CN115901640A - Advanced prediction method and system for unfavorable geology by combining spectral imaging and spatio-temporal distribution - Google Patents
Advanced prediction method and system for unfavorable geology by combining spectral imaging and spatio-temporal distribution Download PDFInfo
- Publication number
- CN115901640A CN115901640A CN202211281361.9A CN202211281361A CN115901640A CN 115901640 A CN115901640 A CN 115901640A CN 202211281361 A CN202211281361 A CN 202211281361A CN 115901640 A CN115901640 A CN 115901640A
- Authority
- CN
- China
- Prior art keywords
- tunnel face
- marker
- face
- image
- mineral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 71
- 238000000701 chemical imaging Methods 0.000 title claims abstract description 23
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 172
- 239000011707 mineral Substances 0.000 claims abstract description 172
- 239000003550 marker Substances 0.000 claims abstract description 68
- 238000001228 spectrum Methods 0.000 claims abstract description 57
- 230000003595 spectral effect Effects 0.000 claims abstract description 37
- 238000009412 basement excavation Methods 0.000 claims abstract description 21
- 238000012545 processing Methods 0.000 claims abstract description 8
- 230000002159 abnormal effect Effects 0.000 claims abstract description 6
- 239000011435 rock Substances 0.000 claims description 12
- 230000000694 effects Effects 0.000 claims description 11
- 238000007781 pre-processing Methods 0.000 claims description 8
- 238000003860 storage Methods 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 3
- 230000000007 visual effect Effects 0.000 claims 2
- 230000010354 integration Effects 0.000 claims 1
- 238000002310 reflectometry Methods 0.000 claims 1
- 238000007619 statistical method Methods 0.000 claims 1
- 230000003313 weakening effect Effects 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 4
- 230000008569 process Effects 0.000 description 9
- 238000012360 testing method Methods 0.000 description 8
- 238000003384 imaging method Methods 0.000 description 7
- 230000002411 adverse Effects 0.000 description 5
- 238000009877 rendering Methods 0.000 description 5
- 238000011065 in-situ storage Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000002123 temporal effect Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000013480 data collection Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- YHXISWVBGDMDLQ-UHFFFAOYSA-N moclobemide Chemical compound C1=CC(Cl)=CC=C1C(=O)NCCN1CCOCC1 YHXISWVBGDMDLQ-UHFFFAOYSA-N 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000004075 alteration Effects 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910001919 chlorite Inorganic materials 0.000 description 1
- 229910052619 chlorite group Inorganic materials 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- IUMKBGOLDBCDFK-UHFFFAOYSA-N dialuminum;dicalcium;iron(2+);trisilicate;hydrate Chemical compound O.[Al+3].[Al+3].[Ca+2].[Ca+2].[Fe+2].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IUMKBGOLDBCDFK-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910052869 epidote Inorganic materials 0.000 description 1
- 229910052900 illite Inorganic materials 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- VGIBGUSAECPPNB-UHFFFAOYSA-L nonaaluminum;magnesium;tripotassium;1,3-dioxido-2,4,5-trioxa-1,3-disilabicyclo[1.1.1]pentane;iron(2+);oxygen(2-);fluoride;hydroxide Chemical compound [OH-].[O-2].[O-2].[O-2].[O-2].[O-2].[F-].[Mg+2].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[K+].[K+].[K+].[Fe+2].O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2 VGIBGUSAECPPNB-UHFFFAOYSA-L 0.000 description 1
- 238000000985 reflectance spectrum Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910021647 smectite Inorganic materials 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Landscapes
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
技术领域technical field
本发明涉及不良地质体超前预报技术领域,特别是涉及一种融合光谱成像与时空分布的不良地质超前预报方法及系统。The invention relates to the technical field of advanced prediction of unfavorable geological bodies, in particular to a method and system for advanced prediction of unfavorable geological bodies that integrate spectral imaging and time-space distribution.
背景技术Background technique
本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。The statements in this section merely provide background information related to the present invention and do not necessarily constitute prior art.
在隧道建设过程中,经常遭遇断层、岩溶、蚀变带等不良地质,若未及时采取相应的防控措施,极易诱发围岩变形、拱顶坍塌以及大规模的突水突泥等地质灾害,造成人员伤亡、工期延误、设备损坏等情况。In the process of tunnel construction, faults, karst, alteration zones and other unfavorable geology are often encountered. If corresponding prevention and control measures are not taken in time, it is very easy to induce geological disasters such as deformation of surrounding rocks, collapse of vaults, and large-scale water and mud inrush. , resulting in casualties, delays in the construction period, and equipment damage.
传统方法例如地质调查法和物探法等进行超前地质预报时,主要是识别前方不良地质的“形”(位置、形态、规模),难以判断不良地质体的“性”(类型、性质),且操作流程较为复杂,对于现场技术人员的专业地质知识要求较高,极易造成对不良地质的误判、漏判;而现有基于矿物信息进行不良地质体定量识别的方法中,没有结合不良地质体的位置及规模等“形”的信息。When traditional methods such as geological survey method and geophysical prospecting method are used for advanced geological prediction, it is mainly to identify the "shape" (position, shape, scale) of unfavorable geological bodies ahead, and it is difficult to judge the "nature" (type, nature) of unfavorable geological bodies, and The operation process is relatively complicated, and requires high professional geological knowledge of on-site technicians, which can easily lead to misjudgments and missed judgments of unfavorable geology; however, the existing methods for quantitative identification of unfavorable geological bodies based on mineral information do not combine "shape" information such as the position and scale of the object.
发明内容Contents of the invention
为了解决上述问题,本发明提出了一种融合光谱成像与时空分布的不良地质超前预报方法及系统,通过图像光谱技术结合时间序列及空间插值方法对不良地质进行超前预报,实现对前方不良地质体“形”与“性”相结合的判识与预报,并且实现了系统整体运行的自动化与智能化,降低不良地质预报的主观性,节省人力物力,具有速度快、原位无损、直观性强、实时预报等优点。In order to solve the above problems, the present invention proposes a method and system for advanced prediction of unfavorable geology that integrates spectral imaging and time-space distribution, and performs advanced prediction of unfavorable geology through image spectrum technology combined with time series and spatial interpolation methods, so as to realize the prediction of unfavorable geological bodies ahead The identification and prediction combined with "shape" and "nature" realizes the automation and intelligence of the overall operation of the system, reduces the subjectivity of adverse geological prediction, saves manpower and material resources, and is fast, non-destructive in situ, and intuitive. , real-time forecasting and other advantages.
为了实现上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
第一方面,本发明提供一种融合光谱成像与时空分布的不良地质超前预报方法,包括:In the first aspect, the present invention provides a method for advanced prediction of adverse geology that combines spectral imaging and temporal and spatial distribution, including:
对掌子面进行网格划分,选取覆盖掌子面且有限数量的网格点作为控制点;Carry out mesh division on the tunnel surface, and select a limited number of grid points covering the tunnel surface as control points;
根据已开挖段的掌子面图像光谱数据,选取不良地质体的标志矿物;Select the marker minerals of unfavorable geological bodies according to the image spectrum data of the face of the excavated section;
根据开挖处掌子面的图像光谱数据,确定控制点处的标志矿物含量,并以此预测掌子面前方控制点的标志矿物含量;Determine the marker mineral content at the control point according to the image spectrum data of the face of the excavation, and predict the marker mineral content of the control point in front of the face;
根据掌子面前方控制点的标志矿物含量,对控制点之间的标志矿物含量进行空间插值处理,得到掌子面前方的标志矿物含量;According to the marker mineral content of the control points in front of the tunnel face, the spatial interpolation process is performed on the marker mineral content between the control points to obtain the marker mineral content in front of the tunnel face;
根据掌子面前方的标志矿物含量,对矿物异常区域进行圈定,得到掌子面前方不良地质体的位置、规模和种类。According to the marker mineral content in front of the tunnel face, the mineral anomaly area is delineated, and the position, scale and type of the unfavorable geological bodies in front of the tunnel face are obtained.
作为可选择的实施方式,根据已开挖段的掌子面图像光谱数据,获取各类矿物的含量,并以此选取在不良地质影响区与正常围岩区矿物含量变化超出设定阈值的矿物作为标志矿物。As an optional implementation, according to the face image spectrum data of the excavated section, the content of various minerals is obtained, and minerals whose mineral content changes in the unfavorable geological impact area and the normal surrounding rock area exceed the set threshold are selected. as a marker mineral.
作为可选择的实施方式,设定网格间距,根据网格间距对掌子面进行相对等距离的网格划分。As an optional implementation manner, the grid spacing is set, and the face is divided into relatively equidistant grids according to the grid spacing.
作为可选择的实施方式,所述图像光谱数据由图像光谱仪采集,所述图像光谱仪与掌子面之间的最佳相对位置需满足所拍摄图像布满掌子面核心区域。As an optional implementation manner, the image spectrum data is collected by an image spectrometer, and the optimal relative position between the image spectrometer and the face of the face needs to satisfy that the captured images cover the core area of the face.
作为可选择的实施方式,所述图像光谱仪扫描的参数包括频率增量、凝视时间和相机焦距;通过调节频率增量的调谐波长,以获取不同波段的图像光谱数据;通过调节凝视时间,以提高光谱分辨率;通过调节相机焦距,以调整掌子面在相机视野内的位置及大小。As an optional implementation, the parameters scanned by the image spectrometer include frequency increment, staring time and camera focal length; by adjusting the tuning wavelength of the frequency increment, to obtain image spectral data of different bands; by adjusting the staring time, to improve Spectral resolution; by adjusting the focal length of the camera, the position and size of the face in the field of view of the camera can be adjusted.
作为可选择的实施方式,采用时间序列方法进行学习,对掌子面前方控制点处的标志矿物含量进行预测;采用空间插值方法将控制点的空间点状非连续的矿物含量输出为空间体状连续的矿物含量,并通过空间体的填充显色效果展示矿物含量的差异。As an optional implementation, the time series method is used for learning, and the marker mineral content at the control point in front of the tunnel face is predicted; the spatial interpolation method is used to output the spatial point-like discontinuous mineral content of the control point as a spatial volume. Continuous mineral content, and display the difference in mineral content through the filling color rendering effect of the space body.
作为可选择的实施方式,确定矿物异常的界限值,调整空间体的填充显色效果,对矿物异常区域进行范围圈定。As an optional implementation, the threshold value of mineral anomalies is determined, the filling color rendering effect of the space body is adjusted, and the area of mineral anomalies is delineated.
作为可选择的实施方式,对开挖处掌子面的图像光谱数据进行预处理,所述预处理包括辐射定标、反射率重建和弱化噪声;As an optional implementation, preprocessing is performed on the image spectrum data of the face of the excavation, and the preprocessing includes radiation calibration, reflectance reconstruction and noise reduction;
对预处理后的图像光谱数据进行端元提取,得到像元光谱曲线,将像元光谱曲线对照标准矿物光谱库确定最终的矿物端元光谱,以此进行矿物识别;The end member extraction is performed on the preprocessed image spectral data to obtain the pixel spectral curve, and the pixel spectral curve is compared with the standard mineral spectral library to determine the final mineral end member spectrum for mineral identification;
利用图像像元分类统计方法分段计算矿物含量。The mineral content is calculated segmentally by using the image pixel classification and statistics method.
第二方面,本发明提供一种融合光谱成像与时空分布的不良地质超前预报系统,包括:In the second aspect, the present invention provides a bad geological advance prediction system that integrates spectral imaging and temporal and spatial distribution, including:
控制点选取模块,被配置为对掌子面进行网格划分,选取覆盖掌子面且有限数量的网格点作为控制点;The control point selection module is configured to perform grid division on the tunnel surface, and select a limited number of grid points covering the tunnel surface as control points;
标志矿物选取模块,被配置为根据已开挖段的掌子面图像光谱数据,选取不良地质体的标志矿物;The marker mineral selection module is configured to select marker minerals of unfavorable geological bodies according to the image spectrum data of the face of the excavated section;
矿物含量预测模块,被配置为根据开挖处掌子面的图像光谱数据,确定控制点处的标志矿物含量,并以此预测掌子面前方控制点的标志矿物含量;The mineral content prediction module is configured to determine the marker mineral content at the control point according to the image spectrum data of the face of the excavation, and predict the marker mineral content of the control point in front of the face;
空间插值模块,被配置为根据掌子面前方控制点的标志矿物含量,对控制点之间的标志矿物含量进行空间插值处理,得到掌子面前方的标志矿物含量;The spatial interpolation module is configured to perform spatial interpolation processing on the marker mineral content between the control points according to the marker mineral content of the control points in front of the tunnel face, so as to obtain the marker mineral content in front of the tunnel face;
超前预报模块,被配置为根据掌子面前方的标志矿物含量,对矿物异常区域进行圈定,得到掌子面前方不良地质体的位置、规模和种类。The advanced prediction module is configured to delineate the mineral anomaly area according to the marker mineral content in front of the tunnel face, and obtain the location, scale and type of unfavorable geological bodies in front of the tunnel face.
第三方面,本发明提供一种融合光谱成像与时空分布的不良地质超前预报系统,包括:In the third aspect, the present invention provides a poor geological advanced prediction system that integrates spectral imaging and temporal and spatial distribution, including:
移动平台,以及搭载在移动平台上的主控模块、数据采集模块、装置调设单元和不良地质体超前预报模块;Mobile platform, and the main control module, data acquisition module, device adjustment unit and advanced forecast module of bad geological bodies carried on the mobile platform;
所述主控模块,被配置为对数据采集模块、装置调设单元和不良地质体超前预报模块的启停控制;The main control module is configured to control the start and stop of the data acquisition module, the device adjustment unit and the advanced prediction module of bad geological bodies;
所述数据采集模块用于获取掌子面的图像光谱数据;The data collection module is used to obtain image spectrum data of the face of the face;
所述装置调设单元用于调整数据采集模块的位置,以使数据采集模块移动至与掌子面的最佳相对位置处;The device adjustment unit is used to adjust the position of the data acquisition module, so that the data acquisition module moves to the best relative position with the palm face;
所述不良地质体超前预报模块接收掌子面的图像光谱数据,被配置为根据图像光谱数据采用第一方面所述的方法进行矿物异常区域进行圈定,以得到掌子面前方不良地质体的位置、规模和种类。The advanced prediction module of unfavorable geological bodies receives the image spectrum data of the face, and is configured to use the method described in the first aspect to delineate the mineral anomaly area according to the image spectrum data, so as to obtain the position of the unfavorable geological bodies in front of the face , size and type.
作为可选择的实施方式,所述数据采集模块包括保护装置和设于保护装置内的图像光谱仪;所述图像光谱仪扫描的参数包括频率增量、凝视时间和相机焦距;通过调节频率增量的调谐波长,以获取不同波段的图像光谱数据;通过调节凝视时间,以提高光谱分辨率;通过调节相机焦距,以调整掌子面在相机视野内的位置及大小。As an optional implementation, the data acquisition module includes a protective device and an image spectrometer located in the protective device; the parameters scanned by the image spectrometer include frequency increments, staring time and camera focal length; wavelength to obtain image spectral data in different bands; by adjusting the staring time to improve spectral resolution; by adjusting the focal length of the camera to adjust the position and size of the face in the camera field of view.
作为可选择的实施方式,所述装置调设单元包括激光测距仪;所述激光测距仪用于测量移动平台与掌子面间的距离,并以此控制移动平台移动至数据采集模块与掌子面的最佳相对位置处。As an optional implementation, the device adjustment unit includes a laser rangefinder; the laser rangefinder is used to measure the distance between the mobile platform and the palm surface, and thereby control the mobile platform to move to the data acquisition module and The best relative position of the palm face.
作为可选择的实施方式,所述数据采集模块与掌子面之间的最佳相对位置处的确定需满足所拍摄图像布满掌子面核心区域。As an optional implementation manner, the determination of the optimal relative position between the data collection module and the face of the face needs to meet the requirement that the captured images cover the core area of the face of the face.
作为可选择的实施方式,所述装置调设单元还包括伸缩支架、滑轨和云台;As an optional embodiment, the device setting unit also includes a telescopic bracket, a slide rail and a platform;
所述伸缩支架用于调整数据采集模块的高度,以调整相机视野范围;The telescopic bracket is used to adjust the height of the data acquisition module to adjust the field of view of the camera;
所述滑轨设于移动平台上,所示伸缩支架设于滑轨上,以使伸缩支架在滑轨上移动;The slide rail is arranged on the mobile platform, and the telescopic bracket shown is arranged on the slide rail, so that the telescopic bracket can move on the slide rail;
所述云台用于承载激光测距仪和数据采集模块。The pan-tilt is used to carry a laser range finder and a data acquisition module.
第四方面,本发明提供一种电子设备,包括存储器和处理器以及存储在存储器上并在处理器上运行的计算机指令,所述计算机指令被处理器运行时,完成第一方面所述的方法。In a fourth aspect, the present invention provides an electronic device, including a memory, a processor, and computer instructions stored in the memory and run on the processor. When the computer instructions are executed by the processor, the method described in the first aspect is completed. .
第五方面,本发明提供一种计算机可读存储介质,用于存储计算机指令,所述计算机指令被处理器执行时,完成第一方面所述的方法。In a fifth aspect, the present invention provides a computer-readable storage medium for storing computer instructions, and when the computer instructions are executed by a processor, the method described in the first aspect is completed.
与现有技术相比,本发明的有益效果为:Compared with prior art, the beneficial effect of the present invention is:
本发明提出一种融合光谱成像与时空分布的不良地质超前预报方法及系统,通过空间插值圈定预测出不良地质体的“形”,通过岩石光谱信息的矿物定量反演预测不良地质体的“性”,实现对前方不良地质体“形”与“性”相结合的判识与预报,实现了隧道内自动化、智能化的不良地质超前预报,消除主观因素对预报结果的影响,节省人力物力,实现了隧道连续开挖过程中不良地质的实时预报,具有时效性。The present invention proposes a method and system for advance prediction of unfavorable geological bodies that combines spectral imaging and time-space distribution, predicts the "shape" of unfavorable geological bodies through spatial interpolation delineation, and predicts the "property" of unfavorable geological bodies through mineral quantitative inversion of rock spectral information. ", to realize the identification and forecast of the combination of "shape" and "nature" of the unfavorable geological bodies ahead, realize the automatic and intelligent advance forecast of unfavorable geological bodies in the tunnel, eliminate the influence of subjective factors on the forecast results, save manpower and material resources, It realizes the real-time prediction of unfavorable geology during the continuous excavation of the tunnel, which is time-sensitive.
本发明提出的一种融合光谱成像与时空分布的不良地质超前预报方法及系统,将图像光谱技术、时间序列及空间插值方法深度融合,充分利用各方法的优势,实现隧道内不良地质的超前预报。通过图像光谱仪实现隧道掌子面原位、无损、快速、大规模的图像光谱信息采集;运用时间序列方法实现掌子面前方控制点处的矿物含量预测,为矿物异常的圈定以及不良地质体的预报奠定基础;利用空间插值方法将矿物分布空间立体化,直观形象的展示隧道掌子面前方矿物分布变化情况,实现对矿物异常位置、规模以及种类的圈定,以及达到预测不良地质“形”与“性”的目的;整体流程逻辑顺畅,环环相扣,共同作用完成隧道内不良地质的超前预报。The present invention proposes a method and system for advance prediction of adverse geology that integrates spectral imaging and time-space distribution, deeply integrates image spectrum technology, time series and spatial interpolation methods, fully utilizes the advantages of each method, and realizes advanced prediction of adverse geology in tunnels . In-situ, non-destructive, fast and large-scale image spectral information collection of the tunnel face is realized through the image spectrometer; the mineral content prediction at the control point in front of the face is realized by using the time series method, which is helpful for the delineation of mineral anomalies and the detection of unfavorable geological bodies Lay the foundation for forecasting; use the spatial interpolation method to make the mineral distribution space three-dimensional, visually display the mineral distribution changes in front of the tunnel face, realize the delineation of the abnormal position, scale and type of minerals, and achieve the prediction of unfavorable geological "shape" and The purpose of "sex"; the overall process is logically smooth and interlocking, and they work together to complete the advanced prediction of unfavorable geology in the tunnel.
本发明提出的一种融合光谱成像与时空分布的不良地质超前预报方法及系统,能够随隧道开挖对图像光谱数据进行实时采集,动态遴选不良地质体的标志矿物,工程适应性强,并且图像光谱数据不断反馈至数据集中,增加时间序列学习样本,不断优化基于时间序列方法的不良地质体超前预报模型,提升模型预报的准确性,减少因数据偏差造成的偶然性。A method and system for advance prediction of unfavorable geology that integrates spectral imaging and time-space distribution proposed by the present invention can collect image spectrum data in real time with tunnel excavation, dynamically select marker minerals of unfavorable geological bodies, and has strong engineering adaptability and image Spectral data is continuously fed back to the data set, time series learning samples are added, and the advanced prediction model of unfavorable geological bodies based on the time series method is continuously optimized to improve the accuracy of model prediction and reduce the contingency caused by data deviation.
本发明附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Advantages of additional aspects of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.
附图说明Description of drawings
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。The accompanying drawings constituting a part of the present invention are used to provide a further understanding of the present invention, and the schematic embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute improper limitations to the present invention.
图1为本发明实施例1提供的融合光谱成像与时空分布的不良地质超前预报方法流程图;Fig. 1 is the flow chart of the advanced prediction method for unfavorable geology fused with spectral imaging and spatio-temporal distribution provided by Embodiment 1 of the present invention;
图2为本发明实施例1提供的网格划分及控制点选取示意图;2 is a schematic diagram of grid division and control point selection provided by Embodiment 1 of the present invention;
图3为本发明实施例3提供的融合光谱成像与时空分布的不良地质超前预报系统结构示意图;Fig. 3 is a schematic structural diagram of an advanced prediction system for unfavorable geology fused with spectral imaging and time-space distribution provided by
其中,1、主控模块,2、激光测距仪,3、无线信号传输器,4、图像光谱仪,5、保护装置,6、伸缩支架,7、滑轨,8、云台。Among them, 1. Main control module, 2. Laser range finder, 3. Wireless signal transmitter, 4. Image spectrometer, 5. Protection device, 6. Telescopic bracket, 7. Slide rail, 8. Cloud platform.
具体实施方式Detailed ways
下面结合附图与实施例对本发明做进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed description is exemplary and intended to provide further explanation of the present invention. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terminology used here is only for describing specific embodiments, and is not intended to limit exemplary embodiments according to the present invention. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural, and it should also be understood that the terms "comprising" and "having" and any variations thereof are intended to cover a non-exclusive Comprising, for example, a process, method, system, product, or device comprising a series of steps or units is not necessarily limited to those steps or units explicitly listed, but may include steps or units not explicitly listed or for these processes, methods, Other steps or units inherent in a product or equipment.
在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。In the case of no conflict, the embodiments and the features in the embodiments of the present invention can be combined with each other.
实施例1Example 1
本实施例提供一种融合光谱成像与时空分布的不良地质超前预报方法,如图1所示,包括:This embodiment provides a method for advanced prediction of adverse geology that combines spectral imaging and temporal and spatial distribution, as shown in Figure 1, including:
对掌子面进行网格划分,选取覆盖掌子面有限数量的网格点作为控制点;Carry out mesh division on the tunnel surface, and select a limited number of grid points covering the tunnel surface as control points;
根据已开挖段的掌子面图像光谱数据,选取不良地质体的标志矿物;Select the marker minerals of unfavorable geological bodies according to the image spectrum data of the face of the excavated section;
根据开挖处掌子面的图像光谱数据,确定控制点处的标志矿物含量,并以此预测掌子面前方控制点的标志矿物含量;Determine the marker mineral content at the control point according to the image spectrum data of the face of the excavation, and predict the marker mineral content of the control point in front of the face;
根据掌子面前方控制点的标志矿物含量,对控制点之间的标志矿物含量进行空间插值处理,得到掌子面前方的标志矿物含量;According to the marker mineral content of the control points in front of the tunnel face, the spatial interpolation process is performed on the marker mineral content between the control points to obtain the marker mineral content in front of the tunnel face;
根据掌子面前方的标志矿物含量,对矿物异常区域进行圈定,得到掌子面前方不良地质体的位置、规模和种类。According to the marker mineral content in front of the tunnel face, the mineral anomaly area is delineated, and the position, scale and type of the unfavorable geological bodies in front of the tunnel face are obtained.
在本实施例中,采用图像光谱仪不断获取隧道开挖过程中掌子面的图像光谱数据,且预先将图像光谱仪调整至最佳位置处;In this embodiment, the image spectrometer is used to continuously obtain the image spectrum data of the tunnel face during excavation, and the image spectrometer is adjusted to the best position in advance;
所述图像光谱仪与掌子面之间的最佳相对位置处的确定需满足所拍摄图像尽量布满掌子面核心区域;因为掌子面为矿物测试的重点区域,需要保证掌子面在相机视野的完整性,提升其成像质量,保证获取数据的完整性、代表性以及数据测试的准确性。The determination of the optimal relative position between the image spectrometer and the face of the face needs to meet the requirement that the captured images cover the core area of the face as much as possible; because the face is the key area of mineral testing, it is necessary to ensure that the face is within the range of the camera. The integrity of the field of view improves its imaging quality and ensures the integrity, representativeness and accuracy of data testing.
作为一种可选择的实施方式,所述图像光谱仪扫描的参数包括频率增量、凝视时间和相机焦距等;通过调节频率增量的调谐波长,以获取不同波段的图像光谱数据;通过调节凝视时间,以提高光谱分辨率,优化成像质量;通过调节相机焦距,以调整掌子面在相机视野内的位置及大小,保障数据的完整性。As an optional implementation, the parameters scanned by the image spectrometer include frequency increment, staring time and camera focal length, etc.; by adjusting the tuning wavelength of the frequency increment, to obtain image spectral data of different bands; by adjusting the staring time , to improve the spectral resolution and optimize the imaging quality; by adjusting the focal length of the camera, the position and size of the face in the field of view of the camera can be adjusted to ensure the integrity of the data.
作为一种可选择的实施方式,所述图像光谱仪可选取凝视型图像光谱仪,通过滑轨和伸缩支架实现在移动平台立体空间中与掌子面的相对移动,通过图像光谱仪相机视野中掌子面的信息,选取合适的凝视位置,定位后原位获取掌子面图像光谱数据。As an optional implementation, the image spectrometer can be a staring image spectrometer, and the relative movement with the palm surface in the three-dimensional space of the mobile platform is realized through the slide rail and the telescopic bracket. information, select a suitable gaze position, and obtain the face image spectral data in situ after positioning.
作为一种可选择的实施方式,所述图像光谱仪还可选择推扫型、摆扫型等类型的图像光谱仪,通过滑轨和伸缩支架实现在移动平台立体空间中与掌子面的相对移动,实现对掌子面的扫描。As an optional implementation, the image spectrometer can also choose push-broom, swing-broom and other types of image spectrometers, and the relative movement with the face of the palm in the three-dimensional space of the mobile platform can be realized through slide rails and telescopic brackets. Realize the scanning of the palm face.
作为一种可选择的实施方式,所述图像光谱仪采集掌子面的图像光谱数据时,波段范围选为0.35-25um。As an optional implementation manner, when the image spectrometer collects the image spectrum data of the face, the band range is selected as 0.35-25um.
在本实施例中,对已开挖段的图像光谱数据进行矿物含量的定量识别,利以选取不良地质体的标志矿物;In this embodiment, the quantitative identification of mineral content is carried out on the image spectrum data of the excavated section, so as to select the marker minerals of unfavorable geological bodies;
作为一种可选择的实施方式,通过对已开挖段进行图像光谱测试,获取掌子面处各类矿物的含量信息,选取在不良地质影响区与正常围岩区含量发生明显变化的矿物作为标志矿物;如含量差值超出阈值的矿物。As an optional implementation method, the content information of various minerals at the face is obtained by performing image spectrum testing on the excavated section, and the minerals whose content changes significantly between the unfavorable geological impact area and the normal surrounding rock area are selected as Marker minerals; such as minerals whose content difference exceeds the threshold.
作为一种可选择的实施方式,随着隧道的不断开挖,矿物测试不断进行,测试结果也不断反馈,实现在隧道掘进过程中不断更新和调整标志矿物的种类,以适应不同标段的地质情况。As an optional implementation method, with the continuous excavation of the tunnel, the mineral test is carried out continuously, and the test results are also continuously fed back, so as to realize the continuous update and adjustment of the types of marker minerals during the tunnel excavation process to adapt to the geology of different bid sections Condition.
作为一种可选择的实施方式,选取数种隧道工程现场常见的、对围岩稳定性和施工安全有重要影响、含量发生明显变化的矿物作为不良地质标志矿物;例如,粘土矿物(伊利石、高岭石、蒙皂石等)、蚀变矿物(绿泥石、绿帘石、沸石等)以及部分造岩矿物。As an optional implementation mode, select several minerals that are common in the tunnel engineering site, have an important impact on the stability of surrounding rock and construction safety, and have obvious changes in content as unfavorable geological marker minerals; for example, clay minerals (illite, Kaolinite, smectite, etc.), alteration minerals (chlorite, epidote, zeolite, etc.) and some rock-forming minerals.
在本实施例中,随着掌子面的开挖,大量采集(正常围岩区域以及不良地质影响区)掌子面图像光谱数据,对图像光谱数据进行预处理后进行矿物含量定量反演,得到隧道掌子面控制点处的矿物种类及含量分布情况;根据图像光谱数据进行矿物含量定量识别的过程包括:In this embodiment, along with the excavation of the face, a large amount of image spectrum data of the face (normal surrounding rock area and unfavorable geological influence area) is collected, and the image spectrum data is preprocessed to carry out quantitative inversion of mineral content. Obtain the mineral type and content distribution at the control point of the tunnel face; the process of quantitative identification of mineral content based on the image spectrum data includes:
首先,对图像光谱数据进行预处理,所述预处理包括辐射定标、反射率重建和弱化噪声;First, preprocessing the image spectral data, the preprocessing includes radiometric calibration, reflectance reconstruction and noise reduction;
其中,所述辐射定标利用预设的标定参数对获取的掌子面图像光谱数据进行辐射标定,根据辐射定标公式建立原始图像的DN值和真实辐射亮度值之间的关系,实现原始图像值到辐射值的转化;Wherein, the radiometric calibration uses preset calibration parameters to perform radiometric calibration on the acquired face image spectral data, and establishes the relationship between the DN value of the original image and the real radiance value according to the radiometric calibration formula to realize the original image conversion of values to radiance values;
所述反射率重建通过标准板反射率定标法对环境误差进行消除,实现辐射值到反射率的转化,建立掌子面图像反射率光谱;The reflectance reconstruction eliminates the environmental error through the standard plate reflectance calibration method, realizes the transformation from radiation value to reflectance, and establishes the face image reflectance spectrum;
所述噪声消除采用最大噪声分离变换,降低数据的冗余度,进行操作减维,弱化噪声。The noise elimination adopts the maximum noise separation transformation, reduces the redundancy of data, performs operation dimension reduction, and weakens the noise.
然后,对噪声消除的掌子面图像光谱数据利用纯净像元指数算法(PPI)进行端元提取,得到像元光谱曲线,将像元光谱曲线对照标准矿物光谱库以及光谱理论知识确定最终的矿物端元光谱,基于此进行矿物识别。Then, the pure pixel index algorithm (PPI) is used to extract the end-members of the noise-removed palm face image spectral data to obtain the pixel spectral curve, and compare the pixel spectral curve with the standard mineral spectral library and spectral theoretical knowledge to determine the final mineral Endmember spectroscopy, based on which mineral identification is performed.
作为一种可选择的实施方式,利用图像像元分类统计的方法分段计算掌子面矿物的相对含量数据,实现掌子面矿物含量定量识别。As an optional implementation, the method of classification and statistics of image pixels is used to calculate the relative content data of the tunnel face minerals in sections, so as to realize the quantitative identification of the mineral content of the tunnel face.
在本实施例中,根据获取的图像信息对掌子面进行网格划分,并选取掌子面控制点;In this embodiment, the tunnel surface is meshed according to the acquired image information, and the tunnel surface control points are selected;
作为一种可选择的实施方式,如图2所示,所述网格划分及控制点的选取根据实际掌子面的尺寸进行网格间距的选择,为使选取的控制点具有代表性以及控制点之间的间距适宜,根据网格间距对掌子面进行相对等距离的划分,并选取能够覆盖掌子面且有限数量的网格点作为获取掌子面处矿物含量的控制点;保证掌子面控制点选取的代表性,在降低数据处理工作量的同时充分体现掌子面矿物的分布情况,将基于控制点处的矿物含量信息,通过空间插值方法将矿物异常可视化,在一定程度上保证了后续空间插值可视化输出的精确性。As an optional implementation, as shown in Figure 2, the grid division and the selection of control points are selected according to the size of the actual face, in order to make the selected control points representative and control The spacing between the points is appropriate, and the tunnel face is divided into relatively equal distances according to the grid spacing, and a limited number of grid points that can cover the tunnel face are selected as the control points for obtaining the mineral content at the tunnel face; The representativeness of sub-face control point selection can fully reflect the distribution of face minerals while reducing the workload of data processing. Based on the mineral content information at the control points, mineral anomalies will be visualized through spatial interpolation methods, to a certain extent. The accuracy of subsequent spatial interpolation visualization output is guaranteed.
在本实施例中,应用时间序列方法是针对掌子面的一个点,无数个掌子面连起来是一条线,时间序列方法是预测这条线的某种矿物的含量变化,如果对掌子面无数个点均使用时间序列方法进行预测,工作量太大,不具有快速、效率高的优势,因此,选取的控制点位置能够将掌子面整体覆盖,并且数量有限,可具备准确性和代表性的同时减少工作量。In this embodiment, the application of the time series method is aimed at a point on the palm face. Countless faces are connected to form a line. The time series method is to predict the content change of a certain mineral in this line. Countless points on the face are predicted using the time series method. The workload is too large, and it does not have the advantages of speed and efficiency. Representation while reducing workload.
在本实施例中,随着掌子面的开挖,不断获取掌子面的图像光谱数据,并通过矿物定量反演确定控制点处的标志矿物含量,将所有得到的控制点处的标志矿物含量构建成矿物信息数据集,作为时间序列预测的学习样本;In this embodiment, with the excavation of the face, the image spectrum data of the face is continuously obtained, and the content of marker minerals at the control points is determined through mineral quantitative inversion, and all the obtained marker minerals at the control points The mineral content is constructed into a mineral information data set as a learning sample for time series prediction;
基于矿物信息数据集,通过时间序列方法进行学习,得到矿物含量预测模型,根据矿物含量预测模型对掌子面前方一定里程段内的控制点处的标志矿物含量进行预测;Based on the mineral information data set, the mineral content prediction model is obtained by learning through the time series method, and the mineral content prediction model is used to predict the marker mineral content at the control point within a certain mileage in front of the tunnel face;
作为一种可选择的实施方式,所述时间序列方法包括适应不同数据类型差值波动程度的算法,根据工程现场实际测试数据结果选取最优算法;比如包括差分整合移动平均自回归模型(ARIMA)、长短期记忆人工神经网络(LSTM)、生成对抗网络(GAN)等,但不限于上述几种;As an optional implementation, the time series method includes an algorithm that adapts to the degree of fluctuation of the difference of different data types, and selects the optimal algorithm according to the actual test data results of the engineering site; for example, it includes the differential integrated moving average autoregressive model (ARIMA) , long-short-term memory artificial neural network (LSTM), generative confrontation network (GAN), etc., but not limited to the above-mentioned ones;
以ARIMA为例,对前方掌子面控制点处的标志矿物含量进行预测,ARIMA预测模型表达式为:Taking ARIMA as an example to predict the marker mineral content at the control point of the front face, the expression of the ARIMA prediction model is:
(1-φ1B-φ2B2-…-φpBp)(1-B)dyt=(1+θ1B+θ2B2+…+θpBp)ε(1-φ 1 B-φ 2 B 2 -…-φ p B p )(1-B) d y t =(1+θ 1 B+θ 2 B 2 +…+θ p B p )ε
在本实施例中,根据掌子面前方控制点的标志矿物含量,对控制点之间的标志矿物含量进行空间插值,得到掌子面前方围岩矿物含量,反映掌子面前方一段里程的矿物含量变化情况。In this embodiment, according to the marker mineral content of the control points in front of the tunnel face, spatial interpolation is performed on the marker mineral content between the control points to obtain the mineral content of the surrounding rock in front of the tunnel face, which reflects the minerals in a certain mileage in front of the tunnel face content changes.
作为一种可选择的实施方式,采用空间插值方法将控制点的空间点状非连续的矿物含量输出为空间体状连续的矿物含量,并通过空间体的填充显示效果展示矿物含量信息的差异,宏观立体的展示出隧道未开挖段一定空间范围内各种标志矿物的含量变化情况。As an optional implementation, the spatial interpolation method is used to output the spatially discontinuous mineral content of the control point as a spatially continuous mineral content, and the difference in mineral content information is displayed through the filling display effect of the spatial volume. Macroscopically and three-dimensionally display the content changes of various marker minerals within a certain space in the unexcavated section of the tunnel.
在本实施例中,根据空间体的填充显示效果对矿物异常区域进行圈定,根据矿物的异常特征对不良地质体的位置、规模及种类进行判识,实现对掌子面前方不良地质体的预报。In this embodiment, the mineral anomaly area is delineated according to the filling and display effect of the space body, and the position, scale and type of the unfavorable geological body are identified according to the anomalous characteristics of the mineral, so as to realize the forecast of the unfavorable geological body in front of the tunnel face .
作为一种可选择的实施方式,对矿物异常区域的圈定主要通过EDA技术确定矿物异常的界限值,调整空间输出模型的显色效果,自动对矿物异常区域进行范围圈定;由于地层岩石物质成分是相对稳定的,不良地质体的出现通常伴随矿物异常出现,矿物成分与含量在空间分布上与周围岩石有差异,因此基于对矿物异常的圈定可实现对不良地质体的判识和预报。As an optional implementation, the delineation of the mineral anomaly area mainly uses EDA technology to determine the threshold value of the mineral anomaly, adjust the color rendering effect of the spatial output model, and automatically delineate the range of the mineral anomaly area; because the formation rock material composition is The occurrence of relatively stable and unfavorable geological bodies is usually accompanied by mineral anomalies. The spatial distribution of mineral composition and content is different from that of surrounding rocks. Therefore, based on the delineation of mineral anomalies, the identification and prediction of unfavorable geological bodies can be realized.
作为一种可选择的实施方式,对不良地质体进行判识主要通过矿物异常的种类组合及含量信息,结合专业地质知识以及前期地质勘察资料,对不良地质体的种类性质进行判识,通过矿物异常圈定的范围对不良地质体的规模和位置进行判识。As an optional implementation, the identification of unfavorable geological bodies is mainly based on the combination and content information of mineral anomalies, combined with professional geological knowledge and previous geological survey data, to identify the types and properties of unfavorable geological bodies. The scale and location of unfavorable geological bodies can be judged by the abnormally delineated range.
作为一种可选择的实施方式,可通过开挖验证,并及时将开挖处掌子面的矿物信息反馈至数据集,进行数据集补充,增加时间序列模型的学习样本,提升模型预测的准确性。As an optional implementation method, the excavation verification can be carried out, and the mineral information of the excavation site can be fed back to the data set in time to supplement the data set, increase the learning samples of the time series model, and improve the accuracy of the model prediction sex.
实施例2Example 2
本实施例提供一种融合光谱成像与时空分布的不良地质超前预报系统,包括:This embodiment provides a bad geological advance prediction system that integrates spectral imaging and time-space distribution, including:
控制点选取模块,被配置为对掌子面进行网格划分,选取覆盖掌子面有限数量的网格点作为控制点;The control point selection module is configured to perform grid division on the face, and select a limited number of grid points covering the face as control points;
标志矿物选取模块,被配置为根据已开挖段的掌子面图像光谱数据,选取不良地质体的标志矿物;The marker mineral selection module is configured to select marker minerals of unfavorable geological bodies according to the image spectrum data of the face of the excavated section;
矿物含量预测模块,被配置为根据开挖处掌子面的图像光谱数据,确定控制点处的标志矿物含量,并以此预测掌子面前方控制点的标志矿物含量;The mineral content prediction module is configured to determine the marker mineral content at the control point according to the image spectrum data of the face of the excavation, and predict the marker mineral content of the control point in front of the face;
空间插值模块,被配置为根据掌子面前方控制点的标志矿物含量,对控制点之间的标志矿物含量进行空间插值处理,得到掌子面前方的标志矿物含量;The spatial interpolation module is configured to perform spatial interpolation processing on the marker mineral content between the control points according to the marker mineral content of the control points in front of the tunnel face, so as to obtain the marker mineral content in front of the tunnel face;
超前预报模块,被配置为根据掌子面前方的标志矿物含量,对矿物异常区域进行圈定,得到掌子面前方不良地质体的位置、规模和种类。The advanced prediction module is configured to delineate the mineral anomaly area according to the marker mineral content in front of the tunnel face, and obtain the location, scale and type of unfavorable geological bodies in front of the tunnel face.
在本实施例中,所述控制点选取模块还包括:In this embodiment, the control point selection module also includes:
设定网格间距,根据网格间距对掌子面进行相对等距离的网格划分。Set the grid spacing, and divide the tunnel face into relatively equidistant grids according to the grid spacing.
在本实施例中,所述标志矿物选取模块还包括:In this embodiment, the marker mineral selection module also includes:
根据已开挖段的掌子面图像光谱数据,获取各类矿物的含量,并以此选取在不良地质影响区与正常围岩区矿物含量变化超出设定阈值的矿物作为标志矿物。According to the image spectrum data of the face of the excavated section, the content of various minerals is obtained, and the minerals whose mineral content changes in the unfavorable geological impact area and the normal surrounding rock area exceed the set threshold are selected as the marker minerals.
在本实施例中,该系统还包括数据采集模块,具体地,由图像光谱仪采集图像光谱数据,所述图像光谱仪与掌子面之间的最佳相对位置需满足所拍摄图像布满掌子面核心区域;In this embodiment, the system also includes a data acquisition module, specifically, the image spectrum data is collected by an image spectrometer, and the optimal relative position between the image spectrometer and the face of the face needs to meet the requirement that the captured images cover the face of the face core zone;
所述图像光谱仪扫描的参数包括频率增量、凝视时间和相机焦距;通过调节频率增量的调谐波长,以获取不同波段的图像光谱数据;通过调节凝视时间,以提高光谱分辨率;通过调节相机焦距,以调整掌子面在相机视野内的位置及大小。The parameters scanned by the image spectrometer include frequency increment, staring time and camera focal length; by adjusting the tuning wavelength of the frequency increment, to obtain image spectral data of different bands; by adjusting the staring time, to improve spectral resolution; by adjusting the camera Focal length to adjust the position and size of the face in the field of view of the camera.
在本实施例中,所述矿物含量预测模块还包括:In this embodiment, the mineral content prediction module also includes:
采用时间序列方法进行学习,对掌子面前方控制点处的标志矿物含量进行预测。The time series method is used for learning to predict the content of marker minerals at the control point in front of the tunnel face.
在本实施例中,所述矿物含量预测模块还包括:In this embodiment, the mineral content prediction module also includes:
对开挖处掌子面的图像光谱数据进行预处理,所述预处理包括辐射定标、反射率重建和弱化噪声;Preprocessing the image spectrum data of the face of the excavation, the preprocessing includes radiometric calibration, reflectance reconstruction and noise reduction;
对预处理后的图像光谱数据进行端元提取,得到像元光谱曲线,将像元光谱曲线对照标准矿物光谱库确定最终的矿物端元光谱,以此进行矿物识别;The end member extraction is performed on the preprocessed image spectral data to obtain the pixel spectral curve, and the pixel spectral curve is compared with the standard mineral spectral library to determine the final mineral end member spectrum for mineral identification;
利用图像像元分类统计方法分段计算矿物含量。The mineral content is calculated segmentally by using the image pixel classification and statistics method.
在本实施例中,所述空间插值模块还包括:In this embodiment, the spatial interpolation module also includes:
采用空间插值方法将控制点的空间点状非连续的矿物含量输出为空间体状连续的矿物含量,并通过空间体的填充显色效果展示矿物含量的差异。The spatial interpolation method is used to output the point-like discontinuous mineral content of the control point into the continuous mineral content of the spatial volume, and the difference in mineral content is displayed through the filling color rendering effect of the spatial volume.
在本实施例中,所述超前预报模块还包括:In this embodiment, the advanced forecasting module also includes:
确定矿物异常的界限值,调整空间体的填充显色效果,对矿物异常区域进行范围圈定。Determine the boundary value of mineral anomalies, adjust the filling color rendering effect of the space body, and delineate the area of mineral anomalies.
此处需要说明的是,上述模块对应于实施例1中所述的步骤,上述模块与对应的步骤所实现的示例和应用场景相同,但不限于上述实施例1所公开的内容。需要说明的是,上述模块作为系统的一部分可以在诸如一组计算机可执行指令的计算机系统中执行。It should be noted here that the above modules correspond to the steps described in Embodiment 1, and the examples and application scenarios implemented by the above modules and corresponding steps are the same, but are not limited to the content disclosed in Embodiment 1 above. It should be noted that, as a part of the system, the above-mentioned modules can be executed in a computer system such as a set of computer-executable instructions.
实施例3Example 3
本实施例提供一种融合光谱成像与时空分布的不良地质超前预报系统,包括:主控模块、数据采集模块、装置调设单元和不良地质体超前预报模块;This embodiment provides an advanced prediction system for unfavorable geological bodies that integrates spectral imaging and time-space distribution, including: a main control module, a data acquisition module, a device adjustment unit, and an advanced prediction module for unfavorable geological bodies;
所述主控模块,被配置为对数据采集模块、装置调设单元和不良地质体超前预报模块的启停控制;The main control module is configured to control the start and stop of the data acquisition module, the device adjustment unit and the advanced prediction module of bad geological bodies;
所述数据采集模块用于获取掌子面的图像光谱数据;The data collection module is used to obtain image spectrum data of the face of the face;
所述装置调设单元用于调整数据采集模块的位置,以使数据采集模块移动至与掌子面的最佳相对位置处;The device adjustment unit is used to adjust the position of the data acquisition module, so that the data acquisition module moves to the best relative position with the palm face;
所述不良地质体超前预报模块接收掌子面的图像光谱数据,被配置为根据图像光谱数据采用实施例1所述的方法进行矿物异常区域进行圈定,以得到掌子面前方不良地质体的位置、规模和种类。The advanced prediction module of unfavorable geological bodies receives the image spectrum data of the face, and is configured to use the method described in Embodiment 1 to delineate the mineral anomaly area according to the image spectrum data, so as to obtain the position of the unfavorable geological bodies in front of the face , size and type.
在本实施例中,所述主控模块1通过无线信号传输器3连接上述各模块,用于控制上述各模块的启停。In this embodiment, the main control module 1 is connected to the above-mentioned modules through a
在本实施例中,该系统还包括移动平台,主控模块1等上述各模块均搭载在移动平台上。In this embodiment, the system further includes a mobile platform, and the above-mentioned modules such as the main control module 1 are mounted on the mobile platform.
在本实施例中,所述数据采集模块用于不断获取隧道开挖过程中掌子面的图像光谱数据,并将图像光谱数据经无线信号传输器3进行传输。In this embodiment, the data acquisition module is used to continuously acquire the image spectrum data of the tunnel face during excavation, and transmit the image spectrum data through the
如图3所示,所述数据采集模块包括图像光谱仪4和保护装置5;As shown in Figure 3, the data acquisition module includes an
所述图像光谱仪4搭载在移动平台上,用于获取掌子面的图像光谱数据;The
所述保护装置5安装于图像光谱仪4的外部,用于保护图像光谱仪4不受隧道内水汽、扬尘及掉落石块的影响。The
作为一种可选择的实施方式,所述图像光谱仪4可选取凝视型图像光谱仪,通过滑轨和伸缩支架实现在移动平台立体空间中与掌子面的相对移动,通过图像光谱仪相机视野中掌子面的信息,选取合适的凝视位置,定位后原位获取掌子面图像光谱数据。As an optional implementation, the
作为一种可选择的实施方式,所述图像光谱仪4还可选择推扫型、摆扫型等类型的图像光谱仪,通过滑轨和伸缩支架实现在移动平台立体空间中与掌子面的相对移动,实现对掌子面的扫描。As an optional implementation, the
作为一种可选择的实施方式,所述图像光谱仪扫描的参数包括频率增量、凝视时间和相机焦距等;通过调节频率增量的调谐波长,以获取不同波段的图像光谱数据;通过调节凝视时间,以提高光谱分辨率,优化成像质量;通过调节相机焦距,以调整掌子面在相机视野内的位置及大小,保障数据的完整性。As an optional implementation, the parameters scanned by the image spectrometer include frequency increment, staring time and camera focal length, etc.; by adjusting the tuning wavelength of the frequency increment, to obtain image spectral data of different bands; by adjusting the staring time , to improve the spectral resolution and optimize the imaging quality; by adjusting the focal length of the camera, the position and size of the face in the field of view of the camera can be adjusted to ensure the integrity of the data.
作为一种可选择的实施方式,所述图像光谱仪采集掌子面的图像光谱数据时,波段范围选为0.35-25um。As an optional implementation manner, when the image spectrometer collects the image spectrum data of the face, the band range is selected as 0.35-25um.
作为一种可选择的实施方式,所述保护装置5被安装于图像光谱仪4的外部,进行全方位保护,因图像光谱仪仪器精密,隧道内环境恶劣,保护装置5可减少隧道内水汽、扬尘对图像光谱仪4工作的影响,以及防止围岩掉落石块对图像光谱仪4造成损坏,有利于维持仪器运行的持续性和稳定性,提升获取的图像光谱数据的准确性。As an optional implementation, the
在本实施例中,该系统还包括装置调设单元,所述装置调设单元包括激光测距仪2、伸缩支架6、滑轨7和云台8;In this embodiment, the system also includes a device adjustment unit, which includes a
所述激光测距仪2用于测量移动平台与掌子面间的距离,并根据激光测距仪2的反馈数据,以控制移动平台的移动、伸缩支架6的移动以及图像光谱仪4扫描参数的设置,控制移动平台移动至图像光谱仪与掌子面的最佳相对位置处,提升获取的图像光谱数据的质量。The
作为一种可选择的实施方式,所述图像光谱仪与掌子面之间的最佳相对位置处的确定需满足所拍摄图像尽量布满掌子面核心区域;因为掌子面为矿物测试的重点区域,需要保证掌子面在相机视野的完整性,提升其成像质量,保证获取数据的完整性、代表性以及数据测试的准确性。As an optional implementation, the determination of the optimal relative position between the image spectrometer and the face of the face needs to meet the requirement that the captured images cover the core area of the face as much as possible; because the face is the focus of mineral testing In the area, it is necessary to ensure the integrity of the face in the camera's field of view, improve its imaging quality, and ensure the integrity, representativeness, and accuracy of data testing.
作为一种可选择的实施方式,通过移动平台、伸缩支架及设置图像光谱仪扫描参数等多方面调整,使掌子面布满相机视野的核心,根据激光测距仪2获取的距离数据,使整体系统的最终位置确定在图像光谱仪与掌子面之间的最佳相对位置处。As an optional implementation, through various adjustments such as the mobile platform, the telescopic bracket, and the setting of the scanning parameters of the image spectrometer, the face of the palm is covered with the core of the camera's field of view. According to the distance data obtained by the
在本实施例中,如图3所示,配置六台激光测距仪2,两台安装于移动平台前方靠左位置,两台安装于移动平台前方靠右位置,另外两台安装在保护装置顶部的中央位置;In this embodiment, as shown in Figure 3, six
随移动平台的移动,六台激光测距仪连续获取移动平台与掌子面之间的距离,并将距离信息通过无线信号传输器传输至主控制模块进行后续操作,将每部位的两台激光测距仪获取的距离数据取均值,减小每台激光测距仪的测量误差,最终获取三组距离数据,每两组数据的相对误差不超过5%即可进行图像光谱数据的采集;因为随着隧道持续开挖,移动平台与掌子面之间的相对位置及角度发生变化,利用搭载的数台激光测距仪,将移动平台每次移动后的位置标准化,保证开挖前后图像光谱仪与掌子面位置的一致性,提升后续数据处理的准确性与连贯性。With the movement of the mobile platform, six laser rangefinders continuously obtain the distance between the mobile platform and the face, and transmit the distance information to the main control module through the wireless signal transmitter for subsequent operations, and the two laser rangefinders for each part The distance data obtained by the rangefinder is averaged to reduce the measurement error of each laser rangefinder, and finally three sets of distance data are obtained. The relative error of each two sets of data does not exceed 5% to collect image spectrum data; because As the tunnel continues to be excavated, the relative position and angle between the mobile platform and the face of the tunnel change. Using several laser range finders on board, the position of the mobile platform after each movement is standardized to ensure that the image spectrometer before and after excavation Consistency with the position of the palm face improves the accuracy and consistency of subsequent data processing.
在本实施例中,所述伸缩支架6用以调整图像光谱仪4的高度,便于调整相机视野范围,提高图像光谱数据质量。In this embodiment, the
在本实施例中,所述滑轨7安装于移动平台平面,使伸缩支架6可在滑轨7上全方位移动,用于寻找成像质量最佳的位置。In this embodiment, the slide rail 7 is installed on the plane of the mobile platform, so that the
在本实施例中,所述云台8作为减震维稳装置,承载激光测距仪2及图像光谱仪4,维持仪器在隧道内恶劣环境运行的稳定,有利于提高激光测距仪2测量数据的准确性以及图像光谱仪4成像质量及数据分析效果。In this embodiment, the
在本实施例中,所述无线信号传输器3安装于激光测距仪2及图像光谱仪4上,将距离信息及成像效果传输至主控制模块及其他模块。In this embodiment, the
在本实施例中,所述图像光谱仪4直接搭载至云台8及伸缩支架6上,通过激光测距仪2、伸缩支架6、滑轨7、云台8以及移动平台的移动进行定位,图像光谱仪4对掌子面图像光谱数据进行连续获取;同时保护装置5与图像光谱仪4底部连接,共同搭载至云台8上,使保护装置5在随移动平台于隧道恶劣环境中移动时保持稳定。In this embodiment, the
在更多实施例中,还提供:In further embodiments, there is also provided:
一种电子设备,包括存储器和处理器以及存储在存储器上并在处理器上运行的计算机指令,所述计算机指令被处理器运行时,完成实施例1中所述的方法。为了简洁,在此不再赘述。An electronic device includes a memory, a processor, and computer instructions stored in the memory and executed on the processor. When the computer instructions are executed by the processor, the method described in Embodiment 1 is completed. For the sake of brevity, details are not repeated here.
应理解,本实施例中,处理器可以是中央处理单元CPU,处理器还可以是其他通用处理器、数字信号处理器DSP、专用集成电路ASIC,现成可编程门阵列FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。It should be understood that in this embodiment, the processor can be a central processing unit CPU, and the processor can also be other general-purpose processors, digital signal processors DSP, application specific integrated circuits ASIC, off-the-shelf programmable gate array FPGA or other programmable logic devices , discrete gate or transistor logic devices, discrete hardware components, etc. A general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据、存储器的一部分还可以包括非易失性随机存储器。例如,存储器还可以存储设备类型的信息。The memory may include read-only memory and random access memory, and provide instructions and data to the processor, and a part of the memory may also include non-volatile random access memory. For example, the memory may also store device type information.
一种计算机可读存储介质,用于存储计算机指令,所述计算机指令被处理器执行时,完成实施例1中所述的方法。A computer-readable storage medium is used for storing computer instructions, and when the computer instructions are executed by a processor, the method described in Embodiment 1 is completed.
实施例1中的方法可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器、闪存、只读存储器、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。The method in Embodiment 1 can be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor. The software module may be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register. The storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, no detailed description is given here.
本领域普通技术人员可以意识到,结合本实施例描述的各示例的单元即算法步骤,能够以电子硬件或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。Those skilled in the art can appreciate that the units of the examples described in this embodiment, that is, the algorithm steps, can be implemented by electronic hardware or a combination of computer software and electronic hardware. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。Although the specific implementation of the present invention has been described above in conjunction with the accompanying drawings, it does not limit the protection scope of the present invention. Those skilled in the art should understand that on the basis of the technical solution of the present invention, those skilled in the art do not need to pay creative work Various modifications or variations that can be made are still within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211281361.9A CN115901640B (en) | 2022-10-19 | 2022-10-19 | Method and system for advanced geological forecasting that integrates spectral imaging and spatiotemporal distribution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211281361.9A CN115901640B (en) | 2022-10-19 | 2022-10-19 | Method and system for advanced geological forecasting that integrates spectral imaging and spatiotemporal distribution |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115901640A true CN115901640A (en) | 2023-04-04 |
CN115901640B CN115901640B (en) | 2024-03-15 |
Family
ID=86475325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211281361.9A Active CN115901640B (en) | 2022-10-19 | 2022-10-19 | Method and system for advanced geological forecasting that integrates spectral imaging and spatiotemporal distribution |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115901640B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116719082A (en) * | 2023-04-25 | 2023-09-08 | 中国地质大学(北京) | Deep unfavorable geology multisource information fusion and in-situ stereoscopic perspective system and method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102540165A (en) * | 2011-12-19 | 2012-07-04 | 北京师范大学 | Method and system for preprocessing MODIS (Moderate-Resolution Imaging Spectroradiometer) surface albedo data |
CN110174359A (en) * | 2019-05-27 | 2019-08-27 | 生态环境部南京环境科学研究所 | A kind of Airborne Hyperspectral image heavy metal-polluted soil concentration evaluation method returned based on Gaussian process |
CN110530901A (en) * | 2019-09-11 | 2019-12-03 | 中国科学院南京土壤研究所 | Merge the Small and Medium Sized soil water monitoring system and method for cosmic ray NEUTRON METHOD and unmanned aerial vehicle remote sensing |
CN112017135A (en) * | 2020-07-13 | 2020-12-01 | 香港理工大学深圳研究院 | Method, system and equipment for spatial-temporal fusion of remote sensing image data |
CN113008806A (en) * | 2021-03-02 | 2021-06-22 | 农业农村部环境保护科研监测所 | Agricultural product production area heavy metal spatial distribution determination method |
US20210293770A1 (en) * | 2017-06-19 | 2021-09-23 | Nanjing Institute Of Geography & Limnology. Chinese Academy Of Sciences | Stereoscopic monitoring and data mining system and method for harmful lake cyanobacteria bloom |
CN114565843A (en) * | 2022-02-22 | 2022-05-31 | 中国电子科技集团公司第五十四研究所 | Time series remote sensing image fusion method |
-
2022
- 2022-10-19 CN CN202211281361.9A patent/CN115901640B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102540165A (en) * | 2011-12-19 | 2012-07-04 | 北京师范大学 | Method and system for preprocessing MODIS (Moderate-Resolution Imaging Spectroradiometer) surface albedo data |
US20210293770A1 (en) * | 2017-06-19 | 2021-09-23 | Nanjing Institute Of Geography & Limnology. Chinese Academy Of Sciences | Stereoscopic monitoring and data mining system and method for harmful lake cyanobacteria bloom |
CN110174359A (en) * | 2019-05-27 | 2019-08-27 | 生态环境部南京环境科学研究所 | A kind of Airborne Hyperspectral image heavy metal-polluted soil concentration evaluation method returned based on Gaussian process |
CN110530901A (en) * | 2019-09-11 | 2019-12-03 | 中国科学院南京土壤研究所 | Merge the Small and Medium Sized soil water monitoring system and method for cosmic ray NEUTRON METHOD and unmanned aerial vehicle remote sensing |
CN112017135A (en) * | 2020-07-13 | 2020-12-01 | 香港理工大学深圳研究院 | Method, system and equipment for spatial-temporal fusion of remote sensing image data |
CN113008806A (en) * | 2021-03-02 | 2021-06-22 | 农业农村部环境保护科研监测所 | Agricultural product production area heavy metal spatial distribution determination method |
CN114565843A (en) * | 2022-02-22 | 2022-05-31 | 中国电子科技集团公司第五十四研究所 | Time series remote sensing image fusion method |
Non-Patent Citations (1)
Title |
---|
施雪松: "基于元素和矿物异常分析的隧道不良地质识别方法", 中国优秀硕士论文硕士工程科技Ⅱ辑, 15 February 2021 (2021-02-15) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116719082A (en) * | 2023-04-25 | 2023-09-08 | 中国地质大学(北京) | Deep unfavorable geology multisource information fusion and in-situ stereoscopic perspective system and method |
Also Published As
Publication number | Publication date |
---|---|
CN115901640B (en) | 2024-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109716108B (en) | An Asphalt Pavement Disease Detection System Based on Binocular Image Analysis | |
CN111855664B (en) | Adjustable three-dimensional tunnel defect detection system | |
CN114444158B (en) | Underground roadway deformation early warning method and system based on three-dimensional reconstruction | |
CN110059553A (en) | The method for knowing potential landslide stage vegetation anomalies feature is sentenced using optical remote sensing image | |
CN116026283B (en) | Method for monitoring and evaluating earth surface subsidence reducing effect of coal mine filling mining | |
Kim et al. | Improvement of photogrammetric JRC data distributions based on parabolic error models | |
CN115901640B (en) | Method and system for advanced geological forecasting that integrates spectral imaging and spatiotemporal distribution | |
CN103400137A (en) | Method for extracting geometrical building parameters of synthetic aperture radar (SAR) image | |
CN116429070A (en) | Water resource investigation method and system for coal mining subsidence water accumulation area | |
CN115713645A (en) | Lithology identification method and system based on spectral imaging technology | |
Qin et al. | Development and application of an intelligent robot for rock mass structure detection: A case study of Letuan tunnel in Shandong, China | |
Zhang et al. | Identification and thermal characteristics of linear discontinuities on a high-steep slope using UAV with thermal infrared imager | |
CN111272753A (en) | Prediction system and method of lithitic content in tunnel interior based on image recognition and analysis | |
Sun et al. | Structural planes surveying and fractal dimension characteristics of tunnel face based on digital photogrammetry | |
Zou et al. | Intelligent assessment system of material deterioration in masonry tower based on improved image segmentation model | |
Zhu et al. | GraSSAMS: A new instrument designed for the determination of grain size and shape of sand-gravel-sized sediment | |
CN118212450A (en) | Hyperspectral-based rock mineral identification and classification method | |
Samieinejad et al. | A field investigation of application of digital terrestrial photogrammetry to characterize geometric properties of discontinuities in open-pit slopes | |
Collins et al. | Monitoring of coastal bluff stability using high resolution 3 D laser scanning | |
JP3877740B2 (en) | Rock slope stability evaluation method and apparatus by remote observation | |
García-Luna et al. | Characterization of joint roughness using long-range terrestrial photogrammetry | |
Zhong et al. | Analysis of the adjacency effect on retrieval of land surface temperatures based on multimodal images from unmanned aerial vehicles | |
Kim et al. | Spatiotemporal fusion of high resolution land surface temperature using thermal sharpened images from regression-based urban indices | |
Pu et al. | Interpretation and characterization of sedimentary rock mass structure using UAV multi-sensor data | |
LU503740B1 (en) | Method for monitoring and evaluating effectiveness of backfilling technology for land surface subsidence reduction in coal mine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |