈13施加的电压值被调整而使磁场发生变化,由此电子束EB1进行扫描。由此,电子束EB1向从Z轴的正方向侧进行了俯视时的试样Sp1的整体进行入射。In the
控制装置50使用电子束EB1入射的位置以及该位置处的阴极发光的发光强度来形成图像Im1。在图4中,在图像Im1中示出了用实线表示的区域Ar1和用虚线表示的区域Ar2。区域Ar1是与区域Ar2相比阴极发光的发光强度高的区域。另外,图像Im1中的不是区域Ar1和区域Ar2的区域是未被扫描的区域或未被检测到阴极发光的发光的区域。控制装置50也可以将表示阴极发光的发光强度的图像Im1叠加于通过进行二次电子的检测所得到的试样Sp1的图像来进行显示。The
这样,在实施方式1的阴极发光分光装置100的情况下,能够可视地显示在使用标准具元件30对试样Sp1照射了电子束EB1时所产生的阴极发光的发光强度。如上所述,在配置标准具元件30的情况下所需要的空间比在配置分光晶体的情况下所需要的空间小。In this manner, in the case of the cathodoluminescence
由此,在实施方式1的阴极发光分光装置100中,能够实现用于对阴极发光进行分光的分光器的小型化。其结果,能够实现阴极发光分光装置100的小型化或者能够在阴极发光分光装置100的内部配置其它设备等。另外,标准具元件30的成本比分光晶体的成本低,因此能够减少阴极发光分光装置100整体的成本。Thus, in the
在使用分光晶体进行分光的情况下,通过分光晶体进行分光的阴极发光的波长根据阴极发光向分光晶体入射的角度而变化。因此,为了获得各波长的光谱,需要在每次检测时进行改变分光晶体的角度的动作。为了准确地进行改变分光晶体的角度的动作,需要适当地进行零点校正,因此进行分光所需的总时间可能为长时间。In the case of using a dichroic crystal for splitting light, the wavelength of cathodoluminescence that is split by the dichroic crystal changes depending on the angle at which the cathodoluminescence is incident on the dichroic crystal. Therefore, in order to obtain the spectrum of each wavelength, it is necessary to change the angle of the spectroscopic crystal every detection. In order to accurately perform the operation of changing the angle of the spectroscopic crystal, it is necessary to perform zero-point calibration appropriately, and therefore the total time required for spectroscopic performance may be long.
另一方面,在实施方式1的阴极发光分光装置100的情况下,仅通过调整对驱动装置33所包括的压电元件施加的电压就能够容易地改变分光后的波长。即,在实施方式1的阴极发光分光装置100的情况下,与使用分光晶体的情况相比,能够削减分析阴极发光所需的时间。On the other hand, in the case of the
[实施方式2][Embodiment 2]
在实施方式1的阴极发光分光装置100的情况下,说明了通过使电子束EB1扫描来检测试样Sp1的整面的阴极发光的发光强度的结构。在实施方式2中,对不使电子束EB1扫描就形成表示阴极发光的发光强度的图像的结构进行说明。此外,在实施方式2的阴极发光分光装置100A中,不对与实施方式1的阴极发光分光装置100重复的结构重复进行说明。In the case of the
图5是示出实施方式2的阴极发光分光装置100A的概要的图。在实施方式2的试样台15上载置有与实施方式1相同的试样Sp1。如图5所示,在实施方式2的阴极发光分光装置100A中,检测阴极发光CL3的检测器40A实现为CCD(Charge Coupled Device:电荷耦合器件)。作为CCD的检测器40A具有多个受光元件。检测器40A和标准具元件30也可以一体地设置。FIG. 5 is a diagram showing an outline of a
另外,在实施方式2中,从电子源11射出的电子束EB2不是被物镜14缩小为微小直径而是以具有宽度Wd的状态向试样Sp1入射。由此,电子束EB2被照射到试样Sp1的Z轴的正方向侧的表面的固定区域。以下,将被照射电子束EB2的区域称为“照射区域”。照射区域的面积能够通过电子枪光学系统而控制为与光学聚光系统相应的大小。照射区域例如具有0.16平方毫米左右的面积。In addition, in
图6是被照射了电子束EB2的试样Sp1的立体图。在图6中,电子束EB2对试样Sp1的表面的照射区域Fc1进行照射。照射区域Fc1具有直径为宽度Wd的圆形形状。点Cp表示圆形形状的照射区域Fc1的中心。Fig. 6 is a perspective view of a sample Sp1 irradiated with an electron beam EB2. In FIG. 6 , the electron beam EB2 irradiates the irradiation region Fc1 on the surface of the sample Sp1 . The irradiation area Fc1 has a circular shape with a diameter equal to the width Wd. A point Cp indicates the center of the circular irradiation area Fc1.
如图6所示,照射区域Fc1包括区域Fa1、区域Fa2以及区域Fa3。通过被照射电子束EB2,从区域Fa1、Fa2、Fa3分别放射阴极发光CL11、CL12、CL13。阴极发光CL11、CL12、CL13被反射镜20反射为阴极发光CL21、CL22、CL23,并向标准具元件30会聚。As shown in FIG. 6 , the irradiation area Fc1 includes an area Fa1 , an area Fa2 , and an area Fa3 . Cathodoluminescence CL11 , CL12 , and CL13 are emitted from the regions Fa1 , Fa2 , and Fa3 by being irradiated with the electron beam EB2 . The cathodoluminescence CL11 , CL12 , and CL13 are reflected by the
图7是标准具元件30和作为CCD的检测器40A的立体图。如图7所示,阴极发光CL21、CL22、CL23向标准具元件30的半透半反镜31入射。通过多重干涉,特定波长的阴极发光CL31、CL32、CL33从半透半反镜32透过。作为CCD的检测器40A具有包括受光元件LE1、LE2、LE3的多个受光元件。FIG. 7 is a perspective view of the
阴极发光CL31由受光元件LE1检测。阴极发光CL32由受光元件LE2检测。阴极发光CL33由受光元件LE3检测。受光元件LE1的检测值表示区域Fa1的阴极发光的发光强度。受光元件LE2的检测值表示区域Fa2的阴极发光的发光强度。受光元件LE3的检测值表示区域Fa3的阴极发光的发光强度。这样,实施方式2的阴极发光分光装置100A即使不使电子枪10扫描也能够形成表示试样Sp1整体的阴极发光的发光强度的图像。Cathodoluminescence CL31 is detected by light receiving element LE1. Cathodoluminescence CL32 is detected by light receiving element LE2. Cathodoluminescence CL33 is detected by light receiving element LE3. The detected value of the light receiving element LE1 indicates the emission intensity of the cathodoluminescence in the region Fa1. The detection value of the light receiving element LE2 shows the emission intensity of the cathodoluminescence in the region Fa2. The detection value of the light receiving element LE3 shows the emission intensity of the cathodoluminescence in the region Fa3. In this way, the cathodoluminescence
图8是示出实施方式2的从试样Sp1放射的阴极发光的发光强度的显示例的图。显示器60显示图像Im2。图像Im2是由控制装置50使用作为CCD的检测器40A的检测结果形成的图像。图像Im2中的区域Fd1是与图6中的照射区域Fc1对应的区域。另外,图像Im2中的区域Fb1、Fb2、Fb3分别与图6中的区域Fa1、Fa2、Fa3对应。FIG. 8 is a diagram showing a display example of the luminescence intensity of cathodoluminescence emitted from the sample Sp1 according to
图8中的区域Ar1与图4中的区域Ar1对应。图8中的区域Ar2与图4中的区域Ar2对应。即,区域Ar1是发光强度最高的区域,区域Ar2是与区域Ar1相比发光强度低的区域。并且,区域Fd1中的不是区域Ar1和区域Ar2的区域Ar3是未被检测到阴极发光的发光的区域。由此,用户能够观察图像Im2来掌握检测的阴极发光的发光强度按受光元件LE1、LE2、LE3的顺序变高的情况。The region Ar1 in FIG. 8 corresponds to the region Ar1 in FIG. 4 . The region Ar2 in FIG. 8 corresponds to the region Ar2 in FIG. 4 . That is, the region Ar1 is a region with the highest luminous intensity, and the region Ar2 is a region with a lower luminous intensity than the region Ar1. In addition, a region Ar3 other than the region Ar1 and the region Ar2 in the region Fd1 is a region where cathodoluminescence is not detected and emits light. Thereby, the user can observe the image Im2 and grasp that the luminous intensity of the detected cathodoluminescence becomes higher in the order of the light receiving elements LE1 , LE2 , and LE3 .
这样,在实施方式2中,也能够通过使用标准具元件30进行分光,来在阴极发光分光装置100A中实现用于对阴极发光进行分光的分光器的小型化并降低成本。另外,如在上述所说明的那样,标准具元件30使用包括压电元件的驱动装置33进行光的波长扫描。因此,使用标准具元件30的情况下的分析时间比使用需要变更分光晶体的位置的分光器的情况下的分析时间短。即,在实施方式2中也能够缩短分析时间。并且,实施方式2的阴极发光分光装置100A使用具备多个受光元件的CCD和能够同时对多个阴极发光进行分光的标准具元件30来形成图像Im2。由此,控制装置50即使不使电子枪10扫描也能够形成表示从试样Sp1放射的阴极发光的发光强度的图像Im2,能够削减图像形成所需的时间。另外,通过将作为CCD的检测器40A和标准具元件30形成为一体,能够使阴极发光分光装置100A进一步小型化。In this way, also in
并且,由于不需要使电子束EB2扫描,因此能够同时进行能量色散型特性X射线分析(Energy Dispersive X-ray Spectroscopy)或波长色散型特性X射线分析(WavelengthDispersive X-ray Spectroscopy)以及阴极发光分析。另外,能够按作为CCD的检测器40A中包括的每个受光元件检测光谱。即,实施方式2的阴极发光分光装置100A能够不仅根据发光强度,还根据波长区分地显示区域Ar1~Ar3。Furthermore, since it is not necessary to scan the electron beam EB2, energy dispersive X-ray Spectroscopy, wavelength dispersive X-ray Spectroscopy, and cathodoluminescence analysis can be performed simultaneously. In addition, it is possible to detect a spectrum for each light receiving element included in the
下面,使用图9~图11对根据波长区分地显示区域Ar1~Ar3的例子进行说明。控制装置50一边使标准具元件30的半透半反镜31与半透半反镜32之间的距离d变化,一边使检测器40A检测阴极发光CL3。由此,检测器40A的各受光元件检测多个波长的阴极发光CL3的发光强度。多个波长例如能够是波长200nm至1300nm之间的波长。图9是示出与图8的区域Ar1对应的受光元件LE3的光谱的一例的图。如图9所示,受光元件LE3在400nm附近的波长下检测到超过阈值Th的发光强度的阴极发光CL3。Next, an example in which the regions Ar1 to Ar3 are displayed according to wavelengths will be described with reference to FIGS. 9 to 11 . The
接着,图10是示出与图8的区域Ar2对应的受光元件LE2的光谱的一例的图。如图10所示,受光元件LE2在1000nm附近的波长下检测到超过阈值Th的发光强度的阴极发光CL3。并且,图11是示出与图8的区域Ar3对应的受光元件LE1的光谱的一例的图。如图11所示,受光元件LE1在波长200nm至1300nm之间没有检测到超过阈值Th的发光强度的阴极发光CL3。能够根据作为CCD的检测器40A的灵敏度等预先决定阈值Th。Next, FIG. 10 is a diagram showing an example of the spectrum of the light receiving element LE2 corresponding to the region Ar2 in FIG. 8 . As shown in FIG. 10 , the light receiving element LE2 detects cathodoluminescence CL3 having a luminous intensity exceeding the threshold Th at a wavelength around 1000 nm. 11 is a diagram showing an example of the spectrum of the light receiving element LE1 corresponding to the region Ar3 in FIG. 8 . As shown in FIG. 11 , the light-receiving element LE1 did not detect cathodoluminescence CL3 having a luminescence intensity exceeding the threshold value Th between wavelengths of 200 nm to 1300 nm. The threshold Th can be determined in advance according to the sensitivity of the
这样,实施方式2的阴极发光分光装置100A能够按检测器40A所具有的每个受光元件检测阴极发光CL3的光谱。因此,实施方式2的阴极发光分光装置100A在显示图像Im2时,能够使与各受光元件对应的区域Ar1~Ar3不仅根据发光强度不同地显示,还根据波长不同地显示。具体地说,控制装置50对图8所示的显示器60上的图像Im2标注与检测到的波长对应的颜色来进行显示。In this way, the
例如,控制装置50对与在400nm附近的波长下检测到高发光强度的受光元件LE3对应的区域标注蓝色来进行显示,对与在1000nm的波长下检测到高发光强度的受光元件LE2对应的区域标注红色来进行显示。另外,控制装置50为了区分在同一波长下检测到超过阈值Th的阴极发光的受光元件,也可以根据发光强度来变更所显示的颜色的浓淡。这样,通过根据发光强度和波长使与受光元件对应的区域的显示方法变化,实施方式2的阴极发光分光装置100A能够使用户容易地掌握试样Sp1上的每个位置的发光强度及波长的差异。For example, the
[实施方式3][Embodiment 3]
在实施方式2的阴极发光分光装置100A中,说明了不使电子束EB2扫描而使用包括多个受光元件的检测器40A检测阴极发光的发光强度的结构。在实施方式3中,对变更了电子枪10的配置的结构进行说明。此外,在实施方式3的阴极发光分光装置100B中,不对与实施方式2的阴极发光分光装置100A重复的结构重复进行说明。In the cathodoluminescence
图12是示出实施方式3的阴极发光分光装置100B的概要的图。如图12所示,电子枪10配置于在X轴方向上与试样Sp1分离的位置。在实施方式2中,电子束EB2向试样Sp1入射的入射角为0度,但在实施方式3中,电子束EB以入射角大于0度的角度向试样Sp1入射。在图12中,聚光透镜25配置在反射镜20与试样Sp1之间。FIG. 12 is a diagram showing an outline of a
图13是用于说明实施方式3的电子束EB2的入射角的图。在实施方式2和实施方式3中,载置于试样台15的试样Sp1的Z轴的正方向侧的面与试样台15的面平行。如图6所示,实施方式2的电子束EB2向照射区域Fc1入射。在实施方式2中,通过照射区域Fc1的点Cp的电子束EB2从试样台15的法线方向垂直地入射。即,入射角为0度。FIG. 13 is a diagram for explaining the incident angle of the electron beam EB2 according to the third embodiment. In
另一方面,如图13所示,对作为照射区域Fc1的中心的点Cp进行照射的电子束EB2以入射角θ向试样Sp1入射。入射角θ是大于0度且小于90度的角度。On the other hand, as shown in FIG. 13 , the electron beam EB2 irradiating the point Cp which is the center of the irradiation region Fc1 enters the sample Sp1 at the incident angle θ. The incident angle θ is an angle larger than 0 degrees and smaller than 90 degrees.
这样,在实施方式3中,也能够通过使用标准具元件30进行分光,来在阴极发光分光装置100B中实现用于对阴极发光进行分光的分光器的小型化,降低成本,缩短分析时间。并且,在不使电子束EB2进行扫描的情况下,电子束EB2不需要对试样台15垂直地照射。因此,在实施方式3中,电子枪10以电子束EB2向试样Sp1入射的角度为大于0度且小于90度的角度的方式进行照射。由此,电子枪10的配置自由度提高。另外,反射镜20不需要形成开口20a。In this way, also in
[实施方式4][Embodiment 4]
在实施方式1~3的阴极发光分光装置100、100A、100B中,说明了使用标准具元件30检测阴极发光的发光强度的结构。在实施方式4中,对除了具备标准具元件30以外还具备分光器的结构进行说明。此外,在实施方式4的阴极发光分光装置100C中,不对与实施方式1的阴极发光分光装置100重复的结构重复进行说明。In the cathodoluminescence
图14是示出实施方式4的阴极发光分光装置100C的结构的图。图14的(A)示出使用标准具元件30进行分光的例子,图14的(B)示出使用分光晶体35进行分光的例子。FIG. 14 is a diagram showing the configuration of a
如图14的(A)所示,阴极发光分光装置100C除了具备标准具元件30作为分光器以外,还具备分光晶体35作为分光器。分光晶体35构成为能够使通过反射镜20会聚后的阴极发光CL2中的特定波长的阴极发光CL3反射。As shown in (A) of FIG. 14 , a
如图14的(A)所示,阴极发光分光装置100C还具备切换机构80。切换机构80构成为能够使反射镜20的聚光目的地在标准具元件30与分光晶体35之间切换。切换机构80例如既可以是用于更换标准具元件30和分光晶体35的位置的马达等,也可以是用于改变反射镜20的角度的马达等。切换机构80与控制装置50电连接。控制装置50控制切换机构80来切换反射镜20的聚光目的地。As shown in (A) of FIG. 14 , the
在图14的(A)中示出了反射镜20的聚光目的地为标准具元件30的状态。检测器40检测通过标准具元件30进行分光后的阴极发光CL3的发光强度。控制装置50基于检测器40的检测结果来形成图像。基于使用标准具元件30进行分光后的阴极发光CL3形成的图像对应于本公开的“第一图像”。(A) of FIG. 14 shows a state where the focusing destination of the
在图14的(B)中示出了反射镜20的聚光目的地从标准具元件30切换为分光晶体35之后的状态。检测器40检测通过分光晶体35进行分光后的阴极发光CL3的强度。控制装置50基于检测器40的检测结果来形成图像。基于使用分光晶体35进行分光后的阴极发光CL3形成的图像对应于本公开的“第二图像”。控制装置50也能够将反射镜20的聚光目的地从分光晶体35向标准具元件30切换。FIG. 14(B) shows a state after the light-condensing destination of the
<关于波长分辨率><About wavelength resolution>
图15是示出使用了标准具元件30的情况下的光谱的图。图16是示出使用了分光晶体35的情况下的光谱的图。在图15和图16中示出了对同一试样进行阴极发光的分析所得到的结果。FIG. 15 is a graph showing spectra when the
如图15和图16所示,作为区域Ar3示出的表示光谱的波形的形状不同。具体地说,在使用了标准具元件30的情况下,在区域Rg1内,以宽的波长范围示出了高强度。另一方面,在使用了分光晶体35的情况下,在区域Rg2内,以比使用了标准具元件30的情况下的波长范围窄的波长范围示出了高强度。即,分光晶体35的波长分辨率比标准具元件30的波长分辨率高。As shown in FIG. 15 and FIG. 16 , the shapes of the waveforms representing the spectra shown as the region Ar3 are different. Specifically, when the
总之,使用标准具元件30进行的分析与使用分光晶体35进行的分析相比,能够在更短的时间内进行分析,但由于标准具元件30的波长分辨率比分光晶体35的波长分辨率低,因此有时无法得到准确的检测结果。In short, the analysis using the
因此,在实施方式4中,控制装置50在使用标准具元件30进行了分析之后,使用分光晶体35进行分析。图17是示出从标准具元件30向分光晶体35切换的分析处理的流程图。如图14的(A)所示,控制装置50使用标准具元件30进行分光(步骤S1)。如上所述,阴极发光分光装置100C在使用了标准具元件30的情况下,能够在短时间内进行分析。Therefore, in
控制装置50基于使用标准具元件30进行分光后的阴极发光CL3来形成图像,并将该图像显示于显示器60(步骤S2)。此时,假定以下情况:确认了显示器60中显示的图像的用户期望更加准确地检测阴极发光的发光强度。实施方式4的阴极发光分光装置100C能够在用户期望更准确地检测发光强度的情况下从输入装置70接收切换为分光晶体35后进行检测的命令。The
阴极发光分光装置100C也可以除了接收切换为分光晶体35后进行检测的命令以外,还接收变更使电子束EB1照射或扫描的区域的命令。即,在期望通过分光晶体35对在步骤S2中显示的图像中的仅一部分图像进行检测的情况下,用户能够从试样Sp1的表面选择检测区域。The cathodoluminescence
控制装置50判断是否从用户接收到切换为分光晶体35的命令(步骤S3)。控制装置50在判断为没有接收到进行切换的命令的情况下(在步骤S3中为“否”),判断是否接收到结束分析处理的命令(步骤S4)。控制装置50在判断为接收到结束分析处理的命令的情况下(在步骤S4中为“是”),结束分析处理。控制装置50在判断为没有接收到结束分析处理的命令的情况下(在步骤S4中为“否”),重复进行步骤S3的处理。The
控制装置50在判断为接收到进行切换的命令的情况下(在步骤S3中为“是”),将反射镜20的聚光目的地切换为分光晶体35(步骤S5)。即,控制装置50控制切换机构80。此时,在接收到检测区域的情况下,控制装置50控制由于扫描线圈13引起的电子束EB1的角度以及物镜14所进行的缩小,来变更电子束EB1向试样Sp1入射的区域。When the
如图14的(B)所示,控制装置50使用分光晶体35进行分光(步骤S6)。在使用了分光晶体35的情况下,能够进行高波长分辨率的分光。控制装置50基于使用分光晶体35进行分光后的阴极发光CL3来形成图像,并将该图像显示于显示器60(步骤S7)。As shown in (B) of FIG. 14 , the
这样,在实施方式4中,也能够通过使用标准具元件30进行分光,来在阴极发光分光装置100A中缩短分析时间。并且,在实施方式4中,还具备分光晶体35,能够根据用途切换反射镜20的聚光目的地。即,在实施方式4中,在使用能够在短时间内进行分析的标准具元件30进行了分析之后,能够使用高波长分辨率的分光晶体35对需要更准确的分析的部位进行分析,因此能够进行高效的分析。In this way, also in
[变形例][modified example]
(1)在实施方式1中,对标准具元件30具备驱动装置的例子进行了说明。然而,阴极发光分光装置100也可以是具备半透半反镜31与半透半反镜32之间的距离d被固定的标准具元件30的结构。阴极发光分光装置100也可以具备距离d不同的多个标准具元件30,通过切换机构80使聚光目的地在多个标准具元件30之间切换。(1) In Embodiment 1, an example in which the
(2)在实施方式2中,对基于作为CCD的检测器40A所检测到的阴极发光CL3的发光强度或波长来显示图像Im2的例子进行了说明。在变形例中,对控制装置50使其它图像叠加于图像Im2而显示于显示器60的结构进行说明。(2) In
图18是对图像的叠加进行说明的图。如在实施方式1中所说明的那样,控制装置50可以使通过检测二次电子所得到的试样Sp1的图像叠加于图像Im1来进行显示。另外,在实施方式2中,控制装置50也同样可以使通过检测二次电子所得到的图像叠加于图像Im2来进行显示。FIG. 18 is a diagram illustrating superimposition of images. As described in Embodiment 1, the
在实施方式2中,作为检测器40A,使用了CCD。CCD不仅能够检测阴极发光的反射,还能够在将普通的可见光用作照明的情况下检测来自试样Sp1的反射光。实施方式2的控制装置50也可以使通过检测将普通的可见光用作照明时的反射光所得到的试样Sp1的图像叠加于图像Im2来进行显示。In
图18的(A)中示出的图像Im3是通过检测二次电子所得到的图像或者是通过检测将普通的可见光用作照明时的反射光所得到的图像。即,不使用阴极发光就获取到图18的(A)所示的图像Im3。The image Im3 shown in (A) of FIG. 18 is an image obtained by detecting secondary electrons or an image obtained by detecting reflected light when ordinary visible light is used as illumination. That is, the image Im3 shown in (A) of FIG. 18 is acquired without using cathodoluminescence.
接着,在图18的(B)中显示有作为CCD的检测器40A检测到通过标准具元件30进行分光之前的阴极发光CL2时的图像Im4。换言之,图18的(B)的图像Im4是通过在图5中去除了标准具元件30的状态下由检测器40A检测阴极发光CL2而获取到的。在图像Im4中示出了检测器40A检测到阴极发光CL2的发光的区域Ar4。Next, in (B) of FIG. 18 , an image Im4 when the
通过标准具元件30进行分光之前的阴极发光CL2包含与通过标准具元件30进行分光后的阴极发光CL3相比波长更多的阴极发光。例如,在图9中,对使用标准具元件30分光为200nm~1300nm中的各波长的阴极发光CL3时的光谱进行了说明,但阴极发光CL2还能够包含200nm~1300nm以外的波长的阴极发光。因此,区域Ar4成为包括区域Ar1、Ar2的区域。The cathodoluminescence CL2 before being spectroscopically split by the
控制装置50能够将图像Im3和图像Im4叠加于图8的图像Im2。图18的(C)中的图像Im5是将图18的(A)的图像Im3和图18的(B)的图像Im4叠加于图8的图像Im2之后的图像。这样,在图18的(C)中,不使用阴极发光就获取到的图像Im3与通过检测阴极发光CL3而得到的图像Im2叠加。由此,阴极发光分光装置100A能够使用户使用基于二次电子或可见光的反射而得到的试样Sp1的图像容易地掌握分光后的阴极发光CL3在试样Sp1的哪个部位发光。The
并且,在图18的(C)中,通过检测分光前的阴极发光CL2而得到的图像Im4与通过检测分光后的阴极发光CL3而得到的图像Im2叠加。由此,能够使用户容易地掌握分光前的阴极发光CL2的发光强度与分光后的阴极发光CL3的发光强度之差。In addition, in (C) of FIG. 18 , the image Im4 obtained by detecting the cathodoluminescence CL2 before the spectroscopy is superimposed on the image Im2 obtained by detecting the cathodoluminescence CL3 after the spectroscopy. This allows the user to easily grasp the difference between the light emission intensity of the cathodoluminescence CL2 before spectral separation and the light emission intensity of the cathodoluminescence CL3 after spectral separation.
例如,在分光后的阴极发光CL3的发光强度低且在显示器60中仅显示了分光后的阴极发光CL3的情况下,用户有可能识别为阴极发光本身没有进行发光。然而,在变形例的阴极发光分光装置100A的情况下,通过将图像Im4和图像Im2叠加,能够将分光前的阴极发光CL2发光的区域Ar4显示于显示器60,从而防止用户看漏阴极发光本身进行发光的情况。此外,图像Im5既可以是仅由图像Im2和图像Im3叠加而成的图像,也可以是仅由图像Im2和图像Im4叠加而成的图像。For example, when the light emission intensity of the split cathodoluminescence CL3 is low and only the split cathodoluminescence CL3 is displayed on the
(3)在实施方式4中,对切换机构80使反射镜20的聚光目的地在分光晶体35与标准具元件30之间切换的结构进行了说明。然而,被反射镜20反射的阴极发光也可以同时被会聚到分光晶体35和标准具元件30。例如,也可以构成为:还在反射镜20的聚光目的地设置半透半反镜,利用该半透半反镜将来自反射镜20的阴极发光分支到分光晶体35和标准具元件30而同时被会聚。(3) In
[方式][Way]
本领域技术人员能够理解的是,上述的多个例示性的实施方式是以下方式的具体例。Those skilled in the art can understand that the above exemplary embodiments are specific examples of the following aspects.
(第一项)一个方式所涉及的阴极发光分光装置具备:电子枪,其对试样照射电子束;聚光机构,其使通过向试样照射电子束而从试样放射的阴极发光会聚;分光元件,其构成为能够对通过聚光机构会聚后的阴极发光进行分光;检测器,其检测通过分光元件进行分光后的阴极发光的强度;以及控制装置,其从检测器接收检测结果,来控制阴极发光分光装置。分光元件包括第一半反镜以及设置在与第一半反镜相向的位置的第二半反镜。第一半反镜使通过聚光机构会聚后的阴极发光的一部分反射,并使通过聚光机构会聚后的阴极发光的一部分透过。第二半反镜使透过了第一半反镜的阴极发光的一部分反射,并使透过了第一半反镜的阴极发光的一部分透过。第一半反镜和第二半反镜使第一半反镜与第二半反镜之间的阴极发光发生干涉,从而使特定波长的阴极发光从第二半反镜透过。检测器对透过了第二半反镜的阴极发光的强度进行检测。(Claim 1) A cathodoluminescence spectroscopic device according to one aspect includes: an electron gun for irradiating an electron beam to a sample; an element configured to be able to split the cathodoluminescence converged by the light converging mechanism; a detector to detect the intensity of the cathodoluminescence split by the spectroscopic element; and a control device to receive the detection result from the detector to control Cathodoluminescence spectroscopic device. The light splitting element includes a first half mirror and a second half mirror disposed at a position facing the first half mirror. The first half mirror reflects a part of the cathodoluminescence condensed by the light condensing means, and transmits a part of the cathodoluminescence condensed by the light condensing means. The second half mirror reflects a part of the cathodoluminescence transmitted through the first half mirror, and transmits a part of the cathodoluminescence transmitted through the first half mirror. The first half mirror and the second half mirror interfere cathodoluminescence between the first half mirror and the second half mirror, thereby allowing cathodoluminescence of a specific wavelength to pass through the second half mirror. The detector detects the intensity of cathodoluminescence transmitted through the second half mirror.
根据第一项所述的分光装置,通过使用标准具元件30进行分光,在阴极发光分光装置100A中能够缩短分析时间。According to the spectroscopic device described in the first clause, by performing spectroscopic analysis using the
(第二项)在第一项所涉及的阴极发光分光装置中,检测器包括第一受光元件和第二受光元件。电子枪对试样的表面的照射区域照射电子束。分光元件对从照射区域中的第一区域放射的第一阴极发光进行分光,并对从照射区域中的与第一区域不同的第二区域放射的第二阴极发光进行分光。第一受光元件接收通过分光元件进行分光后的第一阴极发光。第二受光元件接收通过分光元件进行分光后的第二阴极发光。(Item 2) In the cathodoluminescence spectroscopic device according to the first item, the detector includes a first light receiving element and a second light receiving element. The electron gun irradiates electron beams to the irradiation area on the surface of the sample. The spectroscopic element splits first cathodoluminescence emitted from a first region in the irradiation region, and splits second cathodoluminescence emitted from a second region different from the first region in the irradiation region. The first light-receiving element receives the first cathodoluminescence after being split by the light-splitting element. The second light-receiving element receives the second cathodoluminescence after being split by the light-splitting element.
根据第二项所述的分光装置,即使不使电子枪10扫描,也能够形成表示试样Sp1整体的阴极发光的发光强度的图像。According to the spectroscopic apparatus described in the second clause, it is possible to form an image showing the emission intensity of cathodoluminescence of the entire sample Sp1 without scanning the
(第三项)在第二项所涉及的阴极发光分光装置中,电子束向所述试样入射时的入射角大于0度且小于90度。(Third Item) In the cathodoluminescence spectroscopic device according to the second item, the incident angle of the electron beam when incident on the sample is larger than 0° and smaller than 90°.
根据第三项所述的分光装置,电子枪10的配置自由度提高。According to the spectroscopic device described in the third item, the degree of freedom in arrangement of the
(第四项)在第一项~第三项中的任一项所涉及的阴极发光分光装置中,分光元件还具备驱动装置,所述驱动装置使第一半反镜与第二半反镜之间的距离变化。(Item 4) In the cathodoluminescence spectroscopic device according to any one of Items 1 to 3, the spectroscopic element further includes a drive device that drives the first half mirror and the second half mirror The distance between changes.
根据第四项所述的分光装置,能够使用单个的分光元件分光为多个波长。According to the spectroscopic device described in
(第五项)在第四项所涉及的阴极发光分光装置中,驱动装置构成为包括压电元件。(5th item) In the cathodoluminescence spectroscopic device according to the 4th item, the driving device is configured to include a piezoelectric element.
根据第五项所述的分光装置,能够通过压电元件使第一半反镜与第二半反镜之间的距离准确且短时间地变化。According to the spectroscopic device described in item 5, the distance between the first half mirror and the second half mirror can be accurately and shortly changed by the piezoelectric element.
(第六项)在第一项~第五项中的任一项所涉及的阴极发光分光装置中,还具备:分光晶体,其构成为能够使通过聚光机构会聚后的阴极发光中的特定波长的阴极发光反射;以及切换机构,其将聚光机构的聚光目的地切换为分光晶体或分光元件。(Sixth Item) The cathodoluminescence spectroscopic device according to any one of Items 1 to 5, further comprising: a spectroscopic crystal configured to enable specific cathodoluminescent reflection of the wavelength; and a switching mechanism, which switches the light-gathering destination of the light-gathering mechanism to a light-splitting crystal or a light-splitting element.
根据第六项所述的分光装置,能够根据用途容易地切换分光器。According to the spectroscopic device described in the sixth item, it is possible to easily switch the spectroscope according to the application.
(第七项)在第六项所涉及的阴极发光分光装置中,控制装置基于通过分光元件进行分光后的阴极发光来形成第一图像,控制装置在接收到切换为分光晶体的命令的情况下,基于通过分光晶体进行分光后的阴极发光来显示第二图像。(Item 7) In the cathodoluminescence spectroscopic device according to Item 6, the control device forms the first image based on the cathodoluminescence after spectroscopic separation by the spectroscopic element, and when the control device receives a command to switch to a spectroscopic crystal, , displaying the second image based on cathodoluminescence after light splitting by the light splitting crystal.
根据第七项所述的分光装置,能够在利用分析时间短的分光元件进行了分光之后,利用波长分辨率高的分光晶体进行分光。According to the spectroscopic device described in claim 7, after the spectroscopic element has a short analysis time, the spectroscopic crystal can perform spectroscopic splitting with a high wavelength resolution.
此外,关于上述的实施方式以及变更例,包括在说明书内没有提及的组合在内,在不产生不良情况或矛盾的范围内,从申请的最初就计划将实施方式中说明过的结构适当地组合。In addition, with respect to the above-mentioned embodiments and modified examples, including combinations not mentioned in the specification, it is intended that the configurations described in the embodiments be appropriately adapted from the beginning of the application within the range that does not cause disadvantages or contradictions. combination.
对本发明的实施方式进行了说明,但应该认为此次公开的实施方式在所有方面均为例示,而非限制性的。本发明的范围通过权利要求书来示出,旨在包含与权利要求书等同的含义和范围内的所有变更。Although the embodiment of the present invention has been described, it should be understood that the embodiment disclosed this time is an illustration and not restrictive in any respect. The scope of the present invention is shown by the claims, and it is intended that all modifications within the meaning and range equivalent to the claims are included.
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-136446 | 2021-08-24 | ||
JP2021136446A JP7605067B2 (en) | 2021-08-24 | 2021-08-24 | Cathodoluminescence spectrometer |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115938897A true CN115938897A (en) | 2023-04-07 |
Family
ID=85413845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210942314.8A Pending CN115938897A (en) | 2021-08-24 | 2022-08-08 | Cathodoluminescence light-splitting device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7605067B2 (en) |
CN (1) | CN115938897A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07226300A (en) * | 1994-02-14 | 1995-08-22 | Hitachi Ltd | Photocathode type high frequency electron gun |
JP2000206046A (en) * | 1999-01-12 | 2000-07-28 | Shimadzu Corp | Cathode luminescence analysis device |
WO2007072428A2 (en) * | 2005-12-20 | 2007-06-28 | I.N.Ri.M. - Istituto Nazionale Di Ricerca Metrologica | Spectrophotometer and spectrophotometric process using fabry-perot resonator |
CN101802543A (en) * | 2008-02-13 | 2010-08-11 | 株式会社Snu精密 | Apparatus for measuring thickness |
JP2013243027A (en) * | 2012-05-21 | 2013-12-05 | Hitachi High-Technologies Corp | Charged particle beam device |
CN108508051A (en) * | 2018-04-24 | 2018-09-07 | 国家地质实验测试中心 | A kind of compound Xray fluorescence spectrometer of wave spectrum power spectrum |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012221729A (en) | 2011-04-08 | 2012-11-12 | Mitsubishi Electric Corp | Ion beam irradiation device and ion beam irradiation method |
-
2021
- 2021-08-24 JP JP2021136446A patent/JP7605067B2/en active Active
-
2022
- 2022-08-08 CN CN202210942314.8A patent/CN115938897A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07226300A (en) * | 1994-02-14 | 1995-08-22 | Hitachi Ltd | Photocathode type high frequency electron gun |
JP2000206046A (en) * | 1999-01-12 | 2000-07-28 | Shimadzu Corp | Cathode luminescence analysis device |
WO2007072428A2 (en) * | 2005-12-20 | 2007-06-28 | I.N.Ri.M. - Istituto Nazionale Di Ricerca Metrologica | Spectrophotometer and spectrophotometric process using fabry-perot resonator |
CN101802543A (en) * | 2008-02-13 | 2010-08-11 | 株式会社Snu精密 | Apparatus for measuring thickness |
JP2013243027A (en) * | 2012-05-21 | 2013-12-05 | Hitachi High-Technologies Corp | Charged particle beam device |
CN108508051A (en) * | 2018-04-24 | 2018-09-07 | 国家地质实验测试中心 | A kind of compound Xray fluorescence spectrometer of wave spectrum power spectrum |
Also Published As
Publication number | Publication date |
---|---|
JP7605067B2 (en) | 2024-12-24 |
JP2023031001A (en) | 2023-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011070704A1 (en) | Electron microscope | |
JP4899648B2 (en) | Spectrum observation method and spectrum observation system | |
JP4563733B2 (en) | Scanning transmission electron microscope and electron beam energy spectroscopic method using the same | |
JP2002042713A (en) | Scanning electron microscope provided with detection part in objective lens | |
US9362082B2 (en) | Electron microscope and method of adjusting monochromator | |
US8279225B2 (en) | Element mapping apparatus and element mapping image display method | |
US10460904B2 (en) | Imaging device for imaging an object and for imaging a structural unit in a particle beam apparatus | |
JP3726673B2 (en) | ENERGY SPECTRUM MEASUREMENT DEVICE, ELECTRONIC ENERGY LOSS SPECTROSCOPE DEVICE, ELECTRON MICROSCOPE EQUIPPED WITH THE SAME, AND ELECTRONIC ENERGY LOSS SPECTRUM MEASUREMENT METHOD | |
EP2293319B1 (en) | Transmission electron microscope apparatus comprising electron spectroscope, sample holder, sample stage, and method for acquiring spectral image | |
CN110491755A (en) | Cathodoluminescence optical hub | |
JPH05113418A (en) | Surface analyzing apparatus | |
CN115938897A (en) | Cathodoluminescence light-splitting device | |
US9018581B2 (en) | Transmission electron microscope | |
JP4161763B2 (en) | X-ray spectrometer for microanalysis and position adjustment method for X-ray spectrometer for microanalysis | |
JP2010190595A (en) | Laser spectroscopic analyzer, and laser spectroscopic analyzing method using the same | |
JP7608696B2 (en) | Method for examining a sample using a charged particle microscope to obtain an electron energy loss spectroscopy (EELS) spectrum | |
CN114910457A (en) | Cathode fluorescence confocal micro-spectral imaging system and method | |
JP2006040777A (en) | Electron microscope | |
CN119731762A (en) | Device for multimodal analysis of sample material | |
JP4136891B2 (en) | Fluorescence measurement device for measuring fluorescence image / spectrum | |
EP3255650A1 (en) | Cathodoluminescence detector for use in a charged particle microscope | |
JPH0439657Y2 (en) | ||
JP2008249506A (en) | Microphotoluminescence measuring apparatus and measuring method | |
JP3270627B2 (en) | Display method of sample height in electron beam microanalyzer | |
JP2001083087A (en) | Image observation device and image observation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |