CN115917841A - 电池用导热分隔器结构 - Google Patents

电池用导热分隔器结构 Download PDF

Info

Publication number
CN115917841A
CN115917841A CN202180048899.2A CN202180048899A CN115917841A CN 115917841 A CN115917841 A CN 115917841A CN 202180048899 A CN202180048899 A CN 202180048899A CN 115917841 A CN115917841 A CN 115917841A
Authority
CN
China
Prior art keywords
cell
cells
separator
battery
battery sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180048899.2A
Other languages
English (en)
Inventor
S·潘娜拉
N·K·E·弗盖塞
R·库日卡莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SABIC Global Technologies BV
Original Assignee
SABIC Global Technologies BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SABIC Global Technologies BV filed Critical SABIC Global Technologies BV
Publication of CN115917841A publication Critical patent/CN115917841A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本公开包括使用电池组的系统、装置和方法。所述电池组包括多个电芯和分隔器。所述多个电芯包括第一电芯和第二电芯以及位于所述第一电芯和所述第二电芯之间的分隔器,所述分隔器被配置为使得所述分隔器的平面内传导率为0.1‑100瓦/米开尔文,电芯的平面内传导率为1‑100瓦/米开尔文,或其组合。在一些方面中,所述分隔器可以包括第一表面和第二表面,所述第一表面被配置为面对所述第一电芯并介于所述第一电芯和所述第二电芯之间,所述第二表面从所述第一表面延伸并面对所述第一电芯并且介于所述第一电芯和第三电芯之间。

Description

电池用导热分隔器结构
技术领域
本公开总体上涉及一个或多个电池电力单元的热/电/机械管理,更具体地但非限制性地,涉及电池和用于多个可再充电电池的电芯分隔器。
背景技术
电池越来越多地用于为各种应用中的电子和机械设备供电,如移动电话、平板电脑、个人电脑、混合动力电动汽车、全电动汽车和储能系统。具体而言,诸如锂离子(Li离子)电池等可再充电电池由于具有高功率和能量密度、长循环寿命、优异的存储容量和无记忆充电特性等若干引人注目的特点而受到欢迎。可再充电电池被设计用于提供高功率输出,并可重复充电和放电以供长期使用,因此,电池寿命(例如总寿命和每次充电的寿命)、电池稳定性和电池尺寸对电池设计至关重要。
一些可再充电电池包括具有串联和/或并联连接的多个电池电力单元(例如电芯)的电池组,以产生具有更高容量和功率输出的电池组以用于更大、更苛刻的应用,例如电动车辆。然而,在高功率应用中输出期望功率所需的电芯数量可能会产生几个问题。例如,高功率电池组中使用的电力单元的数量越高,电池组的工作温度就越高。大多数可充电电芯在室温(例如20-40℃)下有效工作,而在该范围之外的温度下,容量迅速下降,电池容易出现严重的热危害(例如枝晶短路、过度充电)。受到机械挤压/碰撞或异物穿透的电池会触发一系列热释放事件,导致热失控。此外,高功率电池组中的各个电力单元之间可能会发生显著的温度变化,从而导致电气失衡。在某些情况下,为了解决热问题,当前的高功率电池组必须松散包装,使得其过于笨重和过重。为了解决碰撞或异物侵入的安全问题,必须在电池周围提供足够的保护,以确保电池的安全运行,代价是增加的重量、体积和额外成本。电池安全性和寿命与电芯的热/机械管理密切相关,当前的高功率电池组在紧密包装时无法提供有效的热传递,并且没有合适的格式来实现碰撞吸收性组结构。
发明内容
本公开大体上涉及具有一个或多个电池电力单元的电池组的温度控制的系统、装置和方法。例如,设备可以包括电池子组。电池子组包括多个电芯和分隔器,所述多个电芯包括第一电芯和第二电芯。分隔器在第一平面和不同于第一平面的第二平面中延伸,分隔器的至少一部分位于第一电芯和第二电芯之间。分隔器的平面内传导率在0.1-100瓦/米开尔文之间;所述多个电芯中的电芯的平面内传导率在1-100瓦/米开尔文之间;或其组合。在一些实施方式中,所述多个电芯还包括第三电芯,并且所述分隔器包括第一表面和第二表面,所述第一表面被配置为面对所述第一电芯并介于所述第一电芯和所述第二电芯之间,所述第二表面从所述第一表面延伸并面向所述第一电芯,并且介于所述第一电芯和所述第三电芯之间。
在本发明的系统、装置和方法的一些实施方式中,设备可以包括电池子组。电池子组包括多个电芯,所述多个电芯包括第一电芯和第二电芯。所述多个电芯介于电池子组的第一侧和第二侧之间,第二侧与第一侧相对。电池子组还包括分隔器。分隔器在第一平面和不同于第一平面的第二平面中延伸,分隔器的至少一部分位于第一电芯和第二电芯之间。所述多个电芯被配置为使得当在20-40摄氏度范围内的整体温度下操作以及在所述多个电芯以2C倍率卸载25%容量放电时,所述电池子组的瞬时变化小于或等于10摄氏度。在一些实施方式中,所述多个电芯还包括第三电芯,并且所述分隔器包括第一表面和从第一表面延伸并面向第一电芯的第二表面,所述第一表面被配置为面对所述第一电芯并且介于所述第一电芯和所述第二电芯之间,所述第二表面介于第一电芯和第三电芯之间。
在本发明的系统、装置和方法的一些实施方式中,设备可以包括电池子组。电池子组包括多个电芯,所述多个电芯包括第一电芯和第二电芯,多个电芯介于电池子组的第一侧和第二侧之间,第二侧与第一侧相对。电池子组还包括在第一平面和不同于第一平面的第二平面中延伸的分隔器,分隔器的至少一部分位于第一电芯和第二电芯之间。所述多个电芯被配置为使得当所述多个子电芯以2C倍率卸载25%的容量放电时,电池子组的瞬时变化在环境温度的+/-20摄氏度内。在一些实施方式中,所述多个电芯可以包括第三电芯,并且所述分隔器可以包括第一表面以及从第一表面延伸并面向第一电芯的第二表面,所述第一表面被配置为面对所述第一电芯并且介于所述第一电芯和所述第二电芯之间,所述第二表面介于第一电芯和第三电芯之间。
在本发明的系统、装置和方法的一些实施方式中,设备可以包括电池子组。电池子组包括多个长方体电芯,所述多个长方体电芯包括第一长方体电芯和第二长方体电芯。多个长方体电芯位于长方体壳体内。所述长方体壳体可以包括通过多个电芯的水平横截面,其中多个电芯占所述水平横截面的总面积的至少50%。在一些实施方式中,多个电芯占所述水平横截面的至少80%。在替代实施方式中,多个电芯可以被布置成形成不同于长方体的结构。
在本发明的系统、装置和方法的一些实施方式中,设备可以包括电池子组。电池子组包括多个电芯,包括第一电芯、第二电芯、第一侧和与第一侧相对的第二侧。电池子组还包括位于第一侧和第二侧之间的一个或多个分隔器。一个或多个分隔器在第一平面和不同于第一平面的第二平面中延伸,一个或多个分隔器的至少一部分位于第一电芯和第二电芯之间。电池子组还包括设置在多个电芯的第二侧上的板。在一些实施方式中,所述多个电芯可以包括第三电芯,并且所述一个或多个分隔器包括配置为面对所述第一电芯的第一表面和配置为从所述第一表面延伸并面对所述第一电芯的第二表面。所述第一表面介于所述第一电芯和所述第二电芯之间,并且所述第二表面介于所述第一电芯和所述第三电芯之间。
在一个或多个上述设备中,分隔器的第一表面和第二表面协作以形成单个一体式分隔器。
在一个或多个上述设备中,第一表面对应于第一分隔器,第二表面对应于与第一分隔器互锁耦合的第二分隔器。
在一个或多个上述设备中,多个电芯中的每个电芯是锂离子电池。
在一个或多个上述设备中,电池子组还包括设置在所述多个电芯的第二侧上的板。附加地或替代地,所述多个电芯包括第一侧和与第一侧相对的第二侧并介于其间。
在一个或多个上述设备中,分隔器包括选自包括纤维、碳纤维、高取向聚烯烃、聚合物、金属化聚合物和高导电金属的组的材料。
在一个或多个上述设备中,分隔器包括聚合物,分隔器限定液体通道,或其组合。
在一个或多个上述设备中,分隔器包括多个纤维,并且多个纤维中的纤维包括位于多个电芯的第一侧上的第一端部和位于多个电芯的第二侧上的第二端部。
在一个或多个上述设备中,所述板包括第一平面表面和介于第一表面和所述多个电芯之间的第二平面表面。
在一个或多个上述设备中,所述水平横截面平行于所述板的第二平面表面。
在一个或多个上述设备中,所述一个或多个分隔器还被配置为围绕多个电芯中的每个电芯。
在一个或多个上述设备中,由一个或更多分隔器围绕的至少一个电芯的部分被定位为接近一个或多个电芯的第二侧。
在一个或多个上述设备中,一个或多个分隔器从所述多个电芯的第一侧和所述多个电芯的第二侧延伸。
在一个或多个上述设备中,一个或多个分隔器包括第一分隔器和第二分隔器,第一分隔器具有面向所述多个电芯中的第一电芯的第一表面,第二分隔器具有面向所述第一电芯的第二表面,第二表面与第一表面正交。在一些实施方式中,第一分隔器介于所述多个电芯中的第一电芯和第二电芯之间。
在一个或多个上述设备中,所述板包括第一表面和介于第一表面和多个电芯之间的第二表面;并且所述一个或多个分隔器包括第一分隔器,所述第一分隔器具有与所述板的第二表面正交的第三表面。
在一个或多个上述设备中,多个电芯被配置为使得当多个电芯以2C倍率卸载25%容量放电时,每个电芯的第一侧和第二侧之间的温度差不超过每英寸5摄氏度。
在一个或多个上述设备中,所述板限定一个或多个通道。在一些实施方式中,电池子组还包括位于一个或多个通道内的液体。
在一个或多个上述设备中,多个电芯中的每个电芯包括设置在电芯端部上的负极端子和正极端子。
在一个或多个前述装置中,多个电芯中的第一电芯包括位于第一电芯的第一侧上的第一母线,以及位于第一电芯的与第一电芯的第一侧相对的第二侧上的第二母线,或其组合。第一母线、第二母线或两者可被配置为导热和/或导电。
如本文所使用的,各种术语仅用于描述特定实施方式的目的,而不旨在限制实施方式。例如,如本文所使用的,用于修饰要素(例如结构、部件、操作等)的序数词(例如“第一”、“第二”、“第三”等)本身并不指示该要素相对于另一要素的任何优先级或顺序,而是仅将该要素与具有相同名称的另一要素(不同于使用序数词的那个要素)区分开来。术语“耦合”被定义为连接,但不一定是直接连接,也不一定是机械连接的;“耦合”的两个项目可以彼此一体。除非本公开明确要求,否则术语“一个”和“一种”定义为一个或多个或一种或多种。如本领域普通技术人员所理解的,术语“基本上”被定义为大体上但不一定完全是所指定值(并且包括所指定值;例如,基本上90度包括90度并且基本上平行包括平行)。在任何所公开的实施方式中,术语“基本上”可替换为指定值的“一定百分比内”,其中所述百分比包括0.1%、1%、5%和10%。
本文中使用的术语“约”可以允许数值或范围中有一定程度的变化,例如,在规定的数值或规定的范围边界的10%、5%或1%内,并且包括明确规定的数值或范围。如本领域普通技术人员所理解的,术语“基本上”被定义为大体上但不一定完全是所指定值(并且包括所指定值;例如,基本上90度包括90度并且基本上平行包括平行),术语“基本上”可替换为指定值的“一定百分比内”,其中所述百分比包括0.1%、1%或5%;术语“大约”可替换为指定值“10%以内”。除非另有说明,否则“基本上X到Y”的表述与“基本上X到基本上Y”的含义相同。同样,除非另有说明,否则“基本上X、Y或基本上Z”的表述与“基本上X、基本上Y、基本上Z”的含义相同。短语“和/或”是指“和”或“或”。为了说明,A、B和/或C包括:单独的A、单独的B、单独的C、A和B的组合、A和C的组合、B和C的组合、或A、B和C的组合。换句话说,“和/或”理解为包含性的“或”。此外,短语“A、B、C或其组合”或“A、B、C或任何组合”包括:单独的A、单独的B、单独的C、A和B的组合、A和C的组合、B和C的组合、或A、B和C的组合。
在本文件中,以范围格式表示的数值应以灵活的方式进行解释,不仅包括明确记载为范围边界的数值,还包括该范围内包含的所有单独数值或子范围,如同明确记载了每个数值和子范围一样。例如,“约0.1%至约5%”或“约0.1%至5%”的范围应被解释为不仅包括约0.1%至约5%,还包括所示范围内的各个值(例如1%、2%、3%和4%)和子范围(例如0.1%至0.5%、1.1%至2.2%、3.3%至4.4%)。术语“包含”(以及任何形式的包含,如“包括”和“含有”)、“具有”(以及任何形式的具有,如“有”和“含有”)和“包括”(以及任何形式的包括,如“含有”和“包含”)是开放式连接动词。因此,“包括”、“具有”或“包含”一个或多个要素的设备具有这些一个或多个要素,但不限于仅具有这些一个或多个要素。同样地,“包含”、“具有”或“包括”一个或多个步骤的方法具有这些一个或多个步骤,但不限于仅具有这些一个或多个步骤。
任何系统、方法和制造制品的任何实施方式都可以由所描述的步骤、要素和/或特征组成,或者基本上由所描述步骤、要素或特征组成,而不是“包括/具有/包含”所描述的步骤、要素和/或特征。因此,在任何权利要求中,术语“由…组成”或“基本上由…组成”可以替代任何前述的开放式连接动词,以将给定权利要求的范围从原本使用开放式连接动词的含义进行变更。此外,术语“其中”可以与“在…的情况下”互换使用。此外,以特定方式配置的装置或系统至少以该方式配置,但也可以以除具体描述的方式之外的其他方式配置。一个实施方式的一个或多个特征可以应用于其他实施方式,即使没有描述或说明,除非本公开或所述实施方式的性质明确禁止。
上面描述了与实施方式相关联的一些细节,其他细节在下面描述。本公开的其他实施方式、优点和特征将在综合考虑整个申请文件之后变得显而易见,包括以下部分:附图简要说明、发明详述和权利要求。
附图简要说明
以下附图通过示例而非限制的方式进行说明。为了简洁明了,给定结构的每个特征并不总是在该结构出现的每个图中都有标记。相同的附图标记不一定表示相同的结构。相反,可以使用相同的附图标记来指示类似的特征或具有类似功能的特征,也可以使用不同的附图标记。
图1A是本发明电池子组的示例的透视图。
图1B是图1A的电池子组沿着线1B-1B的俯视横截面图。
图2A是具有多个分隔器的电池子组的另一示例的透视图。
图2B是图2A的电池子组沿着线2B-2B的俯视横截面图。
图2C是电池子组的另一示例的俯视横截面图。
图2D是电池子组的另一示例的俯视横截面图。
图2E是电池子组的另一示例的俯视横截面图。
图3是电池子组的另一示例的透视图。
图4A是热和碰撞管理系统的电池的侧视图。
图4B是图4A的电池的俯视横截面图。
图5A是本发明热管理系统的替代电池的透视图。
图5B是图5A的电池的俯视横截面图。
图6是操作电池子组的方法的示例的流程图。
图7A和7B分别是在热模拟中使用的本发明热管理系统的电池子组的俯视图和透视图。
图8A是图7A的电池子组在第一温度模拟期间的外部的温度分布的说明性模型。
图8B是图8A的电池子组的横截面的温度分布的说明性模型。
图8C是图8A的电池子组的三个电芯的温度分布的说明性模型。
图8D是示出图8A的电池子组在三个位置处相对于时间的最高温度的曲线图。
图9A是图7A的电池子组在第二温度模拟期间的外部的温度分布的说明性模型。
图9B是图9A的电池子组的横截面的温度分布的说明性模型。
图9C是图9A的电池子组的三个电芯的温度分布的说明性模型。
图9D是示出图9A的电池子组在三个位置处相对于时间的最高温度的曲线图。
图10系统级的能量密度和比能量对比系统级的能量密度和比能量(摘自:
Figure BDA0004044415970000081
等人,BEV中的电芯到电池系统:系统封装效率和电芯类型分析(From Cellto Battery System in BEVs:Analysis of System Packing Efficiency and CellTypes),世界电动汽车杂志(World Electric Vehicle Journal),2020年)。
图11布置成金属-塑料混合网格结构的正方形横截面电芯,与电芯能量密度相比,导致70%的系统级能量密度。
图12放电结束时(30分钟)的温度,恒定2C放电,冷却剂温度为27℃。图a)电池组中的温度分布;b)中间平面上的温度分布。
图13布置成金属-塑料混合网格结构的六边形横截面电芯,与电芯能量密度相比,导致60-70%的系统级能量密度。
发明详述
参考图1A和1B,示出了电池子组100的说明性视图。例如,图1A示出了电池子组100的透视图。作为示例,可以参考右手坐标系来描述电池子组100,如图1A所示,其中x轴对应于页面的左右方向,Z轴对应于页面的上下方向,Y轴对应于正交进入页面的轴。如图1A所示,电池子组100包括壳体102、多个电芯110、第一分隔器120和板140。
如图所示,电芯110包括第一电芯112和第二电芯114。电芯110可以是可多次放电和再充电的可再充电电芯或二次电芯。例如,第一电芯112和第二电芯114可以是锂离子电芯。如图所示,电芯110包括盖子116,盖子116可以限定腔室,电芯的一个或多个内部部件布置在所述腔室中。例如,电芯110可以包括一个或多个内部部件,例如,一个或多个母线、一个或多个集流体、一个或者多个分隔体、阳极、阴极或者它们的组合。电芯110可以是棱柱形、圆柱形或其他合适的形状。在一些实施方式中,第一电芯112和第二电芯114被成形为长方体,并且可以按行排列,如图所示,使得电芯110、112可以被定位得紧密相邻,以在电池子组100中提供最大数量的电芯。虽然图1A示出了两个电芯,但是电池子组100可以包括以行和列排列的多于两个的电芯,使得电芯可以被定位得紧密相邻,以在电池子组中提供最大数量的电芯。通过将电芯布置为行和/或列,可以提供大量的电芯以增加电池子组100的功率输出。
在一些实施方式中,电芯110介于电池子组100的第一侧106和第二侧108之间,第二侧与第一侧相对。例如,电芯110可以设置在壳体102内。壳体102可包括一个或多个壁103,其配合以限定空腔104。
壳体102可以包括刚性、半刚性或柔性材料,并且可以操作以将电芯110与外部环境分离。以这种方式,电芯110可以被屏蔽以免受外部污染物,并允许安全地操纵电池子组100。如图所示,壳体102的形状类似于电芯110(例如长方体),使得可以在壳体内布置最大数量的电芯。在一些实施方式中,壳体102可以包括导热材料。以此方式,壳体102可至少通过分配(或消散)由电芯110产生的热量来帮助促进电池子组100的热管理。
在一些实施方式中,壳体102包括板140。例如,板140可以限定壳体102的第二侧108或定位在壳体102的第二侧108上。板140包括第一表面142和与第一表面相对的第二表面144。在一些实施方式中,板140可以耦合到壁103和/或电芯110。例如,壁103和/或电芯110可以设置在第一表面142的顶部上。如图所示,140是矩形的,然而,可以以任何合适的方式确定板的尺寸或形状。
第一分隔器120位于第一电芯112和第二电芯114之间。如本文所述,可以确定第一分隔器120的尺寸、位置和组成材料,以在电芯之间提供热绝缘,防止热事件在电芯间传播,实现高平面内传导率以将热量分配(或消散)到整个分隔器以及底部的冷却板,通过分散异物的机械侵入或碰撞或其组合的冲击来提供结构完整性。在一些实施方式中,第一分隔器120的热导率大于或基本上等于0.1、5、10、15、20、25、30、35、40、45、50、55、60、65、50、55、80、85、90、95、100、110或120瓦特/米开尔文(“W/(m·K)”)中的任何一者、或这些的任何两者之间。热导率可以沿着平面(例如X、Y或Z平面)测量。例如,第一分隔器120的平面内传导率可以大于或等于10瓦特/米开尔文,并且小于或等于100瓦特/米开尔文。在一些实施方式中,第一分隔器120与第一和第二电芯112、114接触,然而,在其他实施方式中,第一分隔器被定位为与所述电芯相邻,以使第一分隔器能够有效地从所述电芯移除热量。如图所示,第一分隔器120沿着第一电芯112和第二电芯114的整个一侧延伸,以使第一分隔器与第一和第二电芯之间的传热面积最大化。第一分隔器120设置在空腔104内,并且可以沿着整个空腔延伸。
第一分隔器120介于第一电芯112和第二电芯114之间,并且被配置为在与Z轴(例如电芯的高度)相对应的至少第一方向上分配电芯产生的热量。在一些这样的实施方式中,第一分隔器120包括沿第一方向定向的多个纤维,使得从纤维的第一端部向纤维的第二端部的分布的热量也沿所述第一方向分配。在一些实施方式中,第一分隔器120可以在与第一分隔器的长度(例如沿着Y轴)相对应的第二方向上分配热量。在一些实施方式中,第一分隔器120可以围绕第一电芯112和/或第二电芯114的多于一侧或完全围绕第一电芯112和/或第二电芯114,以分配来自电芯的热量。例如,第一分隔器120可以在第一平面中以及在与第一平面不同的第二平面中延伸。附加地或替代地,第一分隔器120可以包括单个一体式分隔器或一个或多个分隔器,例如独立或耦合的第一分隔器和第二分隔器。例如,第一分隔器和第二分隔器可以互锁耦合。
第一分隔器120还可以防止在电芯之一(例如112)处的热事件(例如热失控)期间的电芯至电芯传播。为了说明,第一分隔器120可以包括用作第一和第二电芯112、114之间的防火墙的阻燃材料。在示例性实施方式中,第一分隔器120包括具有阻燃特性的纤维。以这种方式,可以防止一个电芯的故障蔓延,并且可以防止电池子组100的完全损坏。
在所描绘的实施方式中,第一分隔器120从板140(例如第二侧108)朝向第一侧106延伸。第一分隔器120和板140可以在电池子组100的操作期间促进自电芯110的热传递。在一些实施方式中,第一分隔器120和/或板140可以包括导热材料,例如聚合物、金属化聚合物、复合材料、纤维增强复合材料(例如碳纤维)等。第一分隔器120可以是与板140相同或不同的材料。附加地或替代地,第一分隔器120和板140可以是分开的部件并耦合在一起。然而,在替代实施方式中,第一分隔器120和板140一体地形成为一个部件。第一分隔器120和板140可防止电芯的机械冲击或起作用以将能量分配离开第一和第二电芯112、114。例如,第一分隔器120和板140可以联合起作用以使基于电池子组100的冲击向电芯传递的能量最小化。
此外,在操作期间,板140可以在与第一方向正交的方向上分配热量。例如,板140可以耦合到第一分隔器120,使得板和第一分隔器正交,并且板可以在第二方向上自第一分隔器传递热量。板140可以沿着X轴、Y轴或X-Y平面中的任何方向传递热量。
在一些实施方式中,板140和/或第一分隔器120可以包括一个或多个冷却特征,以在电芯110的操作期间保持期望的温度。例如,板140可以但不必须限定一个或多个通道146,所述通道146被配置为填充有流体。通道146被配置为携带流体通过板140以增加自电芯110的热传递。在一些实施方式中,通道146可输送空气、气体、水、去离子水、乙二醇/水溶液、介电流体(例如碳氟化合物或聚α烯烃(PAO))或其组合。如图所示,通道146沿着Y轴延伸,然而板140的其他实施方式可以限定沿着X轴或X-Y平面中的任何其他方向延伸的通道。在一些实施方式中,第一分隔器120包括多个纤维126,每个纤维126可以定向为使得它们从第一侧106延伸到第二侧108(例如沿着z轴)。在其他实施方式中,纤维126可沿y轴或任何其他方向定向,以提供自电芯110的有效热传递。尽管未示出,但在一些实施方式中,板140可包括多个纤维(例如126),且分隔器120可包括一个或多个通道(例如146)。
在一些实施方式中,电池子组100可以包括泵160或耦合到泵160。泵160可以是任何合适的正压源或负压源,并且被配置为使流体能够流过通道146。在一些实施方式中,泵160可联接到液体储存器或另一流体源,以使流体循环通过板140和/或分隔器(例如120)。应当注意,在其他实施方式中,电池子组100可以不包括泵或者不耦合到泵。例如,通道146可限定封闭系统,其中空气或液体基于温度的变化在所述封闭系统内移动或循环。
电池子组100使得能够由第一分隔器120和/或板140分配一个或多个电芯110、112中的热量。以这种方式和其他方式,第一分隔器120和板140可以调节电芯110之间的温度,并降低电池子组100的整体工作温度。例如,第一分隔器120和/或板140可以被布置和配置为使得电池子组100的第一侧106和第二侧108之间的温度差在电池子组的操作期间(例如当第一和第二电芯以2C倍率卸载时)不超过每英寸1摄氏度。在一些实施方式中,第一分隔器120和/或板140可以分配由电芯110产生的热量,使得在电芯以最高为5C倍率运行期间沿着电芯高度(例如第一侧106和第二侧108之间)的温度差不超过每英寸1摄氏度。
在一些实施方式中,多个电芯被配置为使得在所述多个电芯以2C倍率卸载时,电池子组的瞬时变化在4摄氏度内。例如,在一些实施方式中,在多个电芯的充电或放电期间,电池子组可以被配置为在20-40℃的范围内工作。在高于40℃的温度,电池子组可能经历加速老化。此外,在70℃以上,可能存在热失控、火灾、排气或其组合的风险增加。在低于20℃的温度,电池子组可能经历降低的电力容量。此外,在0℃以下,电池子组可经历锂镀覆、枝晶形成和低充电。在20-40℃范围内操作电池子组件时,例如当以2C倍率操作时,电池子组可以被配置为具有一定温度差,例如小于或等于4℃的电芯间温度差,例如小于或等于3℃。为了说明,同一时间多个电芯的最低温度和最高温度之差可以小于或等于4℃。在其他实施方式中,在多个电芯的充电或放电期间,同一时间多个电芯的最低温度和最高温度之差可以小于或等于3或2℃。电池子组在这样的温度差内的操作可以减少或防止电池子组的电池组充电不平衡。
现在参考图1B,示出了电池子组100绕线1B-1B的俯视横截面图。在一些实施方式中,在壳体102的水平横截面中,电芯110可以限定壳体102的面积的大部分(例如50-95%)。例如,在围绕位于X-Y轴上的第一平面所取的横截面中,电芯110可以限定围绕第一平面所取的壳体102的横截面的总面积的大于或基本等于25%、30%、35%、40%、45%、50%、55%、60%、65%、50%、55%、80%、85%、90%或95%中的任何一者或介于这些的任何两者之间。在这样的实施方式中,较高的总面积百分比可对应于具有良好热分布的致密包装的电芯,而较低的总面积百分比可允许空气冷却或其他方式来管理热量。
如图所示,单个电池子组100被配置为向外部装置提供电力;然而,可以连接多个子组100以增加所提供的功率。在一些实施方式中,电池子组100可以与一个或多个其他矩形电池组(例如100)堆叠,以符合期望应用的空间限制和/或功率要求。为了清楚起见,这里未示出电池子组100的一个或多个其他部件,然而,电池子组可以包括电路板、处理器、控制器、布线、导体、电阻器、端子块、电极端子、和/或类似物。
电池子组100包括多个电芯,例如第一电芯112和第二电芯114。电池子组100还包括位于第一电芯112和第二电芯114之间的分隔器120,分隔器120被配置为使得分隔器120的平面内传导率大于或等于0.1瓦特/米开尔文并且小于或等于100瓦特/米开尔文(例如10-80瓦特/米凯尔文)。在一些实施方式中,分隔器120在第一平面和与第一平面不同的第二平面中延伸。
在电池子组100的一些实施方式中,可以使诸如第一电芯112和第二电芯114的多个电芯介于第一侧106和与第一侧106相对的第二侧108之间。多个电芯可以被配置为使得当多个电芯以2C倍率卸载时,第一侧106和第二侧108之间的温度差不超过每英寸1摄氏度。
在电池子组100的一些实施方式中,多个电芯可以包括多个长方体电芯,例如形状为长方体的第一电芯112和形状为长方体的第二电芯114。多个长方体电芯可以被布置成形成具有水平横截面的长方体。在一些实施方式中,多个长方体电芯110、112限定了水平横截面的至少50-95%。
在电池子组100的其他实施方式中,诸如第一电芯112和第二电芯114的多个电芯110包括第一侧106和与第一侧106相对的第二侧108。电池子组100可以包括位于第一侧106和第二侧108之间的一个或多个分隔器120。一个或多个分隔器120可以围绕多个电芯110、112、114中的至少一个电芯的至少一部分。电池子组100还可以包括设置在多个电芯110的第二侧108上的板140。在一些实施方式中,一个或多个分隔器120在第一平面中以及在与第一平面不同的第二平面中延伸。
在前述实施方式中,第一分隔器120和板140起作用以有效地去除从第一电芯112和第二电芯114分配的热量,并维持电池子组100上的基本均匀的温度。板140可以与第一分隔器120正交,使得可以从电芯110沿着第一平面和与第一平面正交的第二平面分配热量。以这种方式和其他方式,在电池子组100的操作期间,可以沿着X、Y和Z轴去除热量。在一些实施方式中,电芯110(例如第一电芯112和第二电芯114)可以被成形为长方体,并且以行和列的形式布置,以使得电芯能够以最小的体积损失和/或额外的自重紧密包装。在这样的实施方式中,第一分隔器120和板140可以被成形为矩形棱柱,以实现电芯110的有效包装并增加电池水平能量密度,同时提供从电芯移除热量的有效方式。因此,电池子组100能够增加能量密度并调节电芯(例如110)的温度,而不限制电芯的性能并使严重热危害的风险最小化。
参考图2A和2B,示出了具有多个分隔器(例如120、220)的电池子组200。例如,图2A示出了电池子组200的透视图,图2B示出了电池子组的沿着线2B-2B的俯视横截面图。电池子组200包括多个电芯210、第一分隔器220和第二分隔器230。电池子组200可以与电池子组100类似地操作,并且可以包括电池子组100的一个或多个特征。
如图2A和2B所示,多个电芯210包括第一电芯212、第二电芯214、第三电芯216和第四电芯218。每个电芯210可以耦合在一起,使得每个电芯产生的电力可以被输送到单个外部设备。电芯210可以是棱柱形(例如长方体)并且以行和/或列的形式布置,或者可以是另一种配置或图案,以在电池子组200中提供最大数量的电芯。
第一分隔器220可以位于第一电芯212和第二电芯214之间。第一分隔器220可以包括或对应于第一分隔器120。第一分隔器220可以包括第一分隔器表面222和第二分隔器表面224。第一分隔器220可以覆盖多个电芯中至少一个电芯(例如210)的单个侧面,然而,在其他实施方式中,第一分隔器210可以覆盖多个电芯中至少一个电芯的多于一个侧面(例如围绕)。如图2A所示,第一分隔器表面222面向第一电芯212,第二分隔器表面224与第一分隔器表面相对并面向第二电芯214。在一些实施方式中,第一分隔器220沿着电芯210的整个列延伸。在这样的实施方式中,第一分隔器表面222面向第一列(例如第一电芯212和第三电芯216),第二分隔器表面224面向第二列(例如第二电芯214和第四电芯218)。
第二分隔器230可以与第一分隔器220耦合或一体。第一分隔器220和第二分隔器230可以相对于彼此成角度地设置,使得第一分隔器在第一平面(例如第一竖直平面)延伸,而第二分隔器在不同于第一平面的第二平面(例如第二竖直平面)延伸。如图所示,第一分隔器220和第二分隔器230以大约90度的角度相对于彼此成角度地设置,然而,所述角度可以大于或小于90度(例如在5度和85度之间或在95度和175度之间),如本文所述。在一些实施方式中,第二分隔器230包括第三分隔器表面232和与第三分隔器表面相对的第四分隔器表面234。第二分隔器230可以定位在两个或更多个相邻电芯210之间,以从相邻电芯移除热量。在一些实施方式中,第二分隔器230可以与第一分隔器220平行,并且与第一分隔器间隔开,使得一个或多个电芯设置在第一和第二分隔器之间。在其他实施方式中,例如图2A所示的实施方式,第二分隔器230相对于第一分隔器220成角度地设置。例如,第二分隔器230可以与第一分隔器220正交地定位。在一些实施方式中,第二分隔器230可以部分地或沿着电芯210的整行延伸。为了说明,第三分隔器表面232面向第一行(例如第一电芯212和第二电芯214),第四分隔器表面224面向第二行(例如第三电芯216和第四电芯218)。第一分隔器220或第二分隔器230的一部分可以介于多个电芯210中的任意两个电芯之间。以此方式,每个电芯210可以通过分隔器(例如220、230)与多个电芯中的另一个电芯分离。尽管仅示出了四个电芯(例如210)和两个分隔器(例如220、230),但一些实施方式包括五个或更多个电芯(如210)和/或三个或更多个分隔器。尽管被描述为单个电芯,第一、第二、第三和第四电芯212、214、216、218,但是每个电芯可以包括耦合在一起的多个电芯(例如2个电芯、4个电芯等),并且以与上述类似的方式操作。
第二分隔器230可以耦合到第一分隔器220(例如与之相交)。例如,第一和第二分隔器220、230可以是分离的、分立的部件或者可以是单个一体式结构。为了说明,尽管被描述为第一分隔器220和第二分隔器230,但是应当注意,第一分隔器和第二分隔器可以协作以形成单个分隔器,例如,该单个分隔器包括第一分隔器表面222、第二分隔器表面224、第三分隔器表面232和第四分隔器表面234。第一分隔器220和第二分隔器230可以与一个或多个其他分隔器一体形成或互锁,以保护电芯210和传递热量离开电芯210。在其他实施方式中,第一和第二分隔器220、230彼此不接触。
第一分隔器220和第二分隔器230中的每一个可以设置在板240上。板240可以包括或对应于板140。在一些实施方式中,第一分隔器220和/或第二分隔器230与板240正交。例如,第一分隔器220、第二分隔器230和板240各自彼此接触并正交,以沿着单独的轴线传递热量。以这种方式和其他方式,在电芯210的操作期间产生的热量可以沿着三个单独的平面分配,以在电池子组200上保持基本均匀的温度。第一分隔器220、第二分隔器230和/或板240可以但不必须包括纤维和/或限定一个或多个通道,所述通道被配置为输送流体以促进热分配。
参考图2C、2D和2E,电池子组200不必须是正方形,而是可以具有任何合适的横截面形状(例如三角形、矩形、五边形、六边形、八边形、圆形、椭圆形或其他多边形或圆形)。例如,图2C示出了具有多个三角形电芯210的电池子组200,图2D示出了具有多个六边形电芯210的电池子组200,图2E示出了具有多个八边形电芯210的电池子组200。
电芯的横截面形状可以基于电池子组200的具体应用来选择。以此方式,电池子组200提供了比常规圆柱形或矩形电芯更密集地包装电芯210的灵活性。如图所示,多个分隔器220位于每个相邻电芯210之间。在一些实施方式中,分隔器220可以围绕一个或多个电芯210的周边(例如横截面周边)定位,例如围绕所有电芯210。分隔器220协作以限定腔室,多边形电芯可放置于其中。如图所示,由协作的分隔器(例如220)限定的腔室具有与电芯210相同的横截面形状(例如图2C中的三角形、图2D中的六边形、图2E中的八边形),以使电池子组300能够被密集包装。例如,每个分隔器220可以基本上平行于电芯210的外壁。在这样的实施方式中,可以在与电芯210的外壁正交的方向上分配热量,以增加电芯的热调节。然而,在其他实施方式中,腔室可以具有与电芯不同的横截面形状。参照图2E,可以由一个或多个分隔器220限定空腔221。附加地或替代地,可以由分隔器220、容器240、一个或多个电芯210或其组合限定空腔(例如221)。空腔221可以填充有空气、气体、液体、相变材料(PCM)或其组合。附加地或替代地,空腔221可以至少部分地填充有材料,例如与分隔器220相同的材料,并且所述材料可以是实心的、网状的、蜂窝的或其他构造。
多个电芯210和分隔器220可以设置在容器240内。容器240被示为具有矩形形状,容器可以包括与电芯210相同或不同的横截面形状(例如三角形、矩形、五边形、六边形、八边形、圆形、椭圆形或其他多边形或圆形)。在一些实施方式中,容器240可以包括传导性材料以从分隔器220和电芯210分配热量。附加地或替代地,容器240和/或分隔器220可以将来自冲击的能量分配到电池子组200,以减少冲击对电芯的损坏。在一些实施方式中,电芯210可以是可压缩的,因此能量被分配到容器240和/或分隔器220,而不是集中在电芯上。这可以防止由于在电池子组200处发生的冲击而导致的热失控。
在一些实施方式中,分隔器220可以包括几个单独的互锁部件,而在其他实施方式中,分隔器可以协作以形成单个一体式结构。在一些实施方式中,每个分隔器(例如220)设置在与其他分隔器不同的独立竖直平面中。附加地或替代地,分隔器220可以与容器240一体地形成。然而,在一些实施方式中,分隔器220和容器240是可以耦合在一起的单独部件。
尽管仅示出了单个电池子组(例如200)。可以使两个或更多个电池子组物理和/或电耦合在一起,以形成可以产生更多电力的系统。在这样的实施方式中,系统的每个电池子组(例如200)可以与其他电池子组间隔开。在一些实施方式中,一些电池子组可以由分隔器分开,分隔器可以包括与分隔器200相同的一些特征(例如材料、纤维、通道、和/或类似物)。置于电池子组之间的分隔器可以具有不同的性质(例如导热性)来管理系统中的热量。
在一些前述实施方式中,电池子组200包括多个电芯210,包括第一电芯212、第二电芯214和/或第三电芯216。电池子组200可以包括在第一平面和不同于第一平面的第二平面中延伸的分隔器,分隔器的至少一部分位于第一电芯和第二电芯之间。附加地或替代地,分隔器的至少一个其他部分位于第一电芯和第三电芯之间。在一些实施方式中,分隔器包括面向第一电芯212的第一表面222和从第一表面延伸并面向第一电芯的第二表面232,其中第一表面介于第一电芯和第二电芯214之间,而第二表面介于第一电芯和第三电芯216之间。在一些这样的实施方式中,分隔器220、230包括0.1-100瓦/米开尔文之间的平面内传导率。
在一些实施方式中,电池子组200可以包括介于第一侧(例如106)和第二侧(例如108)之间的多个电芯110,所述第二侧与所述第一侧相对,分隔器在第一平面和不同于所述第一平面的第二平面中延伸,分隔器的至少一部分位于所述第一电芯和所述第二电芯之间。附加地或替代地,分隔器的至少一个其他部分位于第一电芯和第三电芯之间。在一些实施方式中,分隔器包括面向第一电芯212的第一表面222和从第一表面延伸并面向第一电芯的第二表面232,其中第一表面介于第一电芯和第二电芯214之间,而第二表面介于第一电芯和第三电芯216之间。在一些实施方式中,多个电芯被配置为使得当多个电芯以2C倍率卸载时,第一侧和第二侧之间的温度差不超过每英寸1摄氏度。电池子组200可以包括设置在多个电芯110的第二侧(例如108)上的板。
参考图3,示出了具有多个电芯310和多个分隔器(例如320、330)的电池子组300的透视图。如图所示,电芯310布置成线性网格(例如行和列),分隔器(例如320、330)介于电芯之间。电芯310可以包括负极端子和正极端子,使得可以将从电芯产生的电流引导到外部设备或用于对电池子组300再充电。虽然未示出,但是每个电池子组300可以连接(例如经由导线或其他连接)到一个或多个电子设备(例如另一个电池子组)以向电子设备提供电力。
在所描绘的实施方式中,第一分隔器320位于每列电芯310之间,第二分隔器330位于相邻的两行电芯之间。在一些实施方式中,电池子组300包括位于多行电芯310之间的多个第二分隔器330,例如,位于每行电芯之间的第二分隔器。在一些这样的实施方式中,电芯310的一部分(例如内部)被第一分隔器320和第二分隔器330包围。在一些实施方式中,每个分隔器(例如320、330)可以设置在与其他分隔器不同的平面中。每个电芯310可以与分隔器(例如320、330)接触或间隔开,例如在0-3cm以内,以便于在电池的操作期间去除热量。对于较大的电芯密度,电芯之间的距离可以小于或等于1cm。在一些实施方式中,至少一个电芯(直到并包括每个电芯)310可以被分隔器320、330完全包围。例如,分隔器320、330可以协作以限定可以于其中设置电芯的腔室。在一些这样的实施方式中,多个电芯310可以耦合在一起并设置在由分隔器320、330限定的腔室内。由协作的分隔器限定的腔室可以具有与电芯310相同的横截面形状(例如三角形、正方形、矩形、六边形、八边形、圆形、椭圆形或其他多边形或圆形),以使电池子组300能够被密集地包装。
每个电芯310和分隔器(例如320、330)可以耦合到限定电池子组300的基部的板340。在一些实施方式中,板340、第一分隔器320和第二分隔器330彼此正交地布置。第一分隔器320、第二分隔器330和/或板340可以是一体的,或者可以是可以耦合在一起的单独部件。如本文所示,板340限定多个通道346,所述通道346被配置为输送流体通过所述板。附加地或替代地,第一和/或第二分隔器320、330可以限定一个或多个通道336,所述通道336被配置为输送流体通过分隔器。如图所示,通道336竖直延伸,然而,在其他实施方式中,由第一和/或第二分隔器320、330限定的通道可以沿着分隔器水平延伸。为了清楚起见,仅示出了单个通道336,但其他实施方式中,第一和/或第二分隔器320、330可以限定用于冷却电池子组300的多个通道(例如336)。可以连续地或间歇地输送流体通过所述通道(例如336、346),或完全不输送流体通过所述通道。
电池子组300可以包括限定腔室306的壳体302。在一些实施方式中,板340与壳体302协作以限定腔室306。每个电芯310和分隔器(例如320、330)可以设置在腔室306内,用于电池子组的一些操作。在一些实施方式中,壳体302可以联合第一分隔器320和第二分隔器330一起布置,以完全包围多个电芯310的一部分。在一些实施方式中,壳体302可包括导热材料,以便于从电池子组300移除热量。
参考图4A和4B,示出了可用于电池子组400中的电芯402的说明性视图。例如,图4A示出了电芯402的侧视图,图4B示出了该电芯的俯视横截面图。电池子组400和电芯402可以分别对应于电池子组100、200、300和电芯110、112、114、210、212、214、310。
电芯402可以包括多个电力单元410、第一母线440和第二母线450。在一些实施方式中,每个电力单元(例如410)和/或母线440、450可以设置在容器460内,以允许安全地操纵电芯402。电芯402可以包括一个或多个电连接404(例如端子),其被配置为连接(例如经由导线或其他连接)到一个或多个电子设备(未示出),以向所述电子设备提供电力。如图所示,电连接404包括一对电极端子,该对电极端子被配置为当设备;联接到端子时向设备提供电流。在一些实施方式中,参考图4A,电连接404对应于负极端子和正极端子。电芯402可以是可多次放电和再充电的可再充电电芯或二次电芯。在示例性的非限制性示例中,电芯402可以是铅酸电池、镍镉(NiCd)电池、镍-金属氢化物(NiMH)电池、锂离子(Li离子)电池、聚合物锂离子电池、和/或类似物。
如图所示,每个电力单元410包括第一活性材料412、第二活性材料414和设置在第一和第二活性材料之间的分隔体416。分隔体416可以被配置为防止在充电或放电操作期间对电力单元的损坏。在所描绘的实施方式中,每个电力单元410包括第一电极和第二电极,第一电极包括耦合到第一活性材料412的第一连接部420,第二电极包括耦合至第二活性材料414的第二连接部430。在一些实施方式中,每个电力单元410可以与一个其他电力单元对齐(例如在水平平面中,如图4B所示),使得电力单元形成堆叠体。例如,每个电力单元410可以是棱柱形的(例如包括矩形横截面),并且与一个其他电力单元相邻设置,以使多个电力单元能够定位在小空间(例如462)内。如图4B所示,电芯402包括布置在堆叠体中的四个电力单元410;然而,在其他实施方式中,电芯402可以包括少于四个电力单元或多于四个电力单元。
第一电极(例如第一活性材料412和第一连接部420)和第二电极(例如第二活性材料414和第二连接部430)可以相互作用以引起电和/或化学反应以产生电力。如本文所示,第一电极对应于正极端子,第二电极对应于负极端子;然而,在其他实施方式中,第一电极可以对应于负极端子,而第二电极对应于正极端子。在可再充电电力单元中,第一电极可以基于电芯402的状态在阴极和阳极之间交替。例如,正极活性材料(例如412)在放电状态是阴极和在充电状态是阳极。第一和第二活性材料412、414可以包括任何合适的材料。在说明性的非限制性示例中,第一活性材料412可以包括过渡金属氧化物(例如锂钴氧化物、锂铁磷酸盐、锂锰氧化物、和/或类似物),第二活性材料414可以包括碳或硅材料(例如石墨、硬质碳、硅碳复合物、和/或类似物)。
分隔体416定位在第一电极和第二电极之间,以防止某些粒子在第一电极与第二电极间运动通过分隔体。在一些实施方式中,分隔体416包括电解质。例如,分隔体416可以包括有机溶剂中的锂盐、水基电解质、有机碳酸酯(例如碳酸亚乙酯或碳酸二乙酯)的混合物、含水电解质、复合电解质、固体陶瓷电解质、和/或类似物。在一些实施方式中,分隔体416可包括设置在每个电力单元的第一电极和第二电极之间的单个主体(如图5B所示),而在其他实施方式中分隔体416可包含定位在电力单元的第一电极和第二电极之间的多个分立分隔体(如图4B所示)。
连接部(例如420、430)被配置为将电流从活性材料412、414传输到电芯402的一个或多个其他部件。例如,第一连接部420(例如第一集流体)可耦合到电力单元410的第一活性材料412,第二连接部430(例如第二集流体)可以耦合到电力单元的第二活性材料414,以分配从电力单元410产生的电力。在一些实施方式中,每个电力单元410包括耦合到电力单元的第一连接部420和第二连接部430,以将多个电力单元(例如410)的输出组合在单个源(例如端子之一)处,以实现更高的能量输出。为了说明,第一连接部420可以将每个第一活性材料412耦合到第一母线440,而第二连接部430可以将每个第二活性材料414耦合到第二母线450,从而在电力单元(例如410)之间为电流提供低电阻路径并通过经由第一和第二母线去除热量来降低电芯402的工作温度。如图4B所示,第一连接部420从第一活性材料412延伸到第一母线440,以将第一活性材料连接到第一母线,第二连接部430从第二活性材料414延伸到第二母线450,以将第二活性材料连接到第二母线。在其他实施方式中,第一连接部420或第二连接部430可以耦合到电芯402的一个或多个其他部件(例如在电连接404处)。
第一母线440和第二母线450定位成与多个电力单元410相邻。如图4B所示,每个母线(例如440、450)耦合到多个电力单元(例如410)中的一个或多个,以允许电流从所述电力单元流到母线。例如,第一母线440可以耦合到第一连接部420或与第一连接部420接触,第一连接部420耦合到多个电力单元中的一部分(直到并包括全部)电力单元410或与之接触。第一母线440和第一连接部420的这种配置使得第一母线能够从电力单元移除热量和传输电流。附加地或替代地,第二母线450可以基本上平行于第一母线440并耦合到一个或多个第二连接部430。第二母线450和第二连接部430的这种配置可以允许更有效地从电力单元移除热量。这样,母线(例如440、450)可以包括合适的高导热材料,例如铝、金、铜、银、钨、锌、碳(例如石墨)、其合金、和/或类似物。在一些实施方式中,连接部(例如420)可以包括与母线(例如440)相同的材料,以确保电化学兼容性。例如,第一母线440和第一连接部420可以包括铝或铝合金,第二母线450和第二连接部430可以包括铜或铜合金。
在一些实施方式中,第一母线440可以基本上垂直于第一连接部420和/或电力单元(例如410)定位。第一母线440可以包括跨越电力单元(例如410)堆叠体的至少一部分(例如至少25%)的主体,以沿电芯402中的水平面提供增加的导热性。例如,第一母线440可以跨越电芯402的厚度(例如D2)的至少25%。附加地或替代地,第一母线440可以跨越电芯402的长度(例如D3)的至少25%。第一母线440可以包括一体式主体或两个或更多个分立的段,它们耦合在一起并共同跨越堆叠体的一部分。以这种方式和其他方式,第一母线440可以通过使热从热点有效地去除来实现电芯402的温度调节,从而将电芯402的电力单元保持在接近均匀的温度。这种热调节可以使电芯402包括厚的、高容量的电芯,而没有(或降低)温度相关事件的风险。第二母线450可以与第一母线440类似地定位。例如,第二母线450可以基本上平行于第一母线440,以沿着与第一母线440相同的平面去除热量。尽管电芯402被描述为包括两个母线(例如440、450);在其他实施方式中,电芯402可以包括单个母线或多于两个母线。
容器460限定空腔462并包括第一侧464(例如第一壁)和第二侧466(例如第二壁)。第一侧464可以与第二侧466相对,使得第一侧和第二侧协作以限定空腔462的至少一部分。如图4B所示,容器460具有沿直线在第一侧464和第二侧466之间测量的宽度D1。容器460还具有与宽度D1正交并且沿着直线在容器460的相对侧之间测量的厚度D2。容器460具有沿直线在容器顶部和底部之间测量的长度D3。在所描绘的实施方式中,宽度D1和厚度D2在水平平面中测量,长度D3在竖直平面中测量。容器460可以包括刚性、半刚性或柔性材料,并且可以基于电芯402的期望应用以任何合适的方式成形(例如圆柱形、棱柱形等)。在图4A和4B所示的实施方式中,容器460对应于矩形棱柱,这可以使电芯402能够用于需要小的高功率电芯的应用中。
电芯402的电力单元410、母线(例如440、450)和其他部件可以设置在空腔462内。以此方式,容器460可以在电力单元410和母线(例如440、450)周围提供绝缘保护外壳,以防止可能由操纵电芯402引起的电气事故或损坏。如图4A和4B所示,布置在空腔462内的电力单元410可以沿着与容器460的厚度D2平行的轴线堆叠。母线(例如440、450)可以设置在电力单元(例如410)堆叠体和容器460的侧面(例如464、466)之间。例如,第一母线440可以介于在第一侧464和电力单元410的堆叠体之间。附加地或替代地,第二母线450可以介于在第二侧466和电力单元410的堆叠体之间。
第一和第二母线440、450中的每一个都可以完全设置在容器460内。在一些实施方式中,第一母线440可以耦合到第一侧464,或者设置为与第一侧464相邻。在一些这样的实施方式中,第一母线440跨越容器460的厚度D2的至少25%。例如,第一母线440的宽度D4可以大于或等于第一侧464处厚度D2的25%。附加地或替代地,第一母线440的长度D5跨越容器460的长度D3的至少25%,长度D5垂直于第一母线的宽度D4测量。例如,第一母线440的长度D5可以大于或等于容器460的长度D3的25%。在一些实施方式中,第一母线440在第一侧464处跨越容器460的厚度D2和长度D3中的每一个的至少大部分。第二母线450可以耦合到第二侧466或设置为与第二侧466相邻,并且在第二侧466处跨越容器460的厚度D2和/或长度D3的至少25%(例如在25%和100%之间)。虽然这里未示出,但电芯402可以包括分别设置在容器460的第三侧和第四侧之间的第三和/或第四母线。
在一些实施方式中,多个电力单元410、第一母线440和第二母线450设置在空腔462内。例如,第一母线440介于第一集流体(例如420)和容器460的第一侧464之间。在一些实施方式中,第二母线450介于第二集流体(例如430)和容器460的第二侧466之间。在一些实施方式中,第一母线440与多个电力单元410的每个第一电极(例如412、420)接触。第一电极(例如412、420)中的至少一个包括第一集流体(例如420)和活性材料(例如412)。在一些实施方式中,第二电极(例如414、430)可以包括耦合到第二母线450的第二集流体(例如430)。第一集流体(例如420)和第一母线440可以各自包括第一材料,第二集流体(如430)和第二母线450可以各自包括第二材料。第一和第二材料可以是相同的或不同的材料。在一些实施方式中,第一母线440跨越第一壁(例如464)的大于或等于25%的面积。附加地或替代地,第二母线450跨越第二壁(例如466)的大于或等于25%的面积。
在前述实施方式中,第一母线440可以操作以有效地从电力单元410移除热量,并在每个电力单元上保持基本均匀的温度。例如,第一母线440可以耦合到第一电极(例如第一活性材料和第一连接部),以沿着与容器460的长度D3平行的第一平面和沿着与容器的厚度D2平行的第二平面从每个电力单元410移除热量。以这种方式和其他方式,可以从电力单元分配热量以降低电芯402的工作温度。此外,第一母线440可定位为与第一侧464(例如第一壁)相邻,以朝向容器460的外部分配热量。由于第一母线440的表面积、外部冷却部件更容易接近散热器(例如第一母线)以及本文所述的其他方式,这样的实施方式可以实现来自电力单元410的更有效的热传递。以此方式,第一母线440和第二母线450可以与分隔器(例如120、220、230、320、330)相互作用以从电芯402移除热量。在一些实施方式中,第一母线440和/或第二母线450可以在分隔器(例如120、220、230、320、330)的50-500微米内,例如100-300微米,以便于在电芯操作期间去除热量。
参考图5A-5B,示出了电池子组500的电芯502的示例。为了说明,图5A示出了电芯502的透视图,图5B示出了电芯502的沿着平面5B截取的俯视横截面图。电池子组500和电芯502可以分别对应于电池子组100、200、300、400和电芯110、112、114、210、212、214、310、402。例如,电芯502包括设置在容器560内的多个电力单元510、第一母线540和第二母线550。电力单元510、第一母线540、第二母线550和容器560可以分别包括或对应于电力单元410、第一母线440、第二母线450和容器460。
如图5A所示,容器560包括一个或多个壁561、第一侧564和与第一侧相对的第二侧566。壁561协作以限定空腔562,电芯502的部件可以存储在所述空腔562中。在一些实施方式中,第一侧564和第二侧566分别对应于一个或多个壁561的第一壁和第二壁。在所描绘的实施方式中,容器560是棱柱形的(例如长方体),并且包括四个壁(例如561),然而,在其他实施方式中,可以基于电芯502的应用来确定容器560的尺寸和形状。例如,容器560的横截面可以是矩形(如图5B的实施方式所示)、三角形或其他多边形(无论是否具有尖角和/或圆角)、圆形、椭圆形或其他圆形,或者可以具有不规则形状。
作为示例,可以参考右手坐标系来描述电芯502,如图5A所示,其中x轴对应于页面的左右方向,Z轴对应于页面的上下方向,Y轴对应于正交进入页面的轴。容器560具有宽度D1、厚度D2和长度D3,每一个都可以沿着直线从容器560的相对侧(例如壁)测量。如图5A所示,沿着x轴测量宽度D1,沿着y轴测量厚度D2,并且沿着z轴测量长度D3。在所描绘的实施方式中,厚度D2可以大于宽度D1(例如比宽度D1大10%),然而,在其他实施方式中,宽度D1可以基本上等于厚度D2,并且在其他实施方式中,宽度D1可以大于厚度D2。
图5B示出了围绕平面5B截取的电芯502的俯视横截面图,其中右手坐标系被旋转,使得x轴对应于页面的左右方向,y轴对应于页面的上下方向。如图所示,因为Z轴未显示,其在进出页面的方向延伸。每个电力单元(例如510)包括第一活性材料512、第二活性材料514、分隔体516、第一连接部520(例如第一集流体)和第二连接部530(例如第二集流体)。第一活性材料512、第二活性材料514和分隔体516的至少一部分设置在每个电力单元的第一连接部520和第二连接部530之间,分隔体介于第一和第二活性材料512、514之间,以选择性地允许粒子在第一和第二活性材料之间移动。第一活性材料512耦合到第一连接部520,第二活性材料514耦合到第二连接部530,以产生可以从一个连接部通过电芯502流向另一个连接部的电流。为了说明,第一活性材料512和第二活性材料514可以包括允许电子在材料之间流动的材料(例如作为非限制性示例,过渡金属氧化物和碳)。在一些实施方式中,电力单元510可以共用部件以减小电力单元的体积并允许电芯502更紧凑。例如,单个第一连接部(例如520)可以用作两个相邻电力单元的第一连接部。在这样的实施方式中,第一连接部(例如520)介于两层第一活性材料(例如512)之间。附加地或替代地,分隔体516可以包括延伸通过每个电力单元510的一体式主体,使得分隔体的一部分设置在每个电力单元的第一活性材料512和第二活性材料514之间。
第一连接部520可以包括主体522(例如第一部分)和接头(tab)524(例如第二部分)。主体522耦合到第一活性材料512(例如与之接触)以在电力单元510充电和放电时收集电荷。为了说明,主体522可以在平行于第一活性材料512的方向上延伸,并且在一些实施方式中,主体可以跨越(或覆盖)大约整个第一活性材料512(例如主体的表面积大于第一活性材料的表面积)。如图所示,主体522的至少一部分延伸经过活性材料(例如512、514)的一个末端。以这种方式和其他方式,第一连接部520可以将热量从电力单元510传递出去,以在电芯502的使用期间保持正常的工作温度。
接头524离开主体522延伸。为了说明,接头524可以相对于主体522成角度地设置(例如垂直于主体522),以将在主体522处收集的电流引导到电芯502的一个或多个其他部件。例如,每个第一连接部520的接头524可以与第一母线540接触,以将从每个电力单元510产生的电流输送到第一母线。以此方式,第一母线540可以通过传导从接头524分配热量。例如,将接头524连接到第一母线540使得电力单元510产生的热量能够通过从第一连接部520传导到第一母线而被分配。与传统电池相比,接头524和第一母线540的这种定位和耦合可使热量更容易沿X轴(沿着主体522)和Y轴(沿着接头524和第一母线540)传递。以这种方式和其他方式,在每个电力单元510处产生的热量可以被更均匀地分配,并且可以使电芯内可能出现的热点最小化。在一些实施方式中,接头524可以在平行于第一母线540的方向上延伸(例如平行于第一母线540的宽度D4),以实现与第一母线的较大接触表面。在说明性的非限制性示例中,多个接头524可以总共跨越第一母线540的一定距离,所述距离大于或等于第一母线的宽度D4的25%。
第二连接部530可以包括与第一连接部520类似的一个或多个特征。例如,第二连接部530包括主体532(例如第一部分)和离开主体532延伸的接头534(例如第二部分)。如图5B中所示,主体532与第二活性材料514接触,并且接头534与第二母线550接触,以将由电力单元510产生的电流分配到第二母线。在一些实施方式中,主体532和接头534可以分别基本上平行于活性材料514和第二母线550。在说明性的非限制性示例中,多个接头534可以总共跨越第二母线550的一定距离,所述距离大于或等于第二母线的宽度(例如D4)的25%。附加地或替代地,第二连接部530的主体532可以基本上平行于第一连接部520的主体522。类似地,第二连接部530的接头534可以基本上平行于第一连接部520的接头524。以这种方式和其他方式,第二连接部530可以通过传导将热量从电力单元510传递到第二母线550,以增加X轴(沿着主体532)和Y轴(沿着接头534和第二母线510)上的热传递,从而在电芯502的使用期间保持正常的工作温度。在一些实施方式中,接头534和/或524可以与分隔器(例如120、220、230、320、330)平行,以增加接头、母线和/或分隔器之间的热传递的表面积。在一些实施方式中,接头534和/或524可以在分隔器(例如120、220、230、320、330)的50-500微米内,例如100-300微米,以便于在电芯操作期间去除热量。
第一连接部520(例如主体522和接头524)和/或第二连接部530(例如主体532和接头534)可包括导热材料,例如铝、金、铜、银、钨、锌、碳(例如石墨)、其合金、和/或类似物,以传导电流并将热量从电力单元510传递出去。如图5B所示,第一连接部520和第二连接部530可以是一体式构件。在一些其他实施方式中,第一连接部520、第二连接部530或其两者可包括耦合在一起的一个或多个分立部件。
第一母线540和第二母线550设置在容器560的相对侧上。第一母线540定位成与第一侧564相邻。例如,第一母线540可以与第一侧564接触,或者在其他实施方式中,可以在第一母线和第一侧564之间形成一个或多个间隙。附加地或替代地,第二母线550被定位为与第二侧566相邻。例如,第二母线550可以与第二侧566接触,或者在其他实施方式中,可以在第二母线与第二侧566之间形成一个或多个间隙。在一些实施方式中,第一母线540可以平行于第二母线550定位。
第一母线540具有沿着直线从第一母线的相对侧测量的宽度D4。在一些实施方式中,第一母线540在基本上平行于第一侧564的方向上延伸。为了说明,第一母线540的宽度D4可以平行于第一侧564的长度对齐。如图5B所示,第一侧564的宽度对应于容器560的厚度D2。在一些实施方式中,第一母线540的宽度D4跨越第一侧564的至少25%。例如,第一母线540的宽度D4可以大于或等于容器560的第一侧564的宽度(例如厚度D2)的25%。附加地或替代地,第一母线540的长度(例如D5)可以大于或等于容器560的第一侧564的长度(如,D3)的25%。以此方式和其他方式,第一母线540可以增加电芯502沿Z轴和Y轴的热传递。
第一母线540包括导热材料。例如,第一母线540可以包括铝、金、铜、银、钨、锌、碳(例如石墨)、其合金、和/或类似物。在一些实施方式中,第一母线540和第一连接部520包括相同的材料(例如铜)以确保两个部件之间的电化学兼容性。为了简洁,省略了对第二母线550的讨论;然而,应当注意,第二母线550和第二连接部530可以与第一母线540和第一连接部520类似地起作用,并且包括一个或多个与第一母线540和第一连接部520的相似结构。
在前述实施方式中,第一母线540和第一连接部520可以联合操作,以有效地从电力单元510移除热量,并在每个电力单元上保持均匀的温度。例如,第一连接部520可以沿着主体522(在X轴上)和接头524(在Y轴上)从电力单元510移除热量,并且第一母线540可以进一步移除热量(在Y轴上)。此外,第一连接部520和第一母线540中的每一个跨越容器560的长度D3的一部分,以沿Z轴分配热量。以此方式和其他方式,第一母线540和/或第一连接部520可以沿着电芯502的每个平面分配热量,以降低工作温度。作为这种热调节的结果,电芯502可以包括更多的电力单元(例如510),同时仍然保持电芯的工作温度。
参考图6,示出了操作电池子组的方法的示例。作为非限制性示例,方法600可以由电池子组100、200、300、400和/或500执行,包括电芯110、112、114、210、212、214、310、402和502。
方法600包括在602处通过设置在壳体内的多个电芯产生电流。所述多个电芯和所述壳体可以分别包括或对应于电芯110、110、112、114、210、212、214、310、402和502以及壳体102、302。在一些实施方式中,方法600可以进一步包括对多个电芯进行充电或放电。例如,操作电池子组可以包括将电力从所述多个电芯转移到电气装置。
方法600包括在604处通过一个或多个分隔器在第一方向上分配热量。一个或多个分隔器可以包括或对应于分隔器120、220、230、320、330。在一些实施方式中,通过被配置为围绕所述多个电芯的至少一部分的一个或多个分隔器来在第一方向上分配热量。例如,一个或多个分隔器可以在与电芯的高度平行的方向上以及在与电芯高度正交的方向上从电芯传递热量。在一些实施方式中,至少一些分隔器彼此正交,以便于沿着两个正交平面去除热量。在一些实施方式中,一个或多个分隔器的多个纤维被定向成使得从纤维的第一端部到纤维的第二端部的热分配也是在第一方向上分配。此外,方法600可以包括通过配置成完全围绕所述多个电芯的多个分隔器来分配热量。此外,方法600可以包括通过限定通道的分隔器来分配热量。在一些实施方式中,通道可以包括液体。
方法600还包括在606处通过板在与第一方向正交的第二方向上分配热量。所述板可以包括或对应于板140、240、340。在一些实施方式中,在第二方向上分配热量由所述板执行。例如,所述板可以耦合到一个或多个分隔器,使得板和一个或多个分隔器正交,并且板可以在第二方向上从一个或多个分隔器传递热量。方法600可以包括通过限定通道的板来分配热量。在一些实施方式中,板可以包括液体。
因此,电池子组的配置使得一个或多个电芯中的热量能够通过板和一个或多个分隔器来分配。以这种方式和其他方式,板和一个或多个分隔器可以调节电芯之间的温度,并降低电池子组的整体工作温度。
实施例
下面通过具体实施例更详细地描述本公开。提供以下实施例仅用于说明目的,并不旨在以任何方式限制本公开。本领域技术人员将容易地认识到,可以改变或修改各种非关键参数以产生基本相同的结果。
参考图7A和7B,示出了具有以5x5网格排列的多个电芯710的电池子组700,其中第一分隔器720和第二分隔器730介于每个电芯之间。分隔器720、730耦合到板740,并且每个电芯包括接头704。在电池子组700以不同放电速率运行期间进行实验分析(例如热分布分析),以确定电池的温度分布和热管理。使用Ansys Fluent V 19.1对分析进行建模。
对于以下实施例,电池子组700的尺寸为长90mm、宽90mm、高60mm的长方体。电芯710和板740的尺寸相应地确定,每个电芯的长度为15mm、宽度为15mm、高度为60mm,板740的长度为90mm、宽度为90mm、高度为2.5mm。在所描绘的实施例中,电池子组700的材料性质如下表1所示:
表1:电池子组的热物理性质
Figure BDA0004044415970000331
对于电芯310,对沿着平面表面(图7B的x和y方向)的平面内热导率和沿着厚度(图7B的z方向)的穿平面热导率进行正交各向异性(orthotropic)热导率建模。热分析在25℃的环境条件下在1个大气压下进行建模。此外,将顶表面705的传热系数(HTC)设置为8W/m2K以模拟自然对流条件,将外侧表面707的HTC设置为75W/m2K来模拟强制对流条件,并且将板740的HTC设置成75W/m2K以模拟通过冷却板的热移除。记录电池组的最高温度,并在电池运行期间在三个单独的电芯位置(T1、T2、T3)监测温度。第一电芯位置T1位于电池子组700的中心电芯处(例如在X轴和Y轴的交叉处),第二电芯位置T2位于角落电芯(例如710)处,并且沿着X轴和X轴从位置T1均等地移位,第三电芯位置T3位于处于Y轴上的中间外部电芯处,并且从X轴移位。
实施例1
1-C放电时电芯的热分析
在1-C放电倍率持续60分钟的情况下(完全放电),进行如上所述的热分析。将所述模拟建模为对于典型的3安时(Ah)电芯以1-C倍率的瞬态。对于1-C倍率,电芯中产生的典型热量将为0.5W/Ah,因此,每个电芯(例如710)的热量产生被设置为1.5瓦(W)。
参考图8A-8D,示出了热分析的说明性模型,其示出了在1-C放电倍率下操作期间电池子组700的温度分布。例如,图8A描绘了电池子组700的外部(例如705、707)的温度分布,图8B描绘了沿着X轴和Y轴中的平面的电池子组的温度分布,图8C描绘了在三个温度位置(T1、T2、T3)处的每个单个电芯710的温度分布,图8D示出了三个温度位置(T1、T2、T3)处的最高温度相对于时间的曲线图。
如图所示,从电芯710产生的热量被从电池子组710的中心向外部分配。电池子组700的最高电芯温度发生在中心电芯处(例如T1),为44.8℃,最低温度发生在角落电芯处(T2),为41.0℃。因此,电池子组700的最大温度差为3.8℃,这相当于相对均匀的温度差。此外,发现相邻电芯之间的最大温度差为2.5℃。
在三个温度位置(T1、T2、T3)处,在每个电芯60分钟期满时,获取最低温度、最高温度和平均温度。其结果如下表2所示:
表2:1-C放电时电池子组的温度差
位置 最低(℃) 最高(℃) 平均(℃)
T1 43.7 44.8 44.4
T2 40.0 42.9 41.9
T3 41.5 43.7 43.0
如所示,每个单个电芯的温度差也相对均匀。如图8C所示,单个电芯的最大温度差发生在角落电芯处(T2),为2.9℃。然而,如图8B所示,沿X和Y平面的每个电芯沿竖直轴的最大温度差小于1.0℃。电池子组700的温度随着电芯放电而升高。如图8D所示,在操作的最后10分钟内,三个温度位置(T1、T2、T3)处的每个电芯的最高温度增加小于1.0℃。为了说明,曲线802、804和806分别对应于电池子组700放电期间T1、T2和T3处的最高温度。因此,在类似瓦数下长时间操作电池子组700不太可能增加电芯的温度。相应地,电池子组在操作期间保持在低于45℃。因此,电芯710、分隔器720、730和板740的布置有助于长方体电池子组的高平面内传导性,从而有助于在电芯之间的温度分布均匀的情况下电芯的高热移除。
实施例2
2-C放电时电芯的热分析
在2-C放电倍率持续30分钟的情况下(完全放电),进行如上所述的热分析。将模拟建模为对于典型的3安时(Ah)电芯的2-C倍率的瞬态。对于2-C倍率,电芯中产生的典型热量为1.0W/Ah,因此,每个电芯(例如710)的热量产生被设置为3.0W。
参考图9A-9D,示出了热分析的说明性模型,其示出了在2-C的放电倍率下操作期间电池子组700的温度分布。例如,图9A描绘了电池子组700的外部(例如705、707)的温度分布,图9B描绘了沿着X轴和Y轴的平面的电池子组的温度分布,图9C描绘了在三个温度位置(T1、T2、T3)处的每个单个电芯710的温度分布,图9D示出了三个温度位置(T1、T2、T3)处的最高温度相对于时间的曲线图。
如图所示,从电芯710产生的热量被从电池子组710的中心向外部分配。电池子组700的最高电芯温度发生在中心电芯处(例如T1),为60.3℃,最低温度发生在角落电芯处(T2),为51.7℃。因此,电池子组700的最大温度差为8.6℃。虽然这高于1-C放电期间的差值,但仍在正常工作温度范围内。此外,发现相邻电芯之间的最大温度差为4.4℃。因此,当放电倍率增加时,温度似乎仍然相对均匀地分布。
在三个温度位置(T1、T2、T3)处,在每个电芯30分钟期满时,获取最低温度、最高温度和平均温度。其结果如下表3所示:
表3:2-C放电时电池子组的温度差
位置 最低(℃) 最高(℃) 平均(℃)
T1 58.3 60.3 59.5
T2 51.7 56.8 55.1
T3 54.4 58.3 57.1
如所示,在高放电倍率下,每个单个电芯的温度差也相对均匀。如图9C所示,单个电芯的最大温度差发生在角落电芯处(T2),为5.1℃。然而,如图8B所示,沿X和Y平面的每个电芯沿竖直轴的最大温度差小于3.0℃。
电池子组700的温度升高的斜率随着接近放电结束而降低。如图9D所示,在操作的最后10分钟内,三个温度位置(T1、T2、T3)处的每个电芯的最高温度增加小于2.5℃。为了说明,曲线902、904和906分别对应于电池子组700放电期间T1、T2和T3处的最高温度。因此,在这些高放电倍率下长时间运行电池子组件700在电芯的安全边界之内。相应地,电池子组在操作期间保持在60℃左右。虽然这是锂离子电芯典型放电温度的较高端,但仍在可接受范围内,不会造成热失控的主要风险。因此,电芯710、分隔器720、730和板740的布置有助于长方体电池子组的高平面内传导性,从而有助于在电芯之间的温度分布均匀的情况下电池的高热移除。可通过增加分隔器的热导率或电芯的z轴热导率或冷却板的传热系数以及在充电或放电时对电池的热管理提供大量控制来对所述电池组进一步优化。
尽管已经详细描述了本申请的各方面及其优点,但是应当理解,在不脱离所附权利要求所限定的本公开的精神和范围的情况下,可以进行各种变更、替换和改变。此外,本申请的范围不限于说明书中描述的过程、机器、制造、物质组合物、装置、方法和步骤的特定实施方式。如本领域普通技术人员从上述公开中容易理解的,可以利用当前存在的或未来要开发的执行与本文所述的相应实施方式基本相同的功能或实现基本相同的结果的过程、机器、制造、物质组合物、装置、方法或步骤。因此,所附权利要求旨在在其范围内包括这样的过程、机器、制造、物质组合物、装置、方法或步骤。
上述说明书提供了说明性配置的结构和使用的完整描述。尽管以上以一定程度的特殊性或参考一个或多个单独的配置描述了某些配置,但本领域技术人员可以对所公开的配置进行许多修改,而不脱离本公开的范围。因此,方法和系统的各种说明性配置不限于所公开的特定形式。相反,它们包括落入权利要求范围内的所有修改和替代方案,并且所示出配置之外的配置可以包括所描述配置的一些或全部特征。例如,可以将要素省略或将其组合为单一结构,可以替换连接,或者两者都可以。此外,在适当的情况下,上述任何示例的方面可以与所描述的任何其他示例的方面相结合,以形成具有相当的或不同的性质和/或功能并解决相同或不同问题的其他示例。类似地,应该理解,上述益处和优点可涉及一种配置或可涉及多种配置。因此,这里描述的任何单个实施方式都不应被解释为限制性的,并且在不背离本公开的教导的情况下,本公开的实施方式可以适当地组合。
提供所公开的实施方式的以上描述以使本领域技术人员能够制作或使用所公开的实施方式。对这些实施方式的各种修改对于本领域技术人员来说将是显而易见的,并且本文所定义的原理可以应用于其他实施方式而不脱离本公开的范围。因此,本公开不限于本文所示的实施方式,而是应给予与以下权利要求所定义的原理和新颖特征一致的可能的最宽泛的范围。权利要求不旨在包括也不应解释为包括装置加功能限定或步骤加功能限定,除非在给定权利要求中分别使用短语“用于…的装置”或“用于…的步骤”明确规定了这种限定。
对比实施例
材料和方法—电池数据
为了进行比较,考虑对市场上的电动汽车电池系统进行广泛评估。为此,从在世界电动汽车杂志(World Electric Vehicle Journal)上发表的标题为“BEV中的电芯到电池系统:系统封装效率和电芯类型分析(From Cell to Battery System in BEVs:Analysisof System Packing Efficiency and Cell Types)”的期刊文章汇总了所有可得自OEM的电动车辆电芯系统的可用数据。由于关于车辆的数据不容易找到,必须指出的是,所述数据汇总是一项组合工作。一些来源提供了车辆电芯和模块尺寸的信息,其他来源例如仅提供了关于系统设计的信息。然后将该数据汇集成相应电动车辆的完整电池系统数据集。
参照图10,所有电芯类型的比能量的效率都高于它们的能量密度。还可以注意到,重量相关性非常高(对于袋式和棱柱形电芯,R2=0.795;对于圆柱形电芯,R2=0.824),但是棱柱形和袋式电芯车辆的体积相关性相当低(R2=0.378)。与电芯水平相比,系统水平的比能量损失为40%至45%,能量密度损失为65%至70%。
效率比率如表4所示,以查看这些效率是在哪里损失的,需要分析电芯到模块和模块到系统的两种组合。
表4:电芯级到系统级的效率
Figure BDA0004044415970000381
从数据可以看出,系统级能量密度在系统级的17%至53%之间变化,平均值约为30%至35%。因此,平均而言,所有类型的电芯的能量密度损失在65%到70%之间。
实施例3
新型多功能电芯高能致密模块/组
在本发明中,根据以下考虑重新设计电芯和模块/组:
●遵循自然法则,优化材料、形状和功能—重新设想电芯、模块和组
●最高的包装效率和能量密度—比传统电芯高100%
●利于电芯到组和电芯到滑板(skateboard)
○优于4680圆柱形或CATL棱柱形电芯
●风险非常低,因为该解决方案适用于现有的袋式电芯制造,对现有生产线的改动极小
●无需新的化学组成
●在所有格式中可能最低的电芯内阻
●均匀的温度和电场
○循环寿命增加
●滥用条件下电芯的安全放电
○过度充电和枝晶形成
○碰撞
■设计便于拆解和回收
正方形横截面电芯被认为是有效的(图11),在128Wh/35Ah(500Wh/L)时每个电芯为4cm x4cm x16cm。这些电芯具有30W/mK的平面内传导率、3W/mK的穿平面传导率、2780kg/m3的密度和1280J/KgK的比热。本发明电池组中存在的间隔物为4mm厚,平面内传导率为30W/mK,穿平面传导率为1W/mK,密度为900kg/m3,比热为1800J/KgK。底部冷却板以其中嵌有冷却通道的厚度为1cm的铝表示,其可实现1000W/m2K的传热系数。本发明的100kWh电池组具有28x28个电芯=780个电芯,1.23m x1.23m,总高度为20cm,体积分析为330Wh/L。
基于本发明电池组获得的能量密度损失仅为34%,而市场上电动车辆的参考电池组的能量密度损失为65-70%。这对应于能量密度几乎100%的增加。
图12显示了以恒定2C放电的放电结束时(30分钟)的温度分布,冷却剂温度为27℃。图a)电池组中的温度分布;b)中间平面上的温度分布。苛刻的2C放电结束时,沿电芯高度超过16cm的温度梯度非常小(4℃),在平行于冷却板的平面上是接近均匀的。本实施例的所有模拟均使用
Figure BDA0004044415970000391
2020R2进行。
实施例4
实施例3
新型多功能六边形电芯高能致密模块/组
在本发明中,基于以下考虑重新设计电芯和模块/组:
●遵循自然法则,优化材料、形状和功能—重新设想电芯、模块和组
●最高的包装效率和能量密度—比传统电芯高100%
●利于电芯到组和电芯到滑板
○优于4680圆柱形或CATL棱柱形电芯
●风险非常低,因为该解决方案适用于现有的袋式电芯制造,对现有生产线的改动极小
●无需新的化学组成
●在所有格式中可能最低的电芯内阻
●均匀的温度和电场
○循环寿命增加
●滥用条件下电芯的安全放电
○过度充电和枝晶形成
○碰撞
■设计便于拆解和回收
六边形横截面电芯被认为是有效的(图13),在128Wh/35Ah(500Wh/L)时每个电芯侧边为4cm。这些电芯具有30W/mK的平面内传导率、3W/mK的穿平面传导率、2780kg/m3的密度和1280J/KgK的比热。本发明电池组中存在的间隔物为4mm厚,平面内传导率为30W/mK,穿平面传导率为1W/mK,密度为900kg/m3,比热为1800J/KgK。底部冷却板以其中嵌有冷却通道的厚度为1cm的铝表示,其可实现1000W/m2K的传热系数。基于本发明电池组获得的能量密度损失仅为30-40%,而市场上电动车辆上的参考电池组的能量密度损失为65-70%。这对应于能量密度几乎100%的增加。

Claims (16)

1.一种电池子组,包括:
多个电芯,包括第一电芯和第二电芯;以及
在第一平面和不同于所述第一平面的第二平面中延伸的分隔器,所述分隔器的至少一部分定位在所述第一电芯和所述第二电芯之间;并且
其中:
所述分隔器的平面内热导率在0.1-100瓦/米开尔文之间;
所述多个电芯中的电芯的平面内热导率在1-100瓦/米开尔文之间;或
其组合。
2.一种电池子组,包括:
多个电芯,包括第一电芯和第二电芯,所述多个电芯介于电池子组的第一侧和第二侧之间,所述第二侧与所述第一侧相对;以及
在第一平面和不同于所述第一平面的第二平面中延伸的分隔器,所述分隔器的至少一部分定位在所述第一电芯和所述第二电芯之间;并且
其中所述多个电芯被配置为使得当在20-40摄氏度范围内的总体温度下操作且所述多个电芯以2C倍率卸载25%容量放电时,所述电池子组的瞬时变化小于或等于10摄氏度。
3.根据权利要求1或2所述的电池子组,其中所述多个电芯还包括第三电芯。
4.根据权利要求3所述的电池子组,其中所述分隔器包括:
第一表面,所述第一表面被配置为面对所述第一电芯并且介于所述第一电芯和所述第二电芯之间;以及
从所述第一表面延伸并面向所述第一电芯的第二表面,所述第二表面介于所述第一电芯和所述第三电芯之间。
5.根据权利要求4所述的电池子组,其中所述第一表面对应于第一分隔器,并且所述第二表面对应于与所述第一分隔器互锁耦合的第二分隔器。
6.一种电池子组,包括:
多个长方体电芯,包括第一长方体电芯和第二长方体电芯;并且
其中所述多个长方体电芯位于长方体壳体内,所述长方体壳体包括通过所述多个电芯的水平横截面,其中所述多个电芯占所述水平横截面的总面积的至少50%。
7.根据权利要求6所述的电池子组,其中所述多个电芯占所述水平横截面的至少80%。
8.一种电池子组,包括:
多个电芯,包括第一电芯、第二电芯、第一侧和与所述第一侧相对的第二侧;
定位在所述第一侧和所述第二侧之间的一个或多个分隔器,所述一个或多个分隔器在第一平面和不同于所述第一平面的第二平面中延伸,所述一个或多个分隔器的至少一部分定位在所述第一电芯和所述二电芯之间;和
设置在所述多个电芯的所述第二侧上的板。
9.根据权利要求8所述的电池子组,其中所述多个电芯还包括第三电芯。
10.根据权利要求9所述的电池子组,其中所述一个或多个分隔器包括:
第一表面,所述第一表面被配置为面对所述第一电芯并介于所述第一电芯和所述第二电芯之间;和
从所述第一表面延伸并面向所述第一电芯的第二表面,所述第二表面介于所述第一电芯和所述第三电芯之间。
11.根据权利要求1-10中任一项所述的电池子组,其中所述多个电芯中的每个电芯是锂离子电池。
12.根据权利要求1-11中任一项所述的电池子组,进一步包括:
设置在所述多个电芯的第二侧上的板;并且
其中所述多个电芯包括所述第一侧和与所述第一侧相对的所述第二侧并介于其间。
13.根据权利要求1-10中任一项所述的电池子组,其中所述分隔器包括选自包含纤维、碳纤维、高取向聚烯烃、聚合物、金属化聚合物和高导电金属的组的材料。
14.根据权利要求8所述的电池子组,其中:
所述分隔器包括聚合物;并且
所述分隔器限定液体通道。
15.根据权利要求8所述的电池子组,其中:
所述板包括第一平面表面和介于所述第一表面和所述多个电芯之间的第二平面表面;并且
所述水平横截面平行于所述板的所述第二平面表面。
16.根据权利要求12所述的电池子组,其中所述一个或多个分隔器包括:
第一分隔器,其具有面向所述多个电芯中的所述第一电芯的第一表面;以及
第二分隔器,其具有面向所述第一电芯的第二表面,所述第二表面相对于所述第一表面成角度地设置。
CN202180048899.2A 2020-07-10 2021-07-09 电池用导热分隔器结构 Pending CN115917841A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN202041029452 2020-07-10
IN202041029452 2020-07-10
PCT/EP2021/069226 WO2022008743A2 (en) 2020-07-10 2021-07-09 Thermally conductive divider configuration for batteries

Publications (1)

Publication Number Publication Date
CN115917841A true CN115917841A (zh) 2023-04-04

Family

ID=77126789

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180048899.2A Pending CN115917841A (zh) 2020-07-10 2021-07-09 电池用导热分隔器结构

Country Status (5)

Country Link
US (1) US20230261308A1 (zh)
EP (1) EP4179592A2 (zh)
KR (1) KR20230049639A (zh)
CN (1) CN115917841A (zh)
WO (1) WO2022008743A2 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4348756A1 (en) * 2021-05-24 2024-04-10 Beam Global Smart phase change composite for passive thermal management
WO2023215966A1 (en) * 2022-05-11 2023-11-16 Volinergy Technologies Inc. Battery having insulating separators and thermal conductors for cooling
WO2023244826A2 (en) * 2022-06-18 2023-12-21 Bernd Ullmann Thermal management in battery cell arrangements
WO2024100049A1 (en) 2022-11-08 2024-05-16 Sabic Global Technologies B.V. Thermoplastic intensive and energy dense structural battery pack for cuboidal cells
US11936063B1 (en) 2023-01-12 2024-03-19 Beta Air, Llc Battery module and a method for cooling a battery module of an electric vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5740103B2 (ja) * 2009-10-19 2015-06-24 日東電工株式会社 熱伝導部材、及びそれを用いた組電池装置
US20150140411A1 (en) * 2013-11-20 2015-05-21 The Bergquist Company Battery Cell Coatings
US20150188205A1 (en) * 2013-12-31 2015-07-02 Chief Of Naval Research, Office Of Counsel Case-Cooled Potted Battery Fixture
DE102015209932A1 (de) * 2015-05-29 2016-12-01 Robert Bosch Gmbh Batteriemodulgehäuse, Batteriemodul, Deckelelement für ein solches Batteriemodulgehäuse oder für ein solches Batteriemodul, Verfahren zur Herstellung eines solchen Batteriemoduls und Batterie
WO2018022964A1 (en) * 2016-07-29 2018-02-01 Crynamt Management Llc Battery packs having structural members for improving thermal management
CN206789655U (zh) * 2017-04-17 2017-12-22 中国第一汽车股份有限公司 一种动力电池模块
EP3909091A1 (en) * 2019-01-07 2021-11-17 Canoo Technologies Inc. Methods and systems for battery pack thermal management

Also Published As

Publication number Publication date
US20230261308A1 (en) 2023-08-17
KR20230049639A (ko) 2023-04-13
WO2022008743A3 (en) 2022-03-31
WO2022008743A2 (en) 2022-01-13
EP4179592A2 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
US20230261308A1 (en) Thermally conductive divider configuration for batteries
CA2297839C (en) In situ short-circuit protection system and method for high-energy electrochemical cells
EP2991134B1 (en) Battery module assembly having refrigerant fluid channel
EP2991157B1 (en) Battery module assembly having refrigerant fluid channel
KR101272524B1 (ko) 배터리 셀용 방열판 및 이를 갖는 배터리 모듈
Karimi et al. Thermal management analysis of a lithium-ion battery pack using flow network approach
EP3316391B1 (en) Battery system, base plate for a battery system and electric vehicle
KR101847182B1 (ko) 수냉식 냉각을 위한 열전도성 케이스를 가지는 배터리
Yeow et al. Characterizing thermal runaway of lithium-ion cells in a battery system using finite element analysis approach
KR101761825B1 (ko) 배터리 모듈 및 그를 구비하는 배터리 팩
CN116097499A (zh) 电池模块以及包含所述电池模块的电池组和车辆
US20230268583A1 (en) Battery
EP4254605A1 (en) Battery, electric device, and method and device for preparing battery
US20230261324A1 (en) Breakable separator for battery
EP4095997A1 (en) Thermally efficient pouch cell architecture
JP7522320B2 (ja) バッテリーモジュール、これを含むバッテリーパック及び自動車
US20240106023A1 (en) Cell busbar fuse with direct cooling
CN118539034A (zh) 电池壳体及包括电池壳体的电池组
WO2024063955A1 (en) Cell busbar fuse with direct cooling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination