CN115895657A - Fluorescent emission layer prepared based on metal aluminum-based mesoporous alumina and preparation method and application thereof - Google Patents
Fluorescent emission layer prepared based on metal aluminum-based mesoporous alumina and preparation method and application thereof Download PDFInfo
- Publication number
- CN115895657A CN115895657A CN202211240768.7A CN202211240768A CN115895657A CN 115895657 A CN115895657 A CN 115895657A CN 202211240768 A CN202211240768 A CN 202211240768A CN 115895657 A CN115895657 A CN 115895657A
- Authority
- CN
- China
- Prior art keywords
- mesoporous alumina
- metal aluminum
- fluorescent
- based mesoporous
- alumina
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims abstract description 274
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 205
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 204
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 176
- 239000002184 metal Substances 0.000 title claims abstract description 176
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 238000000295 emission spectrum Methods 0.000 claims abstract description 56
- 239000000126 substance Substances 0.000 claims abstract description 53
- 230000005284 excitation Effects 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims description 69
- 239000000243 solution Substances 0.000 claims description 50
- 239000001257 hydrogen Substances 0.000 claims description 37
- 229910052739 hydrogen Inorganic materials 0.000 claims description 37
- 239000011148 porous material Substances 0.000 claims description 33
- 239000007864 aqueous solution Substances 0.000 claims description 25
- 239000007789 gas Substances 0.000 claims description 24
- 238000006243 chemical reaction Methods 0.000 claims description 21
- 239000002243 precursor Substances 0.000 claims description 17
- 239000012695 Ce precursor Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 9
- 238000005286 illumination Methods 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 6
- 238000002791 soaking Methods 0.000 claims description 5
- 229910002651 NO3 Inorganic materials 0.000 claims description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N nitrate group Chemical group [N+](=O)([O-])[O-] NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 2
- 238000009825 accumulation Methods 0.000 abstract description 3
- 239000002994 raw material Substances 0.000 description 45
- 239000000919 ceramic Substances 0.000 description 28
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 26
- 230000000052 comparative effect Effects 0.000 description 19
- 239000011521 glass Substances 0.000 description 19
- 230000001678 irradiating effect Effects 0.000 description 16
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 13
- 239000002131 composite material Substances 0.000 description 13
- 229910052757 nitrogen Inorganic materials 0.000 description 13
- 239000000203 mixture Substances 0.000 description 12
- 239000012071 phase Substances 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 11
- 229910052802 copper Inorganic materials 0.000 description 11
- 239000010949 copper Substances 0.000 description 11
- 239000000843 powder Substances 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000006260 foam Substances 0.000 description 8
- 239000000741 silica gel Substances 0.000 description 8
- 229910002027 silica gel Inorganic materials 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000002241 glass-ceramic Substances 0.000 description 5
- 239000007790 solid phase Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229910052684 Cerium Inorganic materials 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 150000002823 nitrates Chemical class 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002223 garnet Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- -1 lutetium aluminum Chemical compound 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000003746 solid phase reaction Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241000270725 Caiman Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000083879 Polyommatus icarus Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000002468 ceramisation Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 239000005394 sealing glass Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Landscapes
- Luminescent Compositions (AREA)
Abstract
本发明提供了一种基于金属铝基介孔氧化铝制备的荧光发射层、荧光发射层的制备方法和应用。该荧光发射层的化学通式为Y2O3·aAl2O3·bCeO2,其中,3≤a≤6,0.01<b<0.1;在蓝光450nm激发下,荧光发射层产生的发射光谱波长范围介于460~760nm、发射光谱的主峰介于530~550nm。与现有技术相比,本发明所涉及的一种基于金属铝基介孔氧化铝制备的荧光发射层,整体结构简单,容易合成;荧光发射层直接生长于铝板上,激光激发荧光发射层后,借助铝板良好的导热能力,荧光发射层产生的热量很快被导走,不会产生热量的堆积,不会使荧光发射层产生明显的温升,从而可用于激光照明。
The invention provides a fluorescent emitting layer prepared on the basis of metal aluminum-based mesoporous alumina, a preparation method and application of the fluorescent emitting layer. The general chemical formula of the fluorescent emitting layer is Y 2 O 3 ·aAl 2 O 3 ·bCeO 2 , where 3≤a≤6, 0.01<b<0.1; under the excitation of blue light at 450nm, the emission spectrum wavelength of the fluorescent emitting layer is The range is between 460-760nm, and the main peak of the emission spectrum is between 530-550nm. Compared with the prior art, the fluorescent emission layer prepared by the present invention based on aluminum-based mesoporous alumina has a simple overall structure and is easy to synthesize; the fluorescent emission layer is directly grown on the aluminum plate, and after the laser excites the fluorescent emission layer , With the good thermal conductivity of the aluminum plate, the heat generated by the fluorescent emitting layer is quickly conducted away, without heat accumulation and obvious temperature rise of the fluorescent emitting layer, so it can be used for laser lighting.
Description
技术领域technical field
本发明涉及照明技术领域,尤其是涉及一种基于金属铝基介孔氧化铝制备的荧光发射层及其制备方法和应用。The invention relates to the field of lighting technology, in particular to a fluorescent emitting layer prepared based on metal aluminum-based mesoporous alumina, a preparation method and application thereof.
背景技术Background technique
随着工业技术的不断进步,照明技术也不断升级换代。从最初的依靠天然动植物材料,再到化石燃料,之后到点光源,如白炽灯和荧光灯。而在上世纪90年代,节能高效的白光LED固态照明开始出现。而由于激光二极管的成本逐渐降低,性能趋于稳定,使得采用激光作为照明光源成为可能。With the continuous advancement of industrial technology, lighting technology is also constantly upgraded. From the initial reliance on natural animal and plant materials, to fossil fuels, and then to point light sources such as incandescent and fluorescent lamps. In the 1990s, energy-efficient white LED solid-state lighting began to appear. As the cost of laser diodes gradually decreases and their performance tends to be stable, it becomes possible to use lasers as illumination sources.
激光照明技术,技术原理同白光LED技术类似。在白光LED照明技术中,通过蓝光(或紫光等)LED芯片激发荧光材料,LED芯片发出的光与荧光材料激发后发出的光组合在一起,最终获得白光。激光照明技术的实现方式,如专利文件1(王达健,宋维伟,毛智勇,李广浩,孙涛,卢志娟,一种高效率激光照明用远程荧光涂层及其应用,ZL201410609545.2)所描述的,通常采用激光二极管(可发射蓝光的激光二极管最为普遍)激发荧光材料,激光二极管发出的光与荧光材料受激发后发出的光组合在一起,最终获得白光。Laser lighting technology, the technical principle is similar to that of white light LED technology. In white LED lighting technology, blue light (or purple light, etc.) LED chips excite fluorescent materials, and the light emitted by LED chips is combined with the light emitted by the excited fluorescent materials to finally obtain white light. The implementation of laser lighting technology, as described in Patent Document 1 (Wang Dajian, Song Weiwei, Mao Zhiyong, Li Guanghao, Sun Tao, Lu Zhijuan, A remote fluorescent coating for high-efficiency laser lighting and its application, ZL201410609545.2), usually adopts Laser diodes (laser diodes that can emit blue light are the most common) excite the fluorescent material, and the light emitted by the laser diode is combined with the light emitted by the excited fluorescent material to finally obtain white light.
但激光照明技术面临着许多独特的技术难题。其中最为棘手的是:荧光材料的发热问题。这是因为,由于内部缺陷、能量传递等因素的影响,荧光材料在蓝光激光下的光转化效率(量子效率)通常都小于100%,因此相当一部分激光能量会转换为热的形式,导致荧光材料的温度上升,这导致荧光材料产生明显的热淬灭(导致发光强度降低)。另外,以常见的蓝光激光激发黄色荧光材料为例,对于黄色荧光材料,当其吸收蓝光转换为黄光时,由于蓝光与黄光之间波长的不同,蓝光与黄光之间存在着能量差异,即斯托克斯位移。因此,无论荧光材料的量子效率如何,蓝光激发黄色荧光材料时,能量损失是必然,不可消除的。这部分的能量损失势必会转换为热量。而荧光材料存在热猝灭特性,即随着温度升高,荧光材料的发光性能会下降。又由于激光是准直光,由于光束集中,激光光斑的功率密度极高。因此当激光照射到荧光材料表面后,荧光材料温度升高愈发明显。But laser lighting technology faces many unique technical difficulties. One of the most difficult is: the heating problem of fluorescent materials. This is because, due to the influence of internal defects, energy transfer and other factors, the light conversion efficiency (quantum efficiency) of fluorescent materials under blue laser light is usually less than 100%, so a considerable part of the laser energy will be converted into heat, resulting in The temperature rises, which leads to a significant thermal quenching of the fluorescent material (resulting in a decrease in luminous intensity). In addition, taking the common blue light laser excitation yellow fluorescent material as an example, for yellow fluorescent material, when it absorbs blue light and converts it into yellow light, due to the difference in wavelength between blue light and yellow light, there is an energy difference between blue light and yellow light, that is, Stokes displacement. Therefore, regardless of the quantum efficiency of the fluorescent material, when the blue light excites the yellow fluorescent material, energy loss is inevitable and cannot be eliminated. This part of the energy loss is bound to be converted into heat. However, the fluorescent material has a thermal quenching characteristic, that is, as the temperature increases, the luminous performance of the fluorescent material will decrease. And because the laser is collimated light, the power density of the laser spot is extremely high due to the concentration of the beam. Therefore, when the laser is irradiated on the surface of the fluorescent material, the temperature of the fluorescent material increases more and more obviously.
因此,对于激光照明而言,最为重要的技术手段就是如何把荧光材料在激光照射下产生的热量带走(导出)。常见的技术手段包括将荧光材料陶瓷化或玻璃化至高导热基板上,或者将荧光材料分散至导热材料中。实际上,在该技术领域有相当多文献已公开。例如,专利文件2(R·库尔特,R·R·德伦滕,E·J·M·保卢森,A·瓦尔斯特,D·富尼耶,用于激光应用的灯,CN102482576B)公开了一种方法,以解决发热问题,减轻荧光体内的热累积。通过包含荧光体的透明体促进热传输的同时,提高激光应用的光学性能。这种方法具体而言就是支座和荧光体之间的附着优选通过熔融玻璃、陶瓷胶水实现,更优选地通过透明压力陶瓷或硅热界面材料实现。但整体而言,器件之间的界面较多,热阻较高,器件导热性能一般,不能把激光照射荧光材料后产生的热量迅速导走。Therefore, for laser lighting, the most important technical means is how to take away (export) the heat generated by fluorescent materials under laser irradiation. Common technical means include ceramicizing or vitrifying the fluorescent material onto a high thermal conductivity substrate, or dispersing the fluorescent material into a thermally conductive material. In fact, quite a lot of literature has been published in this technical field. For example, Patent Document 2 (R. Coulter, R. R. Drenten, E. J. M. Paulussen, A. Walster, D. Fournier, lamps for laser applications, CN102482576B ) discloses a method to solve the heating problem and alleviate the heat accumulation in the phosphor body. Improve optical performance for laser applications while facilitating heat transfer through phosphor-containing transparent bodies. Specifically, this method is that the attachment between the support and the phosphor is preferably realized by molten glass, ceramic glue, more preferably by transparent pressure ceramics or silicon thermal interface materials. But on the whole, there are many interfaces between the devices, the thermal resistance is high, and the thermal conductivity of the device is average, so the heat generated after the laser is irradiated on the fluorescent material cannot be quickly conducted away.
专利文件3(王达健,高文宇,毛智勇,陈静静,田华,杨超,安娜,史远东,低熔点玻璃粉及其制造的激光照明用玻璃陶瓷,CN106587641B)公开了一种低熔点玻璃粉及其制造的激光照明用玻璃陶瓷。该发明的低熔点玻璃粉具有较低的玻璃相转变温度,且其玻璃相转变温度在200~500℃范围内可调节,适用于封接玻璃和真空元器件的制作及LED的封装,特别适用于与荧光粉材料制造发光玻璃陶瓷,该发光玻璃陶瓷尤其适用于激光照明。玻璃陶瓷在较低温度下成型烧结,可有效避免了荧光粉在高温下的热劣化,在激光照明领域具有重要的应用价值。但整体而言,玻璃的导热系数相对较低,不能把激光照射荧光材料后产生的热量迅速导走。Patent document 3 (Wang Dajian, Gao Wenyu, Mao Zhiyong, Chen Jingjing, Tian Hua, Yang Chao, Anna, Shi Yuandong, low melting point glass powder and glass ceramics for laser lighting made thereof, CN106587641B) discloses a low melting point glass powder and its Fabrication of glass ceramics for laser illumination. The low-melting-point glass powder of the invention has a relatively low glass phase transition temperature, and its glass phase transition temperature can be adjusted within the range of 200-500°C. It is suitable for the production of sealing glass and vacuum components and the packaging of LEDs, especially for Used in the manufacture of luminescent glass ceramics with phosphor materials, the luminescent glass ceramics are especially suitable for laser lighting. Forming and sintering glass ceramics at a relatively low temperature can effectively avoid thermal degradation of phosphors at high temperatures, and has important application value in the field of laser lighting. But on the whole, the thermal conductivity of glass is relatively low, and it cannot quickly conduct away the heat generated by laser irradiation on fluorescent materials.
专利文件4(冯少尉,夏小春,王红,朱锦超,李春晖,张攀德,叶勇,李东升,用于激光照明与显示的全光谱复相荧光陶瓷及制备方法,CN111285682A)公开了用于用于激光照明与激光显示的全光谱复相荧光陶瓷,该发明的有益效果在于:具有完全致密的微观结构,优异的热导率和机械力学性能,能有效提高发光材料产生的热量带走,降低器件整体的温度,提高光的提取效率。但整体而言,相对于玻璃,荧光陶瓷的导热系数有明显的提升,但荧光陶瓷的制备工艺过于复杂。Patent document 4 (Feng Shaowei, Xia Xiaochun, Wang Hong, Zhu Jinchao, Li Chunhui, Zhang Pande, Ye Yong, Li Dongsheng, full-spectrum composite fluorescent ceramics for laser lighting and display and its preparation method, CN111285682A) discloses the use of The invention is a full-spectrum multi-phase fluorescent ceramic used for laser lighting and laser display. The beneficial effects of the invention are: it has a completely dense microstructure, excellent thermal conductivity and mechanical properties, and can effectively improve the heat generated by the luminescent material. Reduce the overall temperature of the device and improve the light extraction efficiency. But overall, compared with glass, the thermal conductivity of fluorescent ceramics has been significantly improved, but the preparation process of fluorescent ceramics is too complicated.
专利文件5(李乾,许颜正,波长转换装置及其光源系统、投影系统,CN203489180U)公开了一种波长转换装置及其光源系统、投影系统。所述波长转换装置包括支承件和多个相互拼合的波长转换模块,每个所述波长转换模块包括陶瓷载体和置于所述陶瓷载体上的荧光粉,所述支承件将所述多个波长转换模块保持相对固定。光源系统和投影系统均包括该波长转换装置。采用本实用新型,利用陶瓷材料作为荧光粉的陶瓷载体,能够耐高温,且不会因高温而变形导致荧光粉难以附着。显然,荧光材料陶瓷化是本领域常见的导走热量、降低器件温度的方法。由于荧光陶瓷本身是透光的,因此最适合的器件结构显然是透射式的,即激发光会穿过荧光陶瓷本身。Patent Document 5 (Li Gan, Xu Yanzheng, Wavelength Conversion Device, Its Light Source System, and Projection System, CN203489180U) discloses a wavelength conversion device, its light source system, and projection system. The wavelength conversion device includes a support and multiple wavelength conversion modules that are assembled together, each of the wavelength conversion modules includes a ceramic carrier and phosphor placed on the ceramic carrier, and the support converts the multiple wavelengths The conversion modules remain relatively fixed. Both the light source system and the projection system include the wavelength conversion device. By adopting the utility model, the ceramic material is used as the ceramic carrier of the fluorescent powder, which can withstand high temperature, and will not cause the fluorescent powder to be difficult to attach due to deformation due to high temperature. Obviously, ceramization of fluorescent materials is a common method in this field to conduct heat away and reduce device temperature. Since the fluorescent ceramic itself is light-transmissive, the most suitable device structure is obviously transmissive, that is, the excitation light will pass through the fluorescent ceramic itself.
同样采用陶瓷化工艺,但通过产生第二相,一样也能改善器件的导热性能。专利文件6(朱宁,用于蓝光激发的白光照明的复相荧光陶瓷、制备方法及光源装置,CN109896852A)公开了用于蓝光激发的白光照明的复相荧光陶瓷、制备方法及光源装置。所述复相荧光陶瓷具有镥铝石榴石结构的荧光相和Al2O3高热导相,所述Al2O3高热导相中微晶分布均匀且环绕在所述镥铝石榴石荧光相的周围,并形成三维网络通道直达所述复相荧光陶瓷的表面。本发明的有益效果在于:有效解决当前白光激光照明中荧光材料的抗热冲击性能弱,荧光材料的发光效率随着温度的升高而下降等高温荧光特性差问题。但整体而言,由于第二相的引入,虽然材料的导热效果有明显的提升,但所得材料的发光效率低于常规的荧光陶瓷。The ceramicization process is also used, but by generating a second phase, the thermal conductivity of the device can also be improved. Patent document 6 (Zhu Ning, Composite fluorescent ceramics for white light illumination excited by blue light, preparation method and light source device, CN109896852A) discloses a composite fluorescent ceramic for white light illumination excited by blue light, a preparation method and a light source device. The composite fluorescent ceramic has a fluorescent phase with a lutetium aluminum garnet structure and an Al 2 O 3 high thermal conductivity phase, and the microcrystals in the Al 2 O 3 high thermal conductivity phase are evenly distributed and surround the fluorescent phase of the lutetium aluminum garnet around, and form a three-dimensional network channel directly to the surface of the composite fluorescent ceramics. The invention has the beneficial effects of: effectively solving the problems of weak thermal shock resistance of fluorescent materials in current white light laser lighting, and poor high-temperature fluorescent characteristics such as luminous efficiency of fluorescent materials decreases with increasing temperature. But on the whole, due to the introduction of the second phase, although the thermal conductivity of the material has been significantly improved, the luminous efficiency of the obtained material is lower than that of conventional fluorescent ceramics.
除了陶瓷化,荧光材料结合低熔点玻璃粉的薄膜化工艺,也能很好将荧光材料在激光激发下产生的热量导走。例如,专利文件7(解荣军,游世海,郑鹏,周天亮,李淑星,激光照明用氮化物荧光粉/玻璃复合光转换组件及其制备,CN108895314B)公开了一种激光照明用氮化物荧光粉/玻璃复合光转换组件。由氮化物荧光粉/玻璃复合涂层和高导热陶瓷基体组成,所述氮化物荧光粉/玻璃复合涂层紧密地生长在高导热陶瓷基体上。但整体而言,虽然作为基体的陶瓷导热系数较高,但荧光粉/玻璃复合涂层与陶瓷基体的连接处存在明显的界面,热阻较大,所得荧光粉/玻璃复合光转换组件的导热效果有待提升。In addition to ceramicization, the thin film process of fluorescent materials combined with low-melting glass powder can also conduct away the heat generated by fluorescent materials under laser excitation. For example, Patent Document 7 (Xie Rongjun, You Shihai, Zheng Peng, Zhou Tianliang, Li Shuxing, Nitride Phosphor Powder/Glass Composite Light Conversion Components for Laser Illumination and Its Preparation, CN108895314B) discloses a nitride phosphor/glass composite light conversion component for laser lighting. Glass composite light conversion components. It consists of a nitride phosphor/glass composite coating and a high thermal conductivity ceramic substrate, and the nitride phosphor powder/glass composite coating is closely grown on the high thermal conductivity ceramic substrate. But on the whole, although the thermal conductivity of the ceramic as the matrix is high, there is an obvious interface at the junction of the phosphor/glass composite coating and the ceramic substrate, and the thermal resistance is relatively large. The effect needs to be improved.
另外,同时考虑激光二极管和荧光材料两者产生的热量,进行必要的热管理,也具有重要的意义。例如,专利文件8(曹永革,夏泽强,申小飞,麻朝阳,用于照明或显示的激光白光发光装置,CN105826457B)公开了一种用于照明或显示的激光白光发光装置。本发明将透明荧光陶瓷与激发光源的芯片结合,避免了荧光粉和硅胶因器件发热而导致发光效率的下降或光源失效;若根据应用需要,透明荧光陶瓷的耐热性能使装置工作在高电流高温度环境,避免了在高温或高注入电流工作时器件输出功率和电光转换效率的下降。但整体而言,器件的制备工艺过于复杂。In addition, it is also of great significance to consider the heat generated by both the laser diode and the fluorescent material, and perform necessary thermal management. For example, Patent Document 8 (Cao Yongge, Xia Zeqiang, Shen Xiaofei, Ma Chaoyang, Laser white light emitting device for lighting or display, CN105826457B) discloses a laser white light emitting device for lighting or display. The invention combines the transparent fluorescent ceramic with the chip of the excitation light source, avoiding the decline of luminous efficiency or the failure of the light source caused by the heating of the fluorescent powder and silica gel; if according to the application requirements, the heat resistance of the transparent fluorescent ceramic enables the device to work at high current High temperature environment avoids the decline of device output power and electro-optical conversion efficiency when working at high temperature or high injection current. But overall, the preparation process of the device is too complicated.
非专利文献1(Caiman Yan,Xinrui Ding,Mingqi Chen,Yifu Liang,Shu Yang,Yong Tang,Research on Laser Illumination Based on Phosphor in Metal(PiM)byUtilizing the Boron Nitride-Coated Copper Foams,ACS Appl.Mater.Interfaces2021,13,25,29996–30007)报道了一种激光照明器件。该器件是将黄色荧光粉与硅胶的混合物嵌入BN/泡沫铜中,形成金属磷光体(PiM)转换器。泡沫铜作为内部连通的传热通道;BN涂层有效解决了泡沫铜的吸光问题。需要指出的是,这种方案虽然在一定程度上可以通过泡沫铜将荧光材料产生的热量导走,但由于荧光材料与泡沫铜之间并非紧密连接(荧光材料固定到泡沫铜上时采用导热系数较低的硅胶),故该技术方案并不能很好地解决激光照明条件下荧光材料的导热问题。Non-Patent Document 1 (Caiman Yan, Xinrui Ding, Mingqi Chen, Yifu Liang, Shu Yang, Yong Tang, Research on Laser Illumination Based on Phosphor in Metal (PiM) by Utilizing the Boron Nitride-Coated Copper Foams, ACS Appl. Mater. Interfaces2021 , 13,25,29996–30007) reported a laser lighting device. The device is a mixture of yellow phosphor and silica gel embedded in BN/copper foam to form a metal phosphor (PiM) converter. Copper foam serves as an internally connected heat transfer channel; BN coating effectively solves the light absorption problem of copper foam. It should be pointed out that although this solution can conduct away the heat generated by the fluorescent material to a certain extent through the foamed copper, because the fluorescent material and the foamed copper are not tightly connected (the thermal conductivity coefficient is used when the fluorescent material is fixed on the foamed copper). lower silica gel), so this technical solution cannot well solve the heat conduction problem of fluorescent materials under laser lighting conditions.
当然,基于非专利文献1,很容易想到一种改进技术方案。即用低熔点玻璃粉替代硅胶,然后将泡沫铜整体加热,使得玻璃粉转变为玻璃液,冷却后,荧光材料就被玻璃液固定在泡沫铜内。但此方案也存在一定的不足。这是因为玻璃显然不能和泡沫铜形成化学结合,其导热效果虽然较硅胶结合荧光材料置于泡沫铜的方案有提升,但提升效果不会太显著。Of course, based on Non-Patent Document 1, it is easy to think of an improved technical solution. That is to use low-melting point glass powder instead of silica gel, and then heat the copper foam as a whole, so that the glass powder turns into glass liquid. After cooling, the fluorescent material is fixed in the foam copper by the glass liquid. But this scheme also has certain deficiencies. This is because glass obviously cannot form a chemical bond with copper foam. Although its thermal conductivity is better than that of silica gel combined with fluorescent materials placed in copper foam, the improvement effect will not be too significant.
介孔氧化铝是一种用途广泛的载体材料。正如专利文件9(潘大海,李瑞丰,王旭,郭敏,于峰,贺敏,马静红,一种高热稳定有序介孔氧化铝材料及其制备方法,CN103539173B)所描述的,介孔氧化铝材料具有良好的机械强度、较高的化学稳定性、适宜的等电点、可调变的表面酸/碱性以及多种不同的晶相结构等优点,成为化工和石油工业中最广泛使用的催化剂或催化剂载体,在石油组分裂解、加氢精制、加氢脱硫、碳氢化合物重整制氢、气相油品组分纯化、汽车尾气净化等反应过程中发挥着重要的作用。Mesoporous alumina is a versatile support material. As described in patent document 9 (Pan Dahai, Li Ruifeng, Wang Xu, Guo Min, Yu Feng, He Min, Ma Jinghong, a highly thermally stable ordered mesoporous alumina material and its preparation method, CN103539173B), mesoporous alumina The material has the advantages of good mechanical strength, high chemical stability, suitable isoelectric point, adjustable surface acid/alkaline and a variety of different crystal phase structures, and has become the most widely used in the chemical and petroleum industries. Catalyst or catalyst carrier plays an important role in the reaction processes of petroleum group cracking, hydrofining, hydrodesulfurization, hydrocarbon reforming, hydrogen production, gas phase oil component purification, and automobile exhaust purification.
而如专利文件10(路勇,王纯正,韩璐蓬,赵安琪,刘晔,一种铝基体-介孔氧化铝复合材料及其制备方法和应用,CN104148040B)所公开的,金属铝基介孔氧化铝相比较传统的介孔氧化铝,具有导热性好、渗透率高、易于成型、易于装填、易于存放等优点,是一种理想的催化剂载体,可作为催化剂载体用于制备负载活性金属或负载活性金属及助剂金属氧化物的催化剂。显然铝基体-介孔氧化铝复合材料与介孔氧化铝一样,也是公认的催化剂载体材料。And as disclosed in patent document 10 (Lu Yong, Wang Chunzheng, Han Lupeng, Zhao Anqi, Liu Ye, an aluminum matrix-mesoporous alumina composite material and its preparation method and application, CN104148040B), the metal aluminum-based mesoporous Compared with traditional mesoporous alumina, alumina has the advantages of good thermal conductivity, high permeability, easy molding, easy filling, easy storage, etc. It is an ideal catalyst carrier and can be used as a catalyst carrier for the preparation of loaded active metals or Catalysts supporting active metals and auxiliary metal oxides. Obviously, the aluminum matrix-mesoporous alumina composite material, like mesoporous alumina, is also a recognized catalyst support material.
总而言之,从现有的公开文献中可看出,对于金属铝基介孔氧化铝而言,并不是激光照明技术路线上容易想到的材料,也很难应用于激光照明技术。All in all, it can be seen from the existing public literature that for metal aluminum-based mesoporous alumina, it is not an easy-to-think material in the laser lighting technology route, and it is difficult to apply to laser lighting technology.
发明内容Contents of the invention
本发明的第一目的是提供一种基于金属铝基介孔氧化铝制备的荧光发射层。The first object of the present invention is to provide a fluorescent emission layer prepared based on metal aluminum-based mesoporous alumina.
所述金属铝基介孔氧化铝为一种单面含有孔径尺寸为2~50nm、厚度为20~200μm的介孔氧化铝的金属铝板;荧光发射层的化学通式为Y2O3·aAl2O3·bCeO2,其中,3≤a≤6,0.01<b<0.1。在蓝光450nm激发下,金属铝基介孔氧化铝制备的荧光发射层产生的发射光谱波长范围介于460~760nm、发射光谱的主峰介于530~550nm;优选地,荧光发射层的化学通式中,a=4.5,b=0.04。The metal aluminum-based mesoporous alumina is a metal aluminum plate containing mesoporous alumina with a pore size of 2-50 nm and a thickness of 20-200 μm on one side; the general chemical formula of the fluorescent emission layer is Y 2 O 3 ·aAl 2 O 3 ·bCeO 2 , where 3≤a≤6, 0.01<b<0.1. Under the excitation of blue light at 450nm, the emission spectrum wavelength range of the fluorescent emitting layer prepared by metal aluminum-based mesoporous alumina is between 460-760nm, and the main peak of the emission spectrum is between 530-550nm; preferably, the general chemical formula of the fluorescent emitting layer Among them, a=4.5, b=0.04.
本发明的第二目的是提供一种基于金属铝基介孔氧化铝制备的荧光发射层的制备方法。所述制备方法包括:1)将Y前驱体和Ce前驱体配制成质量浓度为50%的水溶液;Y前驱体和Ce前驱体中Y和Ce的摩尔比为2︰b,其中,0.01<b<0.1;2)将金属铝基介孔氧化铝置入步骤1)所获得的溶液中,浸泡24~48h;3)将步骤2)中浸泡过的金属铝基介孔氧化铝从溶液中取出,在80℃下真空干燥24h;4)将步骤3)中干燥后的金属铝基介孔氧化铝放入高温炉内,在氢气或氮气氢气混合气气氛、温度为600~625℃的条件下反应24~48h,得到一种基于金属铝基介孔氧化铝制备的、化学通式为Y2O3·aAl2O3·bCeO2的荧光发射层,其中,3≤a≤6,0.01<b<0.1。优选的,氮气氢气混合气中氢气的体积含量为10~25%。The second object of the present invention is to provide a method for preparing a fluorescent emission layer based on metal aluminum-based mesoporous alumina. The preparation method includes: 1) preparing the Y precursor and the Ce precursor into an aqueous solution with a mass concentration of 50%; the molar ratio of Y and Ce in the Y precursor and the Ce precursor is 2:b, wherein, 0.01<b <0.1; 2) Put the metal aluminum-based mesoporous alumina into the solution obtained in step 1) and soak for 24-48 hours; 3) Take the metal aluminum-based mesoporous alumina soaked in step 2) out of the solution , vacuum-dried at 80°C for 24h; 4) put the aluminum-based mesoporous alumina dried in step 3) into a high-temperature furnace, and put it in a hydrogen or nitrogen-hydrogen mixed gas atmosphere at a temperature of 600-625°C After reacting for 24-48 hours, a fluorescent emission layer prepared based on aluminum-based mesoporous alumina and having the general chemical formula Y 2 O 3 ·aAl 2 O 3 ·bCeO 2 was obtained, where 3≤a≤6, 0.01<b<0.1. Preferably, the volume content of hydrogen in the nitrogen-hydrogen mixed gas is 10-25%.
本发明还提供一种反射式结构激光照明器件,所述激光照明器件包含蓝光激光二极管及与之相对放置的基于金属铝基介孔氧化铝制备的荧光发射层。The present invention also provides a reflective structural laser lighting device, which includes a blue laser diode and a fluorescent emission layer prepared on the basis of metal aluminum-based mesoporous alumina placed opposite to it.
具体方案如下:The specific plan is as follows:
一种基于金属铝基介孔氧化铝制备的荧光发射层,所述荧光发射层的化学通式为Y2O3·aAl2O3·bCeO2,其中,3≤a≤6,0.01<b<0.1;进一步的,所述荧光发射层的化学通式中,a=4.5,b=0.04。荧光发射层是基于金属铝基介孔氧化铝制备的,金属铝基介孔氧化铝为一种单面含有介孔氧化铝的金属铝板;介孔氧化铝的孔径尺寸为2~50nm,厚度为20~200μm。A fluorescent emission layer prepared based on metal aluminum-based mesoporous alumina, the general chemical formula of the fluorescent emission layer is Y 2 O 3 ·aAl 2 O 3 ·bCeO 2 , wherein, 3≤a≤6, 0.01<b <0.1; further, in the general chemical formula of the fluorescent emitting layer, a=4.5, b=0.04. The fluorescent emission layer is prepared based on aluminum-based mesoporous alumina, which is a metal aluminum plate containing mesoporous alumina on one side; the pore size of the mesoporous alumina is 2-50 nm, and the thickness is 20-200μm.
进一步的,在蓝光450nm激发下,荧光发射层产生的发射光谱波长范围介于460~760nm、发射光谱的主峰介于530~550nm。Further, under the excitation of blue light of 450nm, the wavelength range of the emission spectrum produced by the fluorescent emitting layer is between 460nm and 760nm, and the main peak of the emission spectrum is between 530nm and 550nm.
本发明还提供所述基于金属铝基介孔氧化铝制备的荧光发射层的制备方法包括:1)将Y前驱体和Ce前驱体配制成质量浓度为40%~60%(进一步优选50%)的水溶液;2)将金属铝基介孔氧化铝置入步骤1)所获得的溶液中,浸泡一定时间;3)将步骤2)中浸泡过的金属铝基介孔氧化铝从溶液中取出,放入真空烘箱中干燥;4)将步骤3)中干燥后的金属铝基介孔氧化铝放入高温炉内,在还原气氛下,进行高温反应,得到一种基于金属铝基介孔氧化铝制备的荧光发射层,所述荧光发射层的化学通式为Y2O3·aAl2O3·bCeO2,其中,3≤a≤6,0.01<b<0.1。The present invention also provides the preparation method of the fluorescent emission layer prepared based on metal aluminum-based mesoporous alumina comprising: 1) preparing the Y precursor and the Ce precursor so that the mass concentration is 40% to 60% (more preferably 50%) 2) putting the metal aluminum-based mesoporous alumina into the solution obtained in step 1) and soaking for a certain period of time; 3) taking out the metal aluminum-based mesoporous alumina soaked in step 2) from the solution, Put it into a vacuum oven for drying; 4) put the aluminum-based mesoporous alumina dried in step 3) into a high-temperature furnace, and perform a high-temperature reaction under a reducing atmosphere to obtain a kind of aluminum-based mesoporous alumina The prepared fluorescent emission layer has a general chemical formula of Y 2 O 3 ·aAl 2 O 3 ·bCeO 2 , where 3≤a≤6, 0.01<b<0.1.
进一步的,所述Y前驱体选自Y的硝酸盐;Further, the Y precursor is selected from the nitrate of Y;
任选的,所述Ce前驱体选自Ce的硝酸盐;Optionally, the Ce precursor is selected from Ce nitrates;
任选的,所述Y前驱体和Ce前驱体的纯度均不低于99.5wt%。Optionally, the purity of both the Y precursor and the Ce precursor is not lower than 99.5wt%.
进一步的,所述Y前驱体和Ce前驱体中Y和Ce的摩尔比为2︰b,其中,0.01<b<0.1。Further, the molar ratio of Y and Ce in the Y precursor and Ce precursor is 2:b, wherein, 0.01<b<0.1.
任选的,金属铝基介孔氧化铝为一种单面含有介孔氧化铝的金属铝板;所述介孔氧化铝的孔径尺寸为2~50nm;所述介孔氧化铝的厚度为20~200μm;Optionally, the aluminum-based mesoporous alumina is a metal aluminum plate containing mesoporous alumina on one side; the pore size of the mesoporous alumina is 2-50 nm; the thickness of the mesoporous alumina is 20-20 nm. 200μm;
任选的,所述浸泡时间为24~48h;Optionally, the soaking time is 24 to 48 hours;
任选的,在70~90℃下干燥18~30h,进一步优选,真空干燥的温度为80℃,干燥时间为24h。Optionally, drying at 70-90° C. for 18-30 hours, more preferably, the temperature of vacuum drying is 80° C., and the drying time is 24 hours.
进一步的,所述高温固相反应的温度为600~625℃,高温反应的时间为24~48h;Further, the temperature of the high-temperature solid phase reaction is 600-625°C, and the time of the high-temperature reaction is 24-48 hours;
任选的,所述还原气氛为氢气或氮气氢气混合气;优选的,氮气氢气混合气中氢气的体积含量为10~25%。Optionally, the reducing atmosphere is hydrogen or nitrogen-hydrogen mixed gas; preferably, the volume content of hydrogen in the nitrogen-hydrogen mixed gas is 10-25%.
本发明还提供一种激光照明器件,所述激光照明器件包含蓝光激光二极管及所述的基于金属铝基介孔氧化铝制备的荧光发射层。激光照明器件为反射式结构,蓝光激光二极管出光口与荧光发射层相对放置。The present invention also provides a laser lighting device, which includes a blue laser diode and the fluorescent emission layer prepared based on metal aluminum-based mesoporous alumina. The laser lighting device is a reflective structure, and the light outlet of the blue laser diode is placed opposite to the fluorescent emitting layer.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明提供了一种基于金属铝基介孔氧化铝制备的荧光发射层、荧光发射层的制备方法和应用。该荧光发射层的化学通式为Y2O3·aAl2O3·bCeO2,其中,3≤a≤6,0.01<b<0.1;在蓝光450nm激发下,荧光发射层产生的发射光谱波长范围介于460~760nm、发射光谱的主峰介于530~550nm。与现有技术相比,本发明所涉及的一种基于金属铝基介孔氧化铝制备的荧光发射层,整体结构简单,容易合成;荧光发射层直接生长于铝板上,激光激发荧光发射层后,借助铝板良好的导热能力,荧光发射层产生的热量很快被导走,不会产生热量的堆积,不会使荧光发射层产生明显的温升,从而可用于激光照明。The invention provides a fluorescent emitting layer prepared on the basis of metal aluminum-based mesoporous alumina, a preparation method and application of the fluorescent emitting layer. The general chemical formula of the fluorescent emitting layer is Y 2 O 3 ·aAl 2 O 3 ·bCeO 2 , where 3≤a≤6, 0.01<b<0.1; under the excitation of blue light at 450nm, the emission spectrum wavelength of the fluorescent emitting layer is The range is between 460-760nm, and the main peak of the emission spectrum is between 530-550nm. Compared with the prior art, the fluorescent emitting layer prepared by the present invention based on aluminum-based mesoporous alumina has a simple overall structure and is easy to synthesize; the fluorescent emitting layer is directly grown on the aluminum plate, and after the laser excites the fluorescent emitting layer , With the good thermal conductivity of the aluminum plate, the heat generated by the fluorescent emitting layer is quickly conducted away, without heat accumulation and obvious temperature rise of the fluorescent emitting layer, so it can be used for laser lighting.
附图说明Description of drawings
图1为本发明对比例1中得到的荧光发射层的发射光谱图;Fig. 1 is the emission spectrogram of the fluorescent emission layer that obtains in comparative example 1 of the present invention;
图2为本发明对比例2中得到的荧光发射层的发射光谱图;Fig. 2 is the emission spectrogram of the fluorescence emitting layer obtained in comparative example 2 of the present invention;
图3为本发明实施例1中得到的荧光发射层的发射光谱图;Fig. 3 is the emission spectrogram of the fluorescence emitting layer obtained in the embodiment of the present invention 1;
图4为本发明实施例17中得到的激光照明器件的发射光谱图;Fig. 4 is the emission spectrum diagram of the laser lighting device obtained in Example 17 of the present invention;
图5为本发明实施例17中得到的激光照明器件的结构图Figure 5 is a structural diagram of the laser lighting device obtained in Example 17 of the present invention
具体实施方式Detailed ways
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述。The technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the embodiments of the present invention.
为便于理解本发明,本发明列举实施例如下。本领域技术人员应该明了,所述实施例仅仅用于帮助理解本发明,不应视为对本发明的具体限制。In order to facilitate understanding of the present invention, the present invention enumerates the following examples. Those skilled in the art should understand that the examples are only used to help understand the present invention, and should not be regarded as specific limitations on the present invention.
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。It should be noted that, in the case of no conflict, the embodiments in the present application and the features in the embodiments can be combined with each other. The present invention will be described in detail below in conjunction with examples.
所述一种基于金属铝基介孔氧化铝制备的荧光发射层的化学通式如下:The general chemical formula of the fluorescent emitting layer prepared based on metal aluminum-based mesoporous alumina is as follows:
Y2O3·aAl2O3·bCeO2 Y 2 O 3 ·aAl 2 O 3 ·bCeO 2
其中,3≤a≤6,0.01<b<0.1。在本发明提供的一些实施例中,所述a优选为3,b优选为0.015;在本发明提供的一些实施例中,所述a优选为3,b优选为0.02;在本发明提供的一些实施例中,所述a优选为3,b优选为0.04;在本发明提供的一些实施例中,所述a优选为3,b优选为0.08;在本发明提供的一些实施例中,所述a优选为3,b优选为0.09;在本发明提供的一些实施例中,所述a优选为3,b优选为0.095;在本发明提供的一些实施例中,所述a优选为3.5,b优选为0.04;在本发明提供的一些实施例中,所述a优选为4,b优选为0.04;在本发明提供的一些实施例中,所述a优选为4.5,b优选为0.04;在本发明提供的一些实施例中,所述a优选为5,b优选为0.04;在本发明提供的一些实施例中,所述a优选为5.5,b优选为0.04;在本发明提供的一些实施例中,所述a优选为5.9,b优选为0.04;在本发明提供的一些实施例中,所述a优选为6,b优选为0.04;在本发明提供的一些实施例中,所述a优选为4.5,b优选为0.02;在本发明提供的一些实施例中,所述a优选为4.5,b优选为0.03;在本发明提供的另一些实施例中,所述a优选为4.5,b优选为0.05。Among them, 3≤a≤6, 0.01<b<0.1. In some embodiments provided by the present invention, said a is preferably 3, and b is preferably 0.015; in some embodiments provided by the present invention, said a is preferably 3, and b is preferably 0.02; in some provided by the present invention In an embodiment, the a is preferably 3, and b is preferably 0.04; in some embodiments provided by the present invention, a is preferably 3, and b is preferably 0.08; in some embodiments provided by the present invention, the a is preferably 3, and b is preferably 0.09; in some embodiments provided by the present invention, said a is preferably 3, and b is preferably 0.095; in some embodiments provided by the present invention, said a is preferably 3.5, b It is preferably 0.04; in some embodiments provided by the present invention, said a is preferably 4, and b is preferably 0.04; in some embodiments provided by the present invention, said a is preferably 4.5, and b is preferably 0.04; in this invention In some embodiments provided by the invention, the a is preferably 5, and b is preferably 0.04; in some embodiments provided by the invention, a is preferably 5.5, and b is preferably 0.04; in some embodiments provided by the invention Among them, a is preferably 5.9, and b is preferably 0.04; in some embodiments provided by the present invention, a is preferably 6, and b is preferably 0.04; in some embodiments provided by the present invention, a is preferably is 4.5, and b is preferably 0.02; in some embodiments provided by the present invention, the a is preferably 4.5, and b is preferably 0.03; in other embodiments provided by the present invention, the a is preferably 4.5, and b is preferably is 0.05.
所述一种基于金属铝基介孔氧化铝制备的荧光发射层的制备方法的具体步骤如下:The specific steps of the preparation method of the fluorescent emitting layer prepared based on metal aluminum-based mesoporous alumina are as follows:
1)将Y前驱体和Ce前驱体配制成质量浓度为50%的水溶液;2)将金属铝基介孔氧化铝置入步骤1)所获得的溶液中,浸泡一定时间;3)将步骤2)中浸泡过的金属铝基介孔氧化铝从溶液中取出,放入真空烘箱中干燥;4)将步骤3)中干燥后的金属铝基介孔氧化铝放入高温炉内,在还原气氛下,进行高温反应,得到一种基于金属铝基介孔氧化铝制备的荧光发射层,所述荧光发射层的化学通式为Y2O3·aAl2O3·bCeO2,其中,3≤a≤6,0.01<b<0.1。1) Prepare the Y precursor and the Ce precursor into an aqueous solution with a mass concentration of 50%; 2) Put the metal aluminum-based mesoporous alumina into the solution obtained in step 1) and soak for a certain period of time; 3) Put the ) the aluminum-based mesoporous alumina soaked in the solution is taken out from the solution, and put into a vacuum oven for drying; 4) the aluminum-based mesoporous alumina dried in step 3) is put into a high-temperature furnace, Under high temperature reaction, a fluorescent emitting layer based on metal aluminum-based mesoporous alumina is obtained. The general chemical formula of the fluorescent emitting layer is Y 2 O 3 ·aAl 2 O 3 ·bCeO 2 , where 3≤ a≤6, 0.01<b<0.1.
所述步骤中,Y前驱体为选自Y的硝酸盐;所述Ce前驱体选自Ce的硝酸盐。所述Y前驱体和Ce前驱体中Y和Ce的摩尔比为2︰b,其中,0.01<b<0.1。In the step, the Y precursor is selected from Y nitrates; the Ce precursor is selected from Ce nitrates. The molar ratio of Y and Ce in the Y precursor and the Ce precursor is 2:b, wherein, 0.01<b<0.1.
所述Y前驱体和Ce前驱体的纯度均不低于99.5%,纯度越高,得到的发光材料的杂质越少。The purity of the Y precursor and the Ce precursor is not lower than 99.5%, and the higher the purity, the less impurities the obtained luminescent material has.
所述金属铝基介孔氧化铝为一种单面含有介孔氧化铝的金属铝板。金属铝基介孔氧化铝的孔径尺寸为2~50nm,所述介孔氧化铝的厚度优选为20~200μm。在本发明明提供的一些实施例中,所述介孔氧化铝的孔径尺寸优选为3nm,介孔氧化铝的厚度优选为25μm;在本发明明提供的一些实施例中,所述介孔氧化铝的孔径尺寸优选为20nm,介孔氧化铝的厚度优选为100μm;在本发明明提供的一些实施例中,所述介孔氧化铝的孔径尺寸优选为45nm,介孔氧化铝的厚度优选为150μm;在本发明明提供的另一些实施例中,所述介孔氧化铝的孔径尺寸优选为40nm,介孔氧化铝的厚度优选为180μm。The aluminum-based mesoporous alumina is a metal aluminum plate containing mesoporous alumina on one side. The pore size of the aluminum-based mesoporous alumina is 2-50 nm, and the thickness of the mesoporous alumina is preferably 20-200 μm. In some embodiments provided by the present invention, the pore size of the mesoporous alumina is preferably 3 nm, and the thickness of the mesoporous alumina is preferably 25 μm; in some embodiments provided by the present invention, the mesoporous alumina The pore size of aluminum is preferably 20nm, and the thickness of mesoporous alumina is preferably 100 μm; in some embodiments provided by the present invention, the pore size of the mesoporous alumina is preferably 45nm, and the thickness of mesoporous alumina is preferably 150 μm; in other embodiments provided by the present invention, the pore size of the mesoporous alumina is preferably 40 nm, and the thickness of the mesoporous alumina is preferably 180 μm.
所述浸泡时间为24~48h,在本发明提供的一些实施例中,所述浸泡时间优选为36h。The soaking time is 24-48 hours, and in some embodiments provided by the present invention, the soaking time is preferably 36 hours.
所述真空干燥的温度为80℃,干燥时间为24h。The temperature of the vacuum drying is 80° C., and the drying time is 24 hours.
所述步骤中还原气氛为氢气或氮气氢气混合气,优选的,氮气氢气混合气中氢气的体积含量为10~25%;本发明中优选为氮气氢气混合气。The reducing atmosphere in the step is hydrogen or nitrogen-hydrogen mixed gas, preferably, the volume content of hydrogen in the nitrogen-hydrogen mixed gas is 10-25%; in the present invention, it is preferably nitrogen-hydrogen mixed gas.
所述步骤中高温固相的温度优选为600~625℃,气氛为氮气氢气混合气,在本发明提供的一些实施例中,所述高温固相的温度优选为600℃;在本发明提供的另一些实施例中,所述高温固相的温度优选为625℃。In the step, the temperature of the high-temperature solid phase is preferably 600-625° C., and the atmosphere is a mixture of nitrogen and hydrogen. In some embodiments provided by the present invention, the temperature of the high-temperature solid phase is preferably 600° C.; In other embodiments, the temperature of the high-temperature solid phase is preferably 625°C.
所述步骤中高温固相的时间优选为24~48h,更优选为36~48h;在本发明提供的一些实施例中,所述高温固相的时间优选为36h。The high-temperature solid-phase time in the step is preferably 24-48 hours, more preferably 36-48 hours; in some embodiments provided by the present invention, the high-temperature solid-phase time is preferably 36 hours.
所述高温固反应相优选在高温炉内进行。实施反应后,随炉冷却至室温,即可得到一种基于金属铝基介孔氧化铝制备的荧光发射层。The high-temperature solid reaction phase is preferably carried out in a high-temperature furnace. After the reaction is carried out, the furnace is cooled to room temperature to obtain a fluorescent emission layer prepared based on metal aluminum-based mesoporous alumina.
本发明采用高温固相反应,成功制备一种基于金属铝基介孔氧化铝制备的荧光发射层。The invention adopts high-temperature solid-state reaction to successfully prepare a fluorescent emission layer based on metal aluminum-based mesoporous alumina.
所述的一种反射式结构的激光照明器件,至少由蓝光激光二极管及基于金属铝基介孔氧化铝制备的荧光发射层组成。所述基于金属铝基介孔氧化铝制备的荧光发射层的化学通式为:Y2O3·aAl2O3·bCeO2(其中,3≤a≤6,0.01<b<0.1)。The laser lighting device with a reflective structure at least consists of a blue laser diode and a fluorescent emission layer prepared based on metal aluminum-based mesoporous alumina. The general chemical formula of the fluorescent emitting layer prepared based on metal aluminum-based mesoporous alumina is: Y 2 O 3 ·aAl 2 O 3 ·bCeO 2 (wherein, 3≤a≤6, 0.01<b<0.1).
为了进一步说明本发明,以下结合实施例对本发明提供的一种基于金属铝基介孔氧化铝制备的荧光发射层及制备方法和器件进行详细描述。In order to further illustrate the present invention, a fluorescent emitting layer prepared based on metal aluminum-based mesoporous alumina, a preparation method and a device provided by the present invention are described in detail below in conjunction with examples.
以下对比例和实施例中所用的试剂均为市售。The reagents used in the following comparative examples and examples are all commercially available.
下述对比例和实施例中采用的氮气氢气混合气氛中,氢气体积含量为20%。In the mixed atmosphere of nitrogen and hydrogen adopted in the following comparative examples and examples, the volume content of hydrogen is 20%.
对比例和实施例中采用的Y前驱体和Ce前驱体仅为示例,并不构成对前驱体原料的限制,前驱体的纯度均不低于99.5wt%。The Y precursor and Ce precursor used in the comparative examples and examples are only examples, and do not constitute a limitation on the raw materials of the precursors. The purity of the precursors is not less than 99.5 wt%.
对比例1Comparative example 1
本对比例所述材料的化学式为:Y2O3·1.667Al2O3·0.04CeO2。选取孔径尺寸为40nm、介孔氧化铝的厚度为180μm的单面金属铝基介孔氧化铝,依据介孔的尺寸和厚度及金属铝基介孔氧化铝的外形尺寸,先计算出金属铝基介孔氧化铝中氧化铝的摩尔数,然后以Y(NO3)3和Ce(NO3)3为原料,按照化学式为Y2O3·1.667Al2O3·0.04CeO2的化学计量比准确称取所述原料,然后1)将Y(NO3)3和Ce(NO3)3配制成质量浓度为50%的水溶液;2)将金属铝基介孔氧化铝置入步骤1)所获得的溶液中,浸泡36h;3)将步骤2)中浸泡过的金属铝基介孔氧化铝从溶液中取出,在80℃下真空干燥24h;4)将步骤3)中干燥后的金属铝基介孔氧化铝放入高温炉内,在氮气氢气混合气气氛、温度为625℃的条件下反应36h,得到一种化学通式为Y2O3·1.667Al2O3·0.04CeO2、基于金属铝基介孔氧化铝制备的荧光发射层。使用荧光光谱仪测量所得荧光发射层的发射光谱,发现所得荧光发射层发光较弱,几乎不发光(见图1)。The chemical formula of the material described in this comparative example is: Y 2 O 3 ·1.667Al 2 O 3 ·0.04CeO 2 . Select a single-sided metal aluminum-based mesoporous alumina with a pore size of 40nm and a thickness of 180μm. According to the size and thickness of the mesopores and the outer dimensions of the metal aluminum-based mesoporous alumina, first calculate the The number of moles of alumina in mesoporous alumina, then using Y(NO 3 ) 3 and Ce(NO 3 ) 3 as raw materials, according to the stoichiometric ratio of Y 2 O 3 1.667Al 2 O 3 0.04CeO 2 Accurately weigh the raw materials, then 1) prepare Y(NO 3 ) 3 and Ce(NO 3 ) 3 into an aqueous solution with a mass concentration of 50%; 2) put metal aluminum-based mesoporous alumina into the Soak in the obtained solution for 36 hours; 3) Take the metal aluminum-based mesoporous alumina soaked in step 2) out of the solution, and dry it in vacuum at 80°C for 24 hours; 4) Put the dried metal aluminum in step 3) The mesoporous alumina was placed in a high-temperature furnace, and reacted for 36 hours in a nitrogen-hydrogen mixed gas atmosphere at a temperature of 625°C to obtain a chemical formula Y 2 O 3 ·1.667Al 2 O 3 ·0.04CeO 2 , Fluorescent emission layer based on aluminum-based mesoporous alumina. Using a fluorescence spectrometer to measure the emission spectrum of the obtained fluorescent emitting layer, it was found that the obtained fluorescent emitting layer emitted light relatively weakly and hardly emitted light (see FIG. 1 ).
对比例2Comparative example 2
本对比例所述材料的化学式为:Y2O3·2Al2O3·0.04CeO2。选取孔径尺寸为40nm、介孔氧化铝的厚度为180μm的单面金属铝基介孔氧化铝,依据介孔的尺寸和厚度及金属铝基介孔氧化铝的外形尺寸,先计算出金属铝基介孔氧化铝中氧化铝的摩尔数,然后以Y(NO3)3和Ce(NO3)3为原料,按照化学式为Y2O3·2Al2O3·0.04CeO2的化学计量比准确称取所述原料,然后1)将Y(NO3)3和Ce(NO3)3配制成质量浓度为50%的水溶液;2)将金属铝基介孔氧化铝置入步骤1)所获得的溶液中,浸泡36h;3)将步骤2)中浸泡过的金属铝基介孔氧化铝从溶液中取出,在80℃下真空干燥24h;4)将步骤3)中干燥后的金属铝基介孔氧化铝放入高温炉内,在氮气氢气混合气气氛、温度为625℃的条件下反应36h,得到一种化学通式为Y2O3·2Al2O3·0.04CeO2、基于金属铝基介孔氧化铝制备的荧光发射层。使用荧光光谱仪测量所得荧光发射层的发射光谱,发现所得荧光发射层发光极弱,几乎不发光(见图2)。The chemical formula of the material described in this comparative example is: Y 2 O 3 ·2Al 2 O 3 ·0.04CeO 2 . Select a single-sided metal aluminum-based mesoporous alumina with a pore size of 40nm and a thickness of 180μm. According to the size and thickness of the mesopores and the outer dimensions of the metal aluminum-based mesoporous alumina, first calculate the The number of moles of alumina in mesoporous alumina, then using Y(NO 3 ) 3 and Ce(NO 3 ) 3 as raw materials, according to the stoichiometric ratio of Y 2 O 3 2Al 2 O 3 0.04CeO 2 is accurate Weigh the raw materials, and then 1) prepare Y(NO 3 ) 3 and Ce(NO 3 ) 3 into an aqueous solution with a mass concentration of 50%; 2) put the metal aluminum-based mesoporous alumina into the obtained 3) take out the metal aluminum-based mesoporous alumina soaked in step 2) from the solution, and dry it in vacuum at 80°C for 24 hours; 4) dry the metal aluminum-based mesoporous alumina in step 3) Put mesoporous alumina into a high-temperature furnace, and react for 36 hours in a nitrogen - hydrogen gas mixture atmosphere at a temperature of 625 °C to obtain a metal - based Fluorescent emission layer prepared from aluminum-based mesoporous alumina. The emission spectrum of the obtained fluorescent emission layer was measured by a fluorescence spectrometer, and it was found that the obtained fluorescent emission layer emitted light very weakly and hardly emitted light (see FIG. 2 ).
对比例3Comparative example 3
本对比例所述材料的化学式为:Y2O3·2.9Al2O3·0.04CeO2。选取孔径尺寸为40nm、介孔氧化铝的厚度为180μm的单面金属铝基介孔氧化铝,依据介孔的尺寸和厚度及金属铝基介孔氧化铝的外形尺寸,先计算出金属铝基介孔氧化铝中氧化铝的摩尔数,然后以Y(NO3)3和Ce(NO3)3为原料,按照化学式为Y2O3·2.9Al2O3·0.04CeO2的化学计量比准确称取所述原料,然后1)将Y(NO3)3和Ce(NO3)3配制成质量浓度为50%的水溶液;2)将金属铝基介孔氧化铝置入步骤1)所获得的溶液中,浸泡36h;3)将步骤2)中浸泡过的金属铝基介孔氧化铝从溶液中取出,在80℃下真空干燥24h;4)将步骤3)中干燥后的金属铝基介孔氧化铝放入高温炉内,在氮气氢气混合气气氛、温度为625℃的条件下反应36h,得到一种化学通式为Y2O3·2.9Al2O3·0.04CeO2、基于金属铝基介孔氧化铝制备的荧光发射层。使用荧光光谱仪测量所得荧光发射层的发射光谱,发射光谱主峰位置及强度见表1,可以发现所得荧光发射层发光极弱。The chemical formula of the material described in this comparative example is: Y 2 O 3 ·2.9Al 2 O 3 ·0.04CeO 2 . Select a single-sided metal aluminum-based mesoporous alumina with a pore size of 40nm and a thickness of 180μm. According to the size and thickness of the mesopores and the outer dimensions of the metal aluminum-based mesoporous alumina, first calculate the The number of moles of alumina in mesoporous alumina, then using Y(NO 3 ) 3 and Ce(NO 3 ) 3 as raw materials, according to the stoichiometric ratio of Y 2 O 3 2.9Al 2 O 3 0.04CeO 2 Accurately weigh the raw materials, then 1) prepare Y(NO 3 ) 3 and Ce(NO 3 ) 3 into an aqueous solution with a mass concentration of 50%; 2) put metal aluminum-based mesoporous alumina into the Soak in the obtained solution for 36 hours; 3) Take the metal aluminum-based mesoporous alumina soaked in step 2) out of the solution, and dry it in vacuum at 80°C for 24 hours; 4) Put the dried metal aluminum in step 3) The mesoporous alumina was placed in a high-temperature furnace, and reacted for 36 hours in a nitrogen-hydrogen mixed gas atmosphere at a temperature of 625°C to obtain a chemical formula Y 2 O 3 ·2.9Al 2 O 3 ·0.04CeO 2 , Fluorescent emission layer based on aluminum-based mesoporous alumina. The emission spectrum of the obtained fluorescent emitting layer was measured by a fluorescence spectrometer. The position and intensity of the main peak of the emission spectrum are shown in Table 1. It can be found that the obtained fluorescent emitting layer emits extremely weak light.
对比例4Comparative example 4
本对比例所述材料的化学式为:Y2O3·6.5Al2O3·0.04CeO2。选取孔径尺寸为40nm、介孔氧化铝的厚度为180μm的单面金属铝基介孔氧化铝,依据介孔的尺寸和厚度及金属铝基介孔氧化铝的外形尺寸,先计算出金属铝基介孔氧化铝中氧化铝的摩尔数,然后以Y(NO3)3和Ce(NO3)3为原料,按照化学式为Y2O3·6.5Al2O3·0.04CeO2的化学计量比准确称取所述原料,然后1)将Y(NO3)3和Ce(NO3)3配制成质量浓度为50%的水溶液;2)将金属铝基介孔氧化铝置入步骤1)所获得的溶液中,浸泡36h;3)将步骤2)中浸泡过的金属铝基介孔氧化铝从溶液中取出,在80℃下真空干燥24h;4)将步骤3)中干燥后的金属铝基介孔氧化铝放入高温炉内,在氮气氢气混合气气氛、温度为625℃的条件下反应36h,得到一种化学通式为Y2O3·6.5Al2O3·0.04CeO2、基于金属铝基介孔氧化铝制备的荧光发射层。使用荧光光谱仪测量所得荧光发射层的发射光谱,发射光谱主峰位置及强度见表1,可以发现所得荧光发射层发光极弱。The chemical formula of the material described in this comparative example is: Y 2 O 3 ·6.5Al 2 O 3 ·0.04CeO 2 . Select a single-sided metal aluminum-based mesoporous alumina with a pore size of 40nm and a thickness of 180μm. According to the size and thickness of the mesopores and the outer dimensions of the metal aluminum-based mesoporous alumina, first calculate the The number of moles of alumina in mesoporous alumina, then Y(NO 3 ) 3 and Ce(NO 3 ) 3 as raw materials, according to the stoichiometric ratio of Y 2 O 3 6.5Al 2 O 3 0.04CeO 2 Accurately weigh the raw materials, then 1) prepare Y(NO 3 ) 3 and Ce(NO 3 ) 3 into an aqueous solution with a mass concentration of 50%; 2) put metal aluminum-based mesoporous alumina into the Soak in the obtained solution for 36 hours; 3) Take the metal aluminum-based mesoporous alumina soaked in step 2) out of the solution, and dry it in vacuum at 80°C for 24 hours; 4) Put the dried metal aluminum in step 3) The mesoporous alumina was placed in a high-temperature furnace, and reacted for 36 hours in a nitrogen-hydrogen mixed gas atmosphere at a temperature of 625°C to obtain a chemical formula Y 2 O 3 ·6.5Al 2 O 3 ·0.04CeO 2 , Fluorescent emission layer based on aluminum-based mesoporous alumina. The emission spectrum of the obtained fluorescent emitting layer was measured by a fluorescence spectrometer. The position and intensity of the main peak of the emission spectrum are shown in Table 1. It can be found that the obtained fluorescent emitting layer emits extremely weak light.
对比例5Comparative example 5
本对比例所述材料的化学式为:Y2O3·3Al2O3·0.015CeO2。选取孔径尺寸为70nm、厚度为180μm的单面金属铝基大孔氧化铝,依据大孔氧化铝的孔径尺寸和厚度及金属铝基大孔氧化铝的外形尺寸,先计算出金属铝基大孔氧化铝中氧化铝的摩尔数,然后以Y(NO3)3和Ce(NO3)3为原料,按照化学式为Y2O3·3Al2O3·0.015CeO2的化学计量比准确称取所述原料,然后1)将Y(NO3)3和Ce(NO3)3配制成质量浓度为50%的水溶液;2)将金属铝基大孔氧化铝置入步骤1)所获得的溶液中,浸泡36h;3)将步骤2)中浸泡过的金属铝基大孔氧化铝从溶液中取出,在80℃下真空干燥24h;4)将步骤3)中干燥后的金属铝基大孔氧化铝放入高温炉内,在氮气氢气混合气气氛、温度为625℃的条件下反应36h,得到一种化学通式为Y2O3·3Al2O3·0.015CeO2、基于金属铝基大孔氧化铝制备的荧光发射层。使用荧光光谱仪测量所得荧光发射层的发射光谱,发射光谱主峰位置及强度见表1,可以发现所得荧光发射层发光极弱。The chemical formula of the material described in this comparative example is: Y 2 O 3 ·3Al 2 O 3 ·0.015CeO 2 . Select a single-sided metal aluminum-based macroporous alumina with a pore size of 70nm and a thickness of 180μm. According to the pore size and thickness of the macroporous alumina and the external dimensions of the metal aluminum-based macroporous alumina, first calculate the metal aluminum-based macroporous alumina. The number of moles of alumina in alumina, and then take Y(NO 3 ) 3 and Ce(NO 3 ) 3 as raw materials, and accurately weigh it according to the stoichiometric ratio of chemical formula Y 2 O 3 3Al 2 O 3 0.015CeO 2 The raw materials, and then 1) Y(NO 3 ) 3 and Ce(NO 3 ) 3 are formulated into an aqueous solution with a mass concentration of 50%; 2) metal aluminum-based macroporous alumina is placed in the solution obtained in step 1) 3) take out the metal aluminum-based macroporous alumina soaked in step 2) from the solution, and dry it in vacuum at 80°C for 24 hours; 4) dry the metal aluminum-based macroporous alumina in step 3) Alumina was placed in a high-temperature furnace, and reacted for 36 hours in a nitrogen - hydrogen mixed gas atmosphere at a temperature of 625°C to obtain a metal-aluminum - based Fluorescent emission layer made of macroporous alumina. The emission spectrum of the obtained fluorescent emitting layer was measured by a fluorescence spectrometer. The position and intensity of the main peak of the emission spectrum are shown in Table 1. It can be found that the obtained fluorescent emitting layer emits extremely weak light.
对比例6Comparative example 6
本对比例所述材料的化学式为:Y2O3·3Al2O3·0.015CeO2。选取孔径尺寸为1.8nm、厚度为180μm的单面金属铝基微孔氧化铝,依据微孔氧化铝的孔径尺寸和厚度及金属铝基微孔氧化铝的外形尺寸,先计算出金属铝基微孔氧化铝中氧化铝的摩尔数,然后以Y(NO3)3和Ce(NO3)3为原料,按照化学式为Y2O3·3Al2O3·0.015CeO2的化学计量比准确称取所述原料,然后1)将Y(NO3)3和Ce(NO3)3配制成质量浓度为50%的水溶液;2)将金属铝基微孔氧化铝置入步骤1)所获得的溶液中,浸泡36h;3)将步骤2)中浸泡过的金属铝基微孔氧化铝从溶液中取出,在80℃下真空干燥24h;4)将步骤3)中干燥后的金属铝基微孔氧化铝放入高温炉内,在氮气氢气混合气气氛、温度为625℃的条件下反应36h,得到一种化学通式为Y2O3·3Al2O3·0.015CeO2、基于金属铝基微孔氧化铝制备的荧光发射层。使用荧光光谱仪测量所得荧光发射层的发射光谱,发射光谱主峰位置及强度见表1,可以发现所得荧光发射层发光极弱。The chemical formula of the material described in this comparative example is: Y 2 O 3 ·3Al 2 O 3 ·0.015CeO 2 . Select a single-sided metal aluminum-based microporous alumina with a pore size of 1.8nm and a thickness of 180 μm. According to the pore size and thickness of the microporous alumina and the external dimensions of the metal aluminum-based microporous alumina, the metal aluminum-based microporous alumina The number of moles of alumina in porous alumina, and then use Y(NO 3 ) 3 and Ce(NO 3 ) 3 as raw materials, according to the stoichiometric ratio of Y 2 O 3 3Al 2 O 3 0.015CeO 2 to be accurately weighed Take the raw materials, and then 1) prepare Y(NO 3 ) 3 and Ce(NO 3 ) 3 into an aqueous solution with a mass concentration of 50%; 2) put metal aluminum-based microporous alumina into the obtained Soak in the solution for 36 hours; 3) Take out the metal aluminum-based microporous alumina soaked in step 2) from the solution, and dry it in vacuum at 80°C for 24 hours; 4) Dry the metal aluminum-based microporous alumina in step 3) Porous alumina was placed in a high-temperature furnace, and reacted for 36 hours in a nitrogen-hydrogen mixed gas atmosphere at a temperature of 625°C to obtain a metal-based aluminum alloy with the general chemical formula Y 2 O 3 ·3Al 2 O 3 ·0.015CeO 2 Fluorescent emission layer prepared on the basis of microporous alumina. The emission spectrum of the obtained fluorescent emitting layer was measured by a fluorescence spectrometer. The position and intensity of the main peak of the emission spectrum are shown in Table 1. It can be found that the obtained fluorescent emitting layer emits extremely weak light.
对比例7Comparative example 7
本对比例中,选取化学成分为Y3Al5O12·0.06Ce、厚度为300μm的陶瓷片,用导热系数为1.5W/(m·K)的导热硅胶将陶瓷片固定于铝板上,导热硅胶的厚度为100μm。待导热硅胶固化后,使用功率密度为5W/mm2的450nm蓝光激光照射陶瓷片,10分钟之后,陶瓷片的温升较高(见表1)。显然,受限于陶瓷片和铝板之间存在明显的界面层,热阻较大,因此,激光照射后,陶瓷片产生了明显的温升,而温升必然导致荧光材料产生明显的热猝灭。In this comparative example, a ceramic sheet with a chemical composition of Y 3 Al 5 O 12 0.06Ce and a thickness of 300 μm was selected, and the ceramic sheet was fixed on an aluminum plate with thermally conductive silica gel with a thermal conductivity of 1.5W/(m·K). The thickness of the silica gel is 100 μm. After the heat-conducting silica gel is cured, use a 450nm blue laser with a power density of 5W/ mm2 to irradiate the ceramic sheet. After 10 minutes, the temperature rise of the ceramic sheet is relatively high (see Table 1). Obviously, limited by the obvious interface layer between the ceramic sheet and the aluminum plate, the thermal resistance is relatively large. Therefore, after laser irradiation, the ceramic sheet produces an obvious temperature rise, and the temperature rise will inevitably lead to obvious thermal quenching of the fluorescent material. .
实施例1Example 1
本实施例所述材料的化学式为:Y2O3·3Al2O3·0.015CeO2。选取孔径尺寸为3nm、介孔氧化铝的厚度为25μm的单面金属铝基介孔氧化铝,依据介孔的尺寸和厚度及金属铝基介孔氧化铝的外形尺寸,先计算出金属铝基介孔氧化铝中氧化铝的摩尔数,然后以Y(NO3)3和Ce(NO3)3为原料,按照化学式为Y2O3·3Al2O3·0.015CeO2的化学计量比准确称取所述原料,然后1)将Y(NO3)3和Ce(NO3)3配制成质量浓度为50%的水溶液;2)将金属铝基介孔氧化铝置入步骤1)所获得的溶液中,浸泡36h;3)将步骤2)中浸泡过的金属铝基介孔氧化铝从溶液中取出,在80℃下真空干燥24h;4)将步骤3)中干燥后的金属铝基介孔氧化铝放入高温炉内,在氮气氢气混合气气氛、温度为600℃的条件下反应36h,得到一种化学通式为Y2O3·3Al2O3·0.015CeO2、基于金属铝基介孔氧化铝制备的荧光发射层。使用荧光光谱仪测量所得荧光发射层的发射光谱,发现所得荧光发射层发光较强,发射光谱波长范围介于460~760nm、发射光谱的主峰位于531nm(见图3)。使用功率密度为5W/mm2的450nm蓝光激光照射荧光发射层10分钟后,荧光发射层的温升较低(见表1)。The chemical formula of the material described in this embodiment is: Y 2 O 3 ·3Al 2 O 3 ·0.015CeO 2 . Select a single-sided aluminum-based mesoporous alumina with a pore size of 3 nm and a thickness of 25 μm, and calculate the aluminum-based The number of moles of alumina in mesoporous alumina, then using Y(NO 3 ) 3 and Ce(NO 3 ) 3 as raw materials, according to the stoichiometric ratio of Y 2 O 3 3Al 2 O 3 0.015CeO 2 is accurate Weigh the raw materials, and then 1) prepare Y(NO 3 ) 3 and Ce(NO 3 ) 3 into an aqueous solution with a mass concentration of 50%; 2) put the metal aluminum-based mesoporous alumina into the obtained 3) take out the metal aluminum-based mesoporous alumina soaked in step 2) from the solution, and dry it in vacuum at 80°C for 24 hours; 4) dry the metal aluminum-based mesoporous alumina in step 3) Put mesoporous alumina into a high-temperature furnace, and react for 36 hours in a nitrogen - hydrogen gas mixture atmosphere at a temperature of 600 °C to obtain a metal - based Fluorescent emission layer prepared from aluminum-based mesoporous alumina. Using a fluorescence spectrometer to measure the emission spectrum of the obtained fluorescent emitting layer, it was found that the obtained fluorescent emitting layer luminesced strongly, the wavelength range of the emission spectrum was between 460-760nm, and the main peak of the emission spectrum was located at 531nm (see Figure 3). After irradiating the fluorescent emitting layer with a 450nm blue laser with a power density of 5W/ mm2 for 10 minutes, the temperature rise of the fluorescent emitting layer was low (see Table 1).
实施例2Example 2
本实施例所述材料的化学式为:Y2O3·3Al2O3·0.02CeO2。选取孔径尺寸为20nm、介孔氧化铝的厚度为100μm的单面金属铝基介孔氧化铝,依据介孔的尺寸和厚度及金属铝基介孔氧化铝的外形尺寸,先计算出金属铝基介孔氧化铝中氧化铝的摩尔数,然后以Y(NO3)3和Ce(NO3)3为原料,按照化学式为Y2O3·3Al2O3·0.02CeO2的化学计量比准确称取所述原料,然后1)将Y(NO3)3和Ce(NO3)3配制成质量浓度为50%的水溶液;2)将金属铝基介孔氧化铝置入步骤1)所获得的溶液中,浸泡36h;3)将步骤2)中浸泡过的金属铝基介孔氧化铝从溶液中取出,在80℃下真空干燥24h;4)将步骤3)中干燥后的金属铝基介孔氧化铝放入高温炉内,在氮气氢气混合气气氛、温度为625℃的条件下反应36h,得到一种化学通式为Y2O3·3Al2O3·0.02CeO2、基于金属铝基介孔氧化铝制备的荧光发射层。使用荧光光谱仪测量所得荧光发射层的发射光谱,发射光谱主峰位置及强度见表1,可以发现所得荧光发射层发光较强。使用功率密度为5W/mm2的450nm蓝光激光照射荧光发射层10分钟后,荧光发射层的温升较低(见表1)。The chemical formula of the material described in this embodiment is: Y 2 O 3 ·3Al 2 O 3 ·0.02CeO 2 . Select a single-sided metal aluminum-based mesoporous alumina with a pore size of 20nm and a thickness of 100μm. According to the size and thickness of the mesopores and the external dimensions of the metal aluminum-based mesoporous alumina, first calculate the The number of moles of alumina in mesoporous alumina, then using Y(NO 3 ) 3 and Ce(NO 3 ) 3 as raw materials, according to the stoichiometric ratio of Y 2 O 3 3Al 2 O 3 0.02CeO 2 is accurate Weigh the raw materials, and then 1) prepare Y(NO 3 ) 3 and Ce(NO 3 ) 3 into an aqueous solution with a mass concentration of 50%; 2) put the metal aluminum-based mesoporous alumina into the obtained 3) take out the metal aluminum-based mesoporous alumina soaked in step 2) from the solution, and dry it in vacuum at 80°C for 24 hours; 4) dry the metal aluminum-based mesoporous alumina in step 3) Put mesoporous alumina into a high-temperature furnace, and react for 36 hours in a nitrogen - hydrogen mixture atmosphere at a temperature of 625 °C to obtain a metal - based Fluorescent emission layer prepared from aluminum-based mesoporous alumina. The emission spectrum of the obtained fluorescent emission layer was measured by a fluorescence spectrometer. The position and intensity of the main peak of the emission spectrum are shown in Table 1. It can be found that the obtained fluorescence emission layer emits stronger light. After irradiating the fluorescent emitting layer with a 450nm blue laser with a power density of 5W/ mm2 for 10 minutes, the temperature rise of the fluorescent emitting layer was low (see Table 1).
实施例3Example 3
本实施例所述材料的化学式为:Y2O3·3Al2O3·0.04CeO2。选取孔径尺寸为45nm、介孔氧化铝的厚度为150μm的单面金属铝基介孔氧化铝,依据介孔的尺寸和厚度及金属铝基介孔氧化铝的外形尺寸,先计算出金属铝基介孔氧化铝中氧化铝的摩尔数,然后以Y(NO3)3和Ce(NO3)3为原料,按照化学式为Y2O3·3Al2O3·0.04CeO2的化学计量比准确称取所述原料,然后1)将Y(NO3)3和Ce(NO3)3配制成质量浓度为50%的水溶液;2)将金属铝基介孔氧化铝置入步骤1)所获得的溶液中,浸泡36h;3)将步骤2)中浸泡过的金属铝基介孔氧化铝从溶液中取出,在80℃下真空干燥24h;4)将步骤3)中干燥后的金属铝基介孔氧化铝放入高温炉内,在氮气氢气混合气气氛、温度为625℃的条件下反应36h,得到一种化学通式为Y2O3·3Al2O3·0.04CeO2、基于金属铝基介孔氧化铝制备的荧光发射层。使用荧光光谱仪测量所得荧光发射层的发射光谱,发射光谱主峰位置及强度见表1,可以发现所得荧光发射层发光较强。使用功率密度为5W/mm2的450nm蓝光激光照射荧光发射层10分钟后,荧光发射层的温升较低(见表1)。The chemical formula of the material described in this embodiment is: Y 2 O 3 ·3Al 2 O 3 ·0.04CeO 2 . Select a single-sided metal aluminum-based mesoporous alumina with a pore size of 45nm and a thickness of 150μm. According to the size and thickness of the mesopores and the outer dimensions of the metal aluminum-based mesoporous alumina, first calculate the The number of moles of alumina in mesoporous alumina, then using Y(NO 3 ) 3 and Ce(NO 3 ) 3 as raw materials, according to the stoichiometric ratio of Y 2 O 3 3Al 2 O 3 0.04CeO 2 is accurate Weigh the raw materials, and then 1) prepare Y(NO 3 ) 3 and Ce(NO 3 ) 3 into an aqueous solution with a mass concentration of 50%; 2) put the metal aluminum-based mesoporous alumina into the obtained 3) take out the metal aluminum-based mesoporous alumina soaked in step 2) from the solution, and dry it in vacuum at 80°C for 24 hours; 4) dry the metal aluminum-based mesoporous alumina in step 3) Put mesoporous alumina into a high-temperature furnace, and react for 36 hours in a nitrogen - hydrogen mixture atmosphere at a temperature of 625 °C to obtain a metal - based Fluorescent emission layer prepared from aluminum-based mesoporous alumina. The emission spectrum of the obtained fluorescent emission layer was measured by a fluorescence spectrometer. The position and intensity of the main peak of the emission spectrum are shown in Table 1. It can be found that the obtained fluorescence emission layer emits stronger light. After irradiating the fluorescent emitting layer with a 450nm blue laser with a power density of 5W/ mm2 for 10 minutes, the temperature rise of the fluorescent emitting layer was low (see Table 1).
实施例4Example 4
本实施例所述材料的化学式为:Y2O3·3Al2O3·0.08CeO2。选取孔径尺寸为40nm、介孔氧化铝的厚度为180μm的单面金属铝基介孔氧化铝,依据介孔的尺寸和厚度及金属铝基介孔氧化铝的外形尺寸,先计算出金属铝基介孔氧化铝中氧化铝的摩尔数,然后以Y(NO3)3和Ce(NO3)3为原料,按照化学式为Y2O3·3Al2O3·0.08CeO2的化学计量比准确称取所述原料,然后1)将Y(NO3)3和Ce(NO3)3配制成质量浓度为50%的水溶液;2)将金属铝基介孔氧化铝置入步骤1)所获得的溶液中,浸泡36h;3)将步骤2)中浸泡过的金属铝基介孔氧化铝从溶液中取出,在80℃下真空干燥24h;4)将步骤3)中干燥后的金属铝基介孔氧化铝放入高温炉内,在氮气氢气混合气气氛、温度为625℃的条件下反应36h,得到一种化学通式为Y2O3·3Al2O3·0.08CeO2、基于金属铝基介孔氧化铝制备的荧光发射层。使用荧光光谱仪测量所得荧光发射层的发射光谱,发射光谱主峰位置及强度见表1,可以发现所得荧光发射层发光较强。使用功率密度为5W/mm2的450nm蓝光激光照射荧光发射层10分钟后,荧光发射层的温升较低(见表1)。The chemical formula of the material described in this embodiment is: Y 2 O 3 ·3Al 2 O 3 ·0.08CeO 2 . Select a single-sided metal aluminum-based mesoporous alumina with a pore size of 40nm and a thickness of 180μm. According to the size and thickness of the mesopores and the outer dimensions of the metal aluminum-based mesoporous alumina, first calculate the The number of moles of alumina in mesoporous alumina, then using Y(NO 3 ) 3 and Ce(NO 3 ) 3 as raw materials, according to the stoichiometric ratio of Y 2 O 3 3Al 2 O 3 0.08CeO 2 is accurate Weigh the raw materials, and then 1) prepare Y(NO 3 ) 3 and Ce(NO 3 ) 3 into an aqueous solution with a mass concentration of 50%; 2) put the metal aluminum-based mesoporous alumina into the obtained 3) take out the metal aluminum-based mesoporous alumina soaked in step 2) from the solution, and dry it in vacuum at 80°C for 24 hours; 4) dry the metal aluminum-based mesoporous alumina in step 3) Put mesoporous alumina into a high-temperature furnace, and react for 36 hours in a nitrogen - hydrogen mixture atmosphere at a temperature of 625 °C to obtain a metal - based Fluorescent emission layer prepared from aluminum-based mesoporous alumina. The emission spectrum of the obtained fluorescent emission layer was measured by a fluorescence spectrometer. The position and intensity of the main peak of the emission spectrum are shown in Table 1. It can be found that the obtained fluorescence emission layer emits stronger light. After irradiating the fluorescent emitting layer with a 450nm blue laser with a power density of 5W/ mm2 for 10 minutes, the temperature rise of the fluorescent emitting layer was low (see Table 1).
实施例5Example 5
本实施例所述材料的化学式为:Y2O3·3Al2O3·0.09CeO2。选取孔径尺寸为45nm、介孔氧化铝的厚度为150μm的单面金属铝基介孔氧化铝,依据介孔的尺寸和厚度及金属铝基介孔氧化铝的外形尺寸,先计算出金属铝基介孔氧化铝中氧化铝的摩尔数,然后以Y(NO3)3和Ce(NO3)3为原料,按照化学式为Y2O3·3Al2O3·0.09CeO2的化学计量比准确称取所述原料,然后1)将Y(NO3)3和Ce(NO3)3配制成质量浓度为50%的水溶液;2)将金属铝基介孔氧化铝置入步骤1)所获得的溶液中,浸泡36h;3)将步骤2)中浸泡过的金属铝基介孔氧化铝从溶液中取出,在80℃下真空干燥24h;4)将步骤3)中干燥后的金属铝基介孔氧化铝放入高温炉内,在氮气氢气混合气气氛、温度为625℃的条件下反应36h,得到一种化学通式为Y2O3·3Al2O3·0.09CeO2、基于金属铝基介孔氧化铝制备的荧光发射层。使用荧光光谱仪测量所得荧光发射层的发射光谱,发射光谱主峰位置及强度见表1,可以发现所得荧光发射层发光较强。使用功率密度为5W/mm2的450nm蓝光激光照射荧光发射层10分钟后,荧光发射层的温升较低(见表1)。The chemical formula of the material described in this embodiment is: Y 2 O 3 ·3Al 2 O 3 ·0.09CeO 2 . Select a single-sided metal aluminum-based mesoporous alumina with a pore size of 45nm and a thickness of 150μm. According to the size and thickness of the mesopores and the outer dimensions of the metal aluminum-based mesoporous alumina, first calculate the The number of moles of alumina in mesoporous alumina, then using Y(NO 3 ) 3 and Ce(NO 3 ) 3 as raw materials, according to the stoichiometric ratio of Y 2 O 3 3Al 2 O 3 0.09CeO 2 is accurate Weigh the raw materials, and then 1) prepare Y(NO 3 ) 3 and Ce(NO 3 ) 3 into an aqueous solution with a mass concentration of 50%; 2) put the metal aluminum-based mesoporous alumina into the obtained 3) take out the metal aluminum-based mesoporous alumina soaked in step 2) from the solution, and dry it in vacuum at 80°C for 24 hours; 4) dry the metal aluminum-based mesoporous alumina in step 3) Put the mesoporous alumina into a high-temperature furnace and react for 36 hours in a nitrogen - hydrogen mixed gas atmosphere at a temperature of 625 °C to obtain a metal - based Fluorescent emission layer prepared from aluminum-based mesoporous alumina. The emission spectrum of the obtained fluorescent emission layer was measured by a fluorescence spectrometer. The position and intensity of the main peak of the emission spectrum are shown in Table 1. It can be found that the obtained fluorescence emission layer emits stronger light. After irradiating the fluorescent emitting layer with a 450nm blue laser with a power density of 5W/ mm2 for 10 minutes, the temperature rise of the fluorescent emitting layer was low (see Table 1).
实施例6Example 6
本实施例所述材料的化学式为:Y2O3·3Al2O3·0.095CeO2。选取孔径尺寸为45nm、介孔氧化铝的厚度为150μm的单面金属铝基介孔氧化铝,依据介孔的尺寸和厚度及金属铝基介孔氧化铝的外形尺寸,先计算出金属铝基介孔氧化铝中氧化铝的摩尔数,然后以Y(NO3)3和Ce(NO3)3为原料,按照化学式为Y2O3·3Al2O3·0.095CeO2的化学计量比准确称取所述原料,然后1)将Y(NO3)3和Ce(NO3)3配制成质量浓度为50%的水溶液;2)将金属铝基介孔氧化铝置入步骤1)所获得的溶液中,浸泡36h;3)将步骤2)中浸泡过的金属铝基介孔氧化铝从溶液中取出,在80℃下真空干燥24h;4)将步骤3)中干燥后的金属铝基介孔氧化铝放入高温炉内,在氮气氢气混合气气氛、温度为625℃的条件下反应36h,得到一种化学通式为Y2O3·3Al2O3·0.095CeO2、基于金属铝基介孔氧化铝制备的荧光发射层。使用荧光光谱仪测量所得荧光发射层的发射光谱,发射光谱主峰位置及强度见表1,可以发现所得荧光发射层发光较强。使用功率密度为5W/mm2的450nm蓝光激光照射荧光发射层10分钟后,荧光发射层的温升较低(见表1)。The chemical formula of the material described in this embodiment is: Y 2 O 3 ·3Al 2 O 3 ·0.095CeO 2 . Select a single-sided metal aluminum-based mesoporous alumina with a pore size of 45nm and a thickness of 150μm. According to the size and thickness of the mesopores and the outer dimensions of the metal aluminum-based mesoporous alumina, first calculate the The number of moles of alumina in mesoporous alumina, then using Y(NO 3 ) 3 and Ce(NO 3 ) 3 as raw materials, according to the stoichiometric ratio of Y 2 O 3 3Al 2 O 3 0.095CeO 2 is accurate Weigh the raw materials, and then 1) prepare Y(NO 3 ) 3 and Ce(NO 3 ) 3 into an aqueous solution with a mass concentration of 50%; 2) put the metal aluminum-based mesoporous alumina into the obtained 3) take out the metal aluminum-based mesoporous alumina soaked in step 2) from the solution, and dry it in vacuum at 80°C for 24 hours; 4) dry the metal aluminum-based mesoporous alumina in step 3) Put the mesoporous alumina into a high-temperature furnace and react for 36 hours in a nitrogen - hydrogen gas mixture atmosphere at a temperature of 625 °C to obtain a metal - based Fluorescent emission layer prepared from aluminum-based mesoporous alumina. The emission spectrum of the obtained fluorescent emission layer was measured by a fluorescence spectrometer. The position and intensity of the main peak of the emission spectrum are shown in Table 1. It can be found that the obtained fluorescence emission layer emits stronger light. After irradiating the fluorescent emitting layer with a 450nm blue laser with a power density of 5W/ mm2 for 10 minutes, the temperature rise of the fluorescent emitting layer was low (see Table 1).
实施例7Example 7
本实施例所述材料的化学式为:Y2O3·3.5Al2O3·0.04CeO2。选取孔径尺寸为45nm、介孔氧化铝的厚度为150μm的单面金属铝基介孔氧化铝,依据介孔的尺寸和厚度及金属铝基介孔氧化铝的外形尺寸,先计算出金属铝基介孔氧化铝中氧化铝的摩尔数,然后以Y(NO3)3和Ce(NO3)3为原料,按照化学式为Y2O3·3.5Al2O3·0.04CeO2的化学计量比准确称取所述原料,然后1)将Y(NO3)3和Ce(NO3)3配制成质量浓度为50%的水溶液;2)将金属铝基介孔氧化铝置入步骤1)所获得的溶液中,浸泡36h;3)将步骤2)中浸泡过的金属铝基介孔氧化铝从溶液中取出,在80℃下真空干燥24h;4)将步骤3)中干燥后的金属铝基介孔氧化铝放入高温炉内,在氮气氢气混合气气氛、温度为600℃的条件下反应36h,得到一种化学通式为Y2O3·3.5Al2O3·0.04CeO2、基于金属铝基介孔氧化铝制备的荧光发射层。使用荧光光谱仪测量所得荧光发射层的发射光谱,发射光谱主峰位置及强度见表1,可以发现所得荧光发射层发光较强。使用功率密度为5W/mm2的450nm蓝光激光照射荧光发射层10分钟后,荧光发射层的温升较低(见表1)。The chemical formula of the material described in this embodiment is: Y 2 O 3 ·3.5Al 2 O 3 ·0.04CeO 2 . Select a single-sided metal aluminum-based mesoporous alumina with a pore size of 45nm and a thickness of 150μm. According to the size and thickness of the mesopores and the outer dimensions of the metal aluminum-based mesoporous alumina, first calculate the The number of moles of alumina in mesoporous alumina, then Y(NO 3 ) 3 and Ce(NO 3 ) 3 as raw materials, according to the stoichiometric ratio of Y 2 O 3 3.5Al 2 O 3 0.04CeO 2 Accurately weigh the raw materials, then 1) prepare Y(NO 3 ) 3 and Ce(NO 3 ) 3 into an aqueous solution with a mass concentration of 50%; 2) put metal aluminum-based mesoporous alumina into the Soak in the obtained solution for 36 hours; 3) Take the metal aluminum-based mesoporous alumina soaked in step 2) out of the solution, and dry it in vacuum at 80°C for 24 hours; 4) Put the dried metal aluminum in step 3) The mesoporous alumina was placed in a high-temperature furnace, and reacted for 36 hours in a nitrogen-hydrogen mixed gas atmosphere at a temperature of 600°C to obtain a chemical formula Y 2 O 3 ·3.5Al 2 O 3 ·0.04CeO 2 , Fluorescent emission layer based on aluminum-based mesoporous alumina. The emission spectrum of the obtained fluorescent emission layer was measured by a fluorescence spectrometer. The position and intensity of the main peak of the emission spectrum are shown in Table 1. It can be found that the obtained fluorescence emission layer emits stronger light. After irradiating the fluorescent emitting layer with a 450nm blue laser with a power density of 5W/ mm2 for 10 minutes, the temperature rise of the fluorescent emitting layer was low (see Table 1).
实施例8Example 8
本实施例所述材料的化学式为:Y2O3·4Al2O3·0.04CeO2。选取孔径尺寸为45nm、介孔氧化铝的厚度为150μm的单面金属铝基介孔氧化铝,依据介孔的尺寸和厚度及金属铝基介孔氧化铝的外形尺寸,先计算出金属铝基介孔氧化铝中氧化铝的摩尔数,然后以Y(NO3)3和Ce(NO3)3为原料,按照化学式为Y2O3·4Al2O3·0.04CeO2的化学计量比准确称取所述原料,然后1)将Y(NO3)3和Ce(NO3)3配制成质量浓度为50%的水溶液;2)将金属铝基介孔氧化铝置入步骤1)所获得的溶液中,浸泡36h;3)将步骤2)中浸泡过的金属铝基介孔氧化铝从溶液中取出,在80℃下真空干燥24h;4)将步骤3)中干燥后的金属铝基介孔氧化铝放入高温炉内,在氮气氢气混合气气氛、温度为625℃的条件下反应36h,得到一种化学通式为Y2O3·4Al2O3·0.04CeO2、基于金属铝基介孔氧化铝制备的荧光发射层。使用荧光光谱仪测量所得荧光发射层的发射光谱,发射光谱主峰位置及强度见表1,可以发现所得荧光发射层发光较强。使用功率密度为5W/mm2的450nm蓝光激光照射荧光发射层10分钟后,荧光发射层的温升较低(见表1)。The chemical formula of the material described in this embodiment is: Y 2 O 3 ·4Al 2 O 3 ·0.04CeO 2 . Select a single-sided metal aluminum-based mesoporous alumina with a pore size of 45nm and a thickness of 150μm. According to the size and thickness of the mesopores and the outer dimensions of the metal aluminum-based mesoporous alumina, first calculate the The number of moles of alumina in mesoporous alumina, then using Y(NO 3 ) 3 and Ce(NO 3 ) 3 as raw materials, according to the stoichiometric ratio of Y 2 O 3 4Al 2 O 3 0.04CeO 2 is accurate Weigh the raw materials, and then 1) prepare Y(NO 3 ) 3 and Ce(NO 3 ) 3 into an aqueous solution with a mass concentration of 50%; 2) put the metal aluminum-based mesoporous alumina into the obtained 3) take out the metal aluminum-based mesoporous alumina soaked in step 2) from the solution, and dry it in vacuum at 80°C for 24 hours; 4) dry the metal aluminum-based mesoporous alumina in step 3) Put mesoporous alumina into a high-temperature furnace, and react for 36 hours in a nitrogen - hydrogen mixed gas atmosphere at a temperature of 625°C to obtain a metal-based Fluorescent emission layer prepared from aluminum-based mesoporous alumina. The emission spectrum of the obtained fluorescent emission layer was measured by a fluorescence spectrometer. The position and intensity of the main peak of the emission spectrum are shown in Table 1. It can be found that the obtained fluorescence emission layer emits stronger light. After irradiating the fluorescent emitting layer with a 450nm blue laser with a power density of 5W/ mm2 for 10 minutes, the temperature rise of the fluorescent emitting layer was low (see Table 1).
实施例9Example 9
本实施例所述材料的化学式为:Y2O3·4.5Al2O3·0.04CeO2。选取孔径尺寸为45nm、介孔氧化铝的厚度为150μm的单面金属铝基介孔氧化铝,依据介孔的尺寸和厚度及金属铝基介孔氧化铝的外形尺寸,先计算出金属铝基介孔氧化铝中氧化铝的摩尔数,然后以Y(NO3)3和Ce(NO3)3为原料,按照化学式为Y2O3·4.5Al2O3·0.04CeO2的化学计量比准确称取所述原料,然后1)将Y(NO3)3和Ce(NO3)3配制成质量浓度为50%的水溶液;2)将金属铝基介孔氧化铝置入步骤1)所获得的溶液中,浸泡36h;3)将步骤2)中浸泡过的金属铝基介孔氧化铝从溶液中取出,在80℃下真空干燥24h;4)将步骤3)中干燥后的金属铝基介孔氧化铝放入高温炉内,在氮气氢气混合气气氛、温度为625℃的条件下反应36h,得到一种化学通式为Y2O3·4.5Al2O3·0.04CeO2、基于金属铝基介孔氧化铝制备的荧光发射层。使用荧光光谱仪测量所得荧光发射层的发射光谱,发射光谱主峰位置及强度见表1,可以发现所得荧光发射层发光较强。使用功率密度为5W/mm2的450nm蓝光激光照射荧光发射层10分钟后,荧光发射层的温升较低(见表1)。The chemical formula of the material described in this embodiment is: Y 2 O 3 ·4.5Al 2 O 3 ·0.04CeO 2 . Select a single-sided metal aluminum-based mesoporous alumina with a pore size of 45nm and a thickness of 150μm. According to the size and thickness of the mesopores and the outer dimensions of the metal aluminum-based mesoporous alumina, first calculate the The number of moles of alumina in mesoporous alumina, then using Y(NO 3 ) 3 and Ce(NO 3 ) 3 as raw materials, according to the stoichiometric ratio of Y 2 O 3 4.5Al 2 O 3 0.04CeO 2 Accurately weigh the raw materials, then 1) prepare Y(NO 3 ) 3 and Ce(NO 3 ) 3 into an aqueous solution with a mass concentration of 50%; 2) put metal aluminum-based mesoporous alumina into the Soak in the obtained solution for 36 hours; 3) Take the metal aluminum-based mesoporous alumina soaked in step 2) out of the solution, and dry it in vacuum at 80°C for 24 hours; 4) Put the dried metal aluminum in step 3) The mesoporous alumina was placed in a high-temperature furnace, and reacted for 36 hours in a nitrogen-hydrogen mixed gas atmosphere at a temperature of 625°C to obtain a chemical formula Y 2 O 3 ·4.5Al 2 O 3 ·0.04CeO 2 , Fluorescent emission layer based on aluminum-based mesoporous alumina. The emission spectrum of the obtained fluorescent emission layer was measured by a fluorescence spectrometer. The position and intensity of the main peak of the emission spectrum are shown in Table 1. It can be found that the obtained fluorescence emission layer emits stronger light. After irradiating the fluorescent emitting layer with a 450nm blue laser with a power density of 5W/ mm2 for 10 minutes, the temperature rise of the fluorescent emitting layer was low (see Table 1).
实施例10Example 10
本实施例所述材料的化学式为:Y2O3·5Al2O3·0.04CeO2。选取孔径尺寸为45nm、介孔氧化铝的厚度为150μm的单面金属铝基介孔氧化铝,依据介孔的尺寸和厚度及金属铝基介孔氧化铝的外形尺寸,先计算出金属铝基介孔氧化铝中氧化铝的摩尔数,然后以Y(NO3)3和Ce(NO3)3为原料,按照化学式为Y2O3·5Al2O3·0.04CeO2的化学计量比准确称取所述原料,然后1)将Y(NO3)3和Ce(NO3)3配制成质量浓度为50%的水溶液;2)将金属铝基介孔氧化铝置入步骤1)所获得的溶液中,浸泡36h;3)将步骤2)中浸泡过的金属铝基介孔氧化铝从溶液中取出,在80℃下真空干燥24h;4)将步骤3)中干燥后的金属铝基介孔氧化铝放入高温炉内,在氮气氢气混合气气氛、温度为625℃的条件下反应36h,得到一种化学通式为Y2O3·5Al2O3·0.04CeO2、基于金属铝基介孔氧化铝制备的荧光发射层。使用荧光光谱仪测量所得荧光发射层的发射光谱,发射光谱主峰位置及强度见表1,可以发现所得荧光发射层发光较强。使用功率密度为5W/mm2的450nm蓝光激光照射荧光发射层10分钟后,荧光发射层的温升较低(见表1)。The chemical formula of the material described in this embodiment is: Y 2 O 3 ·5Al 2 O 3 ·0.04CeO 2 . Select a single-sided metal aluminum-based mesoporous alumina with a pore size of 45nm and a thickness of 150μm. According to the size and thickness of the mesopores and the outer dimensions of the metal aluminum-based mesoporous alumina, first calculate the The number of moles of alumina in mesoporous alumina, then using Y(NO 3 ) 3 and Ce(NO 3 ) 3 as raw materials, according to the stoichiometric ratio of Y 2 O 3 5Al 2 O 3 0.04CeO 2 is accurate Weigh the raw materials, and then 1) prepare Y(NO 3 ) 3 and Ce(NO 3 ) 3 into an aqueous solution with a mass concentration of 50%; 2) put the metal aluminum-based mesoporous alumina into the obtained 3) take out the metal aluminum-based mesoporous alumina soaked in step 2) from the solution, and dry it in vacuum at 80°C for 24 hours; 4) dry the metal aluminum-based mesoporous alumina in step 3) Put the mesoporous alumina into a high-temperature furnace and react for 36 hours in a nitrogen - hydrogen mixed gas atmosphere at a temperature of 625°C to obtain a metal - based Fluorescent emission layer prepared from aluminum-based mesoporous alumina. The emission spectrum of the obtained fluorescent emission layer was measured by a fluorescence spectrometer. The position and intensity of the main peak of the emission spectrum are shown in Table 1. It can be found that the obtained fluorescence emission layer emits stronger light. After irradiating the fluorescent emitting layer with a 450nm blue laser with a power density of 5W/ mm2 for 10 minutes, the temperature rise of the fluorescent emitting layer was low (see Table 1).
实施例11Example 11
本实施例所述材料的化学式为:Y2O3·5.5Al2O3·0.04CeO2。选取孔径尺寸为45nm、介孔氧化铝的厚度为150μm的单面金属铝基介孔氧化铝,依据介孔的尺寸和厚度及金属铝基介孔氧化铝的外形尺寸,先计算出金属铝基介孔氧化铝中氧化铝的摩尔数,然后以Y(NO3)3和Ce(NO3)3为原料,按照化学式为Y2O3·5.5Al2O3·0.04CeO2的化学计量比准确称取所述原料,然后1)将Y(NO3)3和Ce(NO3)3配制成质量浓度为50%的水溶液;2)将金属铝基介孔氧化铝置入步骤1)所获得的溶液中,浸泡36h;3)将步骤2)中浸泡过的金属铝基介孔氧化铝从溶液中取出,在80℃下真空干燥24h;4)将步骤3)中干燥后的金属铝基介孔氧化铝放入高温炉内,在氮气氢气混合气气氛、温度为625℃的条件下反应36h,得到一种化学通式为Y2O3·5.5Al2O3·0.04CeO2、基于金属铝基介孔氧化铝制备的荧光发射层。使用荧光光谱仪测量所得荧光发射层的发射光谱,发射光谱主峰位置及强度见表1,可以发现所得荧光发射层发光较强。使用功率密度为5W/mm2的450nm蓝光激光照射荧光发射层10分钟后,荧光发射层的温升较低(见表1)。The chemical formula of the material described in this embodiment is: Y 2 O 3 ·5.5Al 2 O 3 ·0.04CeO 2 . Select a single-sided metal aluminum-based mesoporous alumina with a pore size of 45nm and a thickness of 150μm. According to the size and thickness of the mesopores and the outer dimensions of the metal aluminum-based mesoporous alumina, first calculate the The number of moles of alumina in mesoporous alumina, then using Y(NO 3 ) 3 and Ce(NO 3 ) 3 as raw materials, according to the stoichiometric ratio of Y 2 O 3 5.5Al 2 O 3 0.04CeO 2 Accurately weigh the raw materials, then 1) prepare Y(NO 3 ) 3 and Ce(NO 3 ) 3 into an aqueous solution with a mass concentration of 50%; 2) put metal aluminum-based mesoporous alumina into the Soak in the obtained solution for 36 hours; 3) Take the metal aluminum-based mesoporous alumina soaked in step 2) out of the solution, and dry it in vacuum at 80°C for 24 hours; 4) Put the dried metal aluminum in step 3) The mesoporous alumina was placed in a high-temperature furnace, and reacted for 36 hours in a nitrogen-hydrogen mixed gas atmosphere at a temperature of 625°C to obtain a chemical formula Y 2 O 3 ·5.5Al 2 O 3 ·0.04CeO 2 , Fluorescent emission layer based on aluminum-based mesoporous alumina. The emission spectrum of the obtained fluorescent emission layer was measured by a fluorescence spectrometer. The position and intensity of the main peak of the emission spectrum are shown in Table 1. It can be found that the obtained fluorescence emission layer emits stronger light. After irradiating the fluorescent emitting layer with a 450nm blue laser with a power density of 5W/ mm2 for 10 minutes, the temperature rise of the fluorescent emitting layer was low (see Table 1).
实施例12Example 12
本实施例所述材料的化学式为:Y2O3·5.9Al2O3·0.04CeO2。选取孔径尺寸为45nm、介孔氧化铝的厚度为150μm的单面金属铝基介孔氧化铝,依据介孔的尺寸和厚度及金属铝基介孔氧化铝的外形尺寸,先计算出金属铝基介孔氧化铝中氧化铝的摩尔数,然后以Y(NO3)3和Ce(NO3)3为原料,按照化学式为Y2O3·5.9Al2O3·0.04CeO2的化学计量比准确称取所述原料,然后1)将Y(NO3)3和Ce(NO3)3配制成质量浓度为50%的水溶液;2)将金属铝基介孔氧化铝置入步骤1)所获得的溶液中,浸泡36h;3)将步骤2)中浸泡过的金属铝基介孔氧化铝从溶液中取出,在80℃下真空干燥24h;4)将步骤3)中干燥后的金属铝基介孔氧化铝放入高温炉内,在氮气氢气混合气气氛、温度为625℃的条件下反应36h,得到一种化学通式为Y2O3·5.9Al2O3·0.04CeO2、基于金属铝基介孔氧化铝制备的荧光发射层。使用荧光光谱仪测量所得荧光发射层的发射光谱,发射光谱主峰位置及强度见表1,可以发现所得荧光发射层发光较强。使用功率密度为5W/mm2的450nm蓝光激光照射荧光发射层10分钟后,荧光发射层的温升较低(见表1)。The chemical formula of the material described in this embodiment is: Y 2 O 3 ·5.9Al 2 O 3 ·0.04CeO 2 . Select a single-sided metal aluminum-based mesoporous alumina with a pore size of 45nm and a thickness of 150μm. According to the size and thickness of the mesopores and the outer dimensions of the metal aluminum-based mesoporous alumina, first calculate the The number of moles of alumina in mesoporous alumina, then using Y(NO 3 ) 3 and Ce(NO 3 ) 3 as raw materials, according to the stoichiometric ratio of Y 2 O 3 5.9Al 2 O 3 0.04CeO 2 Accurately weigh the raw materials, then 1) prepare Y(NO 3 ) 3 and Ce(NO 3 ) 3 into an aqueous solution with a mass concentration of 50%; 2) put metal aluminum-based mesoporous alumina into the Soak in the obtained solution for 36 hours; 3) Take the metal aluminum-based mesoporous alumina soaked in step 2) out of the solution, and dry it in vacuum at 80°C for 24 hours; 4) Put the dried metal aluminum in step 3) The mesoporous alumina was placed in a high-temperature furnace, and reacted for 36 hours in a nitrogen-hydrogen mixed gas atmosphere at a temperature of 625°C to obtain a chemical formula Y 2 O 3 ·5.9Al 2 O 3 ·0.04CeO 2 , Fluorescent emission layer based on aluminum-based mesoporous alumina. The emission spectrum of the obtained fluorescent emission layer was measured by a fluorescence spectrometer. The position and intensity of the main peak of the emission spectrum are shown in Table 1. It can be found that the obtained fluorescence emission layer emits stronger light. After irradiating the fluorescent emitting layer with a 450nm blue laser with a power density of 5W/ mm2 for 10 minutes, the temperature rise of the fluorescent emitting layer was low (see Table 1).
实施例13Example 13
本实施例所述材料的化学式为:Y2O3·6Al2O3·0.04CeO2。选取孔径尺寸为45nm、介孔氧化铝的厚度为150μm的单面金属铝基介孔氧化铝,依据介孔的尺寸和厚度及金属铝基介孔氧化铝的外形尺寸,先计算出金属铝基介孔氧化铝中氧化铝的摩尔数,然后以Y(NO3)3和Ce(NO3)3为原料,按照化学式为Y2O3·6Al2O3·0.04CeO2的化学计量比准确称取所述原料,然后1)将Y(NO3)3和Ce(NO3)3配制成质量浓度为50%的水溶液;2)将金属铝基介孔氧化铝置入步骤1)所获得的溶液中,浸泡36h;3)将步骤2)中浸泡过的金属铝基介孔氧化铝从溶液中取出,在80℃下真空干燥24h;4)将步骤3)中干燥后的金属铝基介孔氧化铝放入高温炉内,在氮气氢气混合气气氛、温度为625℃的条件下反应36h,得到一种化学通式为Y2O3·6Al2O3·0.04CeO2、基于金属铝基介孔氧化铝制备的荧光发射层。使用荧光光谱仪测量所得荧光发射层的发射光谱,发射光谱主峰位置及强度见表1,可以发现所得荧光发射层发光较强。使用功率密度为5W/mm2的450nm蓝光激光照射荧光发射层10分钟后,荧光发射层的温升较低(见表1)。The chemical formula of the material described in this embodiment is: Y 2 O 3 ·6Al 2 O 3 ·0.04CeO 2 . Select a single-sided metal aluminum-based mesoporous alumina with a pore size of 45nm and a thickness of 150μm. According to the size and thickness of the mesopores and the outer dimensions of the metal aluminum-based mesoporous alumina, first calculate the The number of moles of alumina in mesoporous alumina, then using Y(NO 3 ) 3 and Ce(NO 3 ) 3 as raw materials, according to the stoichiometric ratio of Y 2 O 3 6Al 2 O 3 0.04CeO 2 is accurate Weigh the raw materials, and then 1) prepare Y(NO 3 ) 3 and Ce(NO 3 ) 3 into an aqueous solution with a mass concentration of 50%; 2) put the metal aluminum-based mesoporous alumina into the obtained 3) take out the metal aluminum-based mesoporous alumina soaked in step 2) from the solution, and dry it in vacuum at 80°C for 24 hours; 4) dry the metal aluminum-based mesoporous alumina in step 3) Put mesoporous alumina into a high-temperature furnace, and react for 36 hours in a nitrogen - hydrogen gas mixture atmosphere at a temperature of 625 °C to obtain a metal - based Fluorescent emission layer prepared from aluminum-based mesoporous alumina. The emission spectrum of the obtained fluorescent emission layer was measured by a fluorescence spectrometer. The position and intensity of the main peak of the emission spectrum are shown in Table 1. It can be found that the obtained fluorescence emission layer emits stronger light. After irradiating the fluorescent emitting layer with a 450nm blue laser with a power density of 5W/ mm2 for 10 minutes, the temperature rise of the fluorescent emitting layer was low (see Table 1).
实施例14Example 14
本实施例所述材料的化学式为:Y2O3·4.5Al2O3·0.02CeO2。选取孔径尺寸为45nm、介孔氧化铝的厚度为150μm的单面金属铝基介孔氧化铝,依据介孔的尺寸和厚度及金属铝基介孔氧化铝的外形尺寸,先计算出金属铝基介孔氧化铝中氧化铝的摩尔数,然后以Y(NO3)3和Ce(NO3)3为原料,按照化学式为Y2O3·4.5Al2O3·0.02CeO2的化学计量比准确称取所述原料,然后1)将Y(NO3)3和Ce(NO3)3配制成质量浓度为50%的水溶液;2)将金属铝基介孔氧化铝置入步骤1)所获得的溶液中,浸泡36h;3)将步骤2)中浸泡过的金属铝基介孔氧化铝从溶液中取出,在80℃下真空干燥24h;4)将步骤3)中干燥后的金属铝基介孔氧化铝放入高温炉内,在氮气氢气混合气气氛、温度为625℃的条件下反应36h,得到一种化学通式为Y2O3·4.5Al2O3·0.02CeO2、基于金属铝基介孔氧化铝制备的荧光发射层。使用荧光光谱仪测量所得荧光发射层的发射光谱,发射光谱主峰位置及强度见表1,可以发现所得荧光发射层发光较强。使用功率密度为5W/mm2的450nm蓝光激光照射荧光发射层10分钟后,荧光发射层的温升较低(见表1)。The chemical formula of the material described in this embodiment is: Y 2 O 3 ·4.5Al 2 O 3 ·0.02CeO 2 . Select a single-sided metal aluminum-based mesoporous alumina with a pore size of 45nm and a thickness of 150μm. According to the size and thickness of the mesopores and the outer dimensions of the metal aluminum-based mesoporous alumina, first calculate the The number of moles of alumina in mesoporous alumina, then Y(NO 3 ) 3 and Ce(NO 3 ) 3 as raw materials, according to the stoichiometric ratio of Y 2 O 3 4.5Al 2 O 3 0.02CeO 2 Accurately weigh the raw materials, then 1) prepare Y(NO 3 ) 3 and Ce(NO 3 ) 3 into an aqueous solution with a mass concentration of 50%; 2) put metal aluminum-based mesoporous alumina into the Soak in the obtained solution for 36 hours; 3) Take the metal aluminum-based mesoporous alumina soaked in step 2) out of the solution, and dry it in vacuum at 80°C for 24 hours; 4) Put the dried metal aluminum in step 3) The mesoporous alumina was placed in a high-temperature furnace, and reacted for 36 hours in a nitrogen-hydrogen mixed gas atmosphere at a temperature of 625°C to obtain a chemical formula Y 2 O 3 ·4.5Al 2 O 3 ·0.02CeO 2 , Fluorescent emission layer based on aluminum-based mesoporous alumina. The emission spectrum of the obtained fluorescent emission layer was measured by a fluorescence spectrometer. The position and intensity of the main peak of the emission spectrum are shown in Table 1. It can be found that the obtained fluorescence emission layer emits stronger light. After irradiating the fluorescent emitting layer with a 450nm blue laser with a power density of 5W/ mm2 for 10 minutes, the temperature rise of the fluorescent emitting layer was low (see Table 1).
实施例15Example 15
本实施例所述材料的化学式为:Y2O3·4.5Al2O3·0.03CeO2。选取孔径尺寸为45nm、介孔氧化铝的厚度为150μm的单面金属铝基介孔氧化铝,依据介孔的尺寸和厚度及金属铝基介孔氧化铝的外形尺寸,先计算出金属铝基介孔氧化铝中氧化铝的摩尔数,然后以Y(NO3)3和Ce(NO3)3为原料,按照化学式为Y2O3·4.5Al2O3·0.03CeO2的化学计量比准确称取所述原料,然后1)将Y(NO3)3和Ce(NO3)3配制成质量浓度为50%的水溶液;2)将金属铝基介孔氧化铝置入步骤1)所获得的溶液中,浸泡36h;3)将步骤2)中浸泡过的金属铝基介孔氧化铝从溶液中取出,在80℃下真空干燥24h;4)将步骤3)中干燥后的金属铝基介孔氧化铝放入高温炉内,在氮气氢气混合气气氛、温度为625℃的条件下反应36h,得到一种化学通式为Y2O3·4.5Al2O3·0.03CeO2、基于金属铝基介孔氧化铝制备的荧光发射层。使用荧光光谱仪测量所得荧光发射层的发射光谱,发射光谱主峰位置及强度见表1,可以发现所得荧光发射层发光较强。使用功率密度为5W/mm2的450nm蓝光激光照射荧光发射层10分钟后,荧光发射层的温升较低(见表1)。The chemical formula of the material described in this embodiment is: Y 2 O 3 ·4.5Al 2 O 3 ·0.03CeO 2 . Select a single-sided metal aluminum-based mesoporous alumina with a pore size of 45nm and a thickness of 150μm. According to the size and thickness of the mesopores and the outer dimensions of the metal aluminum-based mesoporous alumina, first calculate the The number of moles of alumina in mesoporous alumina, then take Y(NO 3 ) 3 and Ce(NO 3 ) 3 as raw materials, according to the stoichiometric ratio of Y 2 O 3 4.5Al 2 O 3 0.03CeO 2 Accurately weigh the raw materials, then 1) prepare Y(NO 3 ) 3 and Ce(NO 3 ) 3 into an aqueous solution with a mass concentration of 50%; 2) put metal aluminum-based mesoporous alumina into the Soak in the obtained solution for 36 hours; 3) Take the metal aluminum-based mesoporous alumina soaked in step 2) out of the solution, and dry it in vacuum at 80°C for 24 hours; 4) Put the dried metal aluminum in step 3) The mesoporous alumina was placed in a high-temperature furnace, and reacted for 36 hours in a nitrogen-hydrogen mixed gas atmosphere at a temperature of 625°C to obtain a chemical formula Y 2 O 3 ·4.5Al 2 O 3 ·0.03CeO 2 , Fluorescent emission layer based on aluminum-based mesoporous alumina. The emission spectrum of the obtained fluorescent emission layer was measured by a fluorescence spectrometer. The position and intensity of the main peak of the emission spectrum are shown in Table 1. It can be found that the obtained fluorescence emission layer emits stronger light. After irradiating the fluorescent emitting layer with a 450nm blue laser with a power density of 5W/ mm2 for 10 minutes, the temperature rise of the fluorescent emitting layer was low (see Table 1).
实施例16Example 16
本实施例所述材料的化学式为:Y2O3·4.5Al2O3·0.05CeO2。选取孔径尺寸为45nm、介孔氧化铝的厚度为150μm的单面金属铝基介孔氧化铝,依据介孔的尺寸和厚度及金属铝基介孔氧化铝的外形尺寸,先计算出金属铝基介孔氧化铝中氧化铝的摩尔数,然后以Y(NO3)3和Ce(NO3)3为原料,按照化学式为Y2O3·4.5Al2O3·0.05CeO2的化学计量比准确称取所述原料,然后1)将Y(NO3)3和Ce(NO3)3配制成质量浓度为50%的水溶液;2)将金属铝基介孔氧化铝置入步骤1)所获得的溶液中,浸泡36h;3)将步骤2)中浸泡过的金属铝基介孔氧化铝从溶液中取出,在80℃下真空干燥24h;4)将步骤3)中干燥后的金属铝基介孔氧化铝放入高温炉内,在氮气氢气混合气气氛、温度为625℃的条件下反应36h,得到一种化学通式为Y2O3·4.5Al2O3·0.05CeO2、基于金属铝基介孔氧化铝制备的荧光发射层。使用荧光光谱仪测量所得荧光发射层的发射光谱,发射光谱主峰位置及强度见表1,可以发现所得荧光发射层发光较强。使用功率密度为5W/mm2的450nm蓝光激光照射荧光发射层10分钟后,荧光发射层的温升较低(见表1)。The chemical formula of the material described in this embodiment is: Y 2 O 3 ·4.5Al 2 O 3 ·0.05CeO 2 . Select a single-sided metal aluminum-based mesoporous alumina with a pore size of 45nm and a thickness of 150μm. According to the size and thickness of the mesopores and the outer dimensions of the metal aluminum-based mesoporous alumina, first calculate the The number of moles of alumina in mesoporous alumina, then Y(NO 3 ) 3 and Ce(NO 3 ) 3 as raw materials, according to the stoichiometric ratio of Y 2 O 3 4.5Al 2 O 3 0.05CeO 2 Accurately weigh the raw materials, then 1) prepare Y(NO 3 ) 3 and Ce(NO 3 ) 3 into an aqueous solution with a mass concentration of 50%; 2) put metal aluminum-based mesoporous alumina into the Soak in the obtained solution for 36 hours; 3) Take the metal aluminum-based mesoporous alumina soaked in step 2) out of the solution, and dry it in vacuum at 80°C for 24 hours; 4) Put the dried metal aluminum in step 3) The mesoporous alumina was placed in a high-temperature furnace, and reacted for 36 hours in a nitrogen-hydrogen mixed gas atmosphere at a temperature of 625°C to obtain a chemical formula Y 2 O 3 ·4.5Al 2 O 3 ·0.05CeO 2 , Fluorescent emission layer based on aluminum-based mesoporous alumina. The emission spectrum of the obtained fluorescent emission layer was measured by a fluorescence spectrometer. The position and intensity of the main peak of the emission spectrum are shown in Table 1. It can be found that the obtained fluorescence emission layer emits stronger light. After irradiating the fluorescent emitting layer with a 450nm blue laser with a power density of 5W/ mm2 for 10 minutes, the temperature rise of the fluorescent emitting layer was low (see Table 1).
表1材料发射光谱数据表Table 1 Material emission spectrum data table
实施例17Example 17
将实施例9所获得的化学成分为Y2O3·4.5Al2O3·0.04CeO2的基于金属铝基介孔氧化铝制备的荧光发射层与发射波长为450nm的蓝光激光二极管进行封装,荧光发射层与蓝光激光二极管相对放置。图4给出了实施例17所获得的激光照明器件的发射光谱。图5给出了实施例17中得到的激光照明器件的结构图。The fluorescent emitting layer obtained in Example 9 with the chemical composition of Y 2 O 3 4.5Al 2 O 3 0.04CeO 2 based on metal aluminum-based mesoporous alumina is packaged with a blue laser diode with an emission wavelength of 450 nm, The fluorescent emitting layer is placed opposite to the blue laser diode. FIG. 4 shows the emission spectrum of the laser lighting device obtained in Example 17. FIG. 5 shows the structural diagram of the laser lighting device obtained in Example 17.
001:450nm蓝光激光器;002:入射到荧光发射层的光线;003:基于金属铝基介孔氧化铝制备的荧光发射层;004:金属铝板;005:450nm蓝光与荧光发射层受到450nm蓝光激发下所发出光的混合光。001: 450nm blue laser; 002: light incident on the fluorescent emitting layer; 003: fluorescent emitting layer based on metal aluminum-based mesoporous alumina; 004: metal aluminum plate; 005: 450nm blue light and fluorescent emitting layer excited by 450nm blue light Mixture of emitted light.
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the specific details in the above embodiments. Within the scope of the technical concept of the present invention, various simple modifications can be made to the technical solutions of the present invention. These simple modifications All belong to the protection scope of the present invention.
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。In addition, it should be noted that the various specific technical features described in the above specific implementation manners may be combined in any suitable manner if there is no contradiction. In order to avoid unnecessary repetition, various possible combinations are not further described in the present invention.
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。In addition, various combinations of different embodiments of the present invention can also be combined arbitrarily, as long as they do not violate the idea of the present invention, they should also be regarded as the disclosed content of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211240768.7A CN115895657B (en) | 2022-10-11 | 2022-10-11 | Fluorescent emission layer prepared based on metal aluminum-based mesoporous alumina and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211240768.7A CN115895657B (en) | 2022-10-11 | 2022-10-11 | Fluorescent emission layer prepared based on metal aluminum-based mesoporous alumina and its preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115895657A true CN115895657A (en) | 2023-04-04 |
CN115895657B CN115895657B (en) | 2024-06-04 |
Family
ID=86469929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211240768.7A Active CN115895657B (en) | 2022-10-11 | 2022-10-11 | Fluorescent emission layer prepared based on metal aluminum-based mesoporous alumina and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115895657B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201408781Y (en) * | 2009-01-21 | 2010-02-17 | 中国制釉股份有限公司 | Substrate with fluorescent powder and white light LED light source element |
CN101769507A (en) * | 2008-12-31 | 2010-07-07 | 中国制釉股份有限公司 | Manufacturing method of substrate with fluorescent powder and white light LED light source component |
CN102384383A (en) * | 2010-08-03 | 2012-03-21 | 日东电工株式会社 | Light-emitting device |
CN104566230A (en) * | 2013-10-15 | 2015-04-29 | 深圳市光峰光电技术有限公司 | Wavelength conversion device and its light source system, projection system |
CN206929725U (en) * | 2017-05-12 | 2018-01-26 | 深圳市光峰光电技术有限公司 | Wavelength converter and laser fluorescence conversion hysteria light source |
CN109087985A (en) * | 2017-06-14 | 2018-12-25 | 日本电气硝子株式会社 | Wavelength convert component and luminescent device |
CN111189003A (en) * | 2020-02-21 | 2020-05-22 | 松山湖材料实验室 | Transmission type white light device |
CN211176360U (en) * | 2020-02-21 | 2020-08-04 | 松山湖材料实验室 | Transmissive white light device |
CN113583675A (en) * | 2021-07-30 | 2021-11-02 | 广州旭福光电科技有限公司 | Laser-excited metal substrate fluorescent film, fluorescence conversion module, preparation method and application |
-
2022
- 2022-10-11 CN CN202211240768.7A patent/CN115895657B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101769507A (en) * | 2008-12-31 | 2010-07-07 | 中国制釉股份有限公司 | Manufacturing method of substrate with fluorescent powder and white light LED light source component |
CN201408781Y (en) * | 2009-01-21 | 2010-02-17 | 中国制釉股份有限公司 | Substrate with fluorescent powder and white light LED light source element |
CN102384383A (en) * | 2010-08-03 | 2012-03-21 | 日东电工株式会社 | Light-emitting device |
CN104566230A (en) * | 2013-10-15 | 2015-04-29 | 深圳市光峰光电技术有限公司 | Wavelength conversion device and its light source system, projection system |
CN206929725U (en) * | 2017-05-12 | 2018-01-26 | 深圳市光峰光电技术有限公司 | Wavelength converter and laser fluorescence conversion hysteria light source |
CN109087985A (en) * | 2017-06-14 | 2018-12-25 | 日本电气硝子株式会社 | Wavelength convert component and luminescent device |
CN208767334U (en) * | 2017-06-14 | 2019-04-19 | 日本电气硝子株式会社 | Wavelength Conversion Components and Light Emitting Devices |
CN111189003A (en) * | 2020-02-21 | 2020-05-22 | 松山湖材料实验室 | Transmission type white light device |
CN211176360U (en) * | 2020-02-21 | 2020-08-04 | 松山湖材料实验室 | Transmissive white light device |
CN113583675A (en) * | 2021-07-30 | 2021-11-02 | 广州旭福光电科技有限公司 | Laser-excited metal substrate fluorescent film, fluorescence conversion module, preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
CN115895657B (en) | 2024-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109467453A (en) | Fluorescent ceramic with characteristic microstructure and preparation method and application thereof | |
WO2019223023A1 (en) | Yag fluorescent ceramic, preparation method therefor and use thereof | |
CN108753296B (en) | A red light emitting material that can be excited by near-ultraviolet or blue light chips and its preparation method and application | |
CN101723586A (en) | Fluorescent powder/glass complex applied to semiconductor lighting and preparation method thereof | |
CN103531693A (en) | Preparation method for COB (chip on board) area light source with large irritation angle | |
CN103160280A (en) | Yttrium aluminum garnet fluorescent material, preparation method thereof and light emitting diode device comprising yttrium aluminum garnet fluorescent material | |
CN110668803A (en) | A blue-green light-emitting scandium silicate fluorescent ceramic and preparation method thereof | |
JP2014503605A (en) | Nitrogen compound luminescent material, method for preparing the same, and illumination light source manufactured thereby | |
CN115895657B (en) | Fluorescent emission layer prepared based on metal aluminum-based mesoporous alumina and its preparation method and application | |
CN112110729A (en) | High-thermal-conductivity fluorescent ceramic, preparation method and application in LED or laser illumination | |
JP2013018981A (en) | Fluorescent layer and preparation method therefor and uses thereof | |
WO2015184614A1 (en) | High-power high-temperature white light led package and manufacturing method thereof | |
CN113054082B (en) | Fluorescent glass composite material, fluorescent glass substrate comprising same, and light conversion device | |
CN112094054B (en) | Far-red fluorescent transparent ceramics for plant growth lighting and methods, devices and applications | |
CN114221207B (en) | Fluorescent glass sheet and preparation method and application thereof | |
CN113604218B (en) | A simple preparation method of nitrogen-doped yellow fluorescent crystal and its application in white LED | |
CN104909741A (en) | Preparation method of garnet-type aluminate fluorescence ceramic and prepared fluorescence ceramic | |
CN107437575A (en) | A kind of white light LEDs lamp bead of burst of ultraviolel perovskite fluorescent material | |
CN114538774A (en) | Glass ceramics doped with high concentration phosphors and their preparation method and application | |
WO2023123386A1 (en) | Nitride deep red light material, preparation method, and device | |
CN111285683A (en) | High-stability fluorescent ceramic for high-power laser illumination and preparation method thereof | |
CN102531387A (en) | Borate luminescent glass for white LED (light emitting diode) and preparation method thereof | |
CN101486907A (en) | Red-emitting phosphor for white light LED and preparation thereof | |
CN106549093A (en) | A kind of long-range luminescent device of the LED based on fluorescent transparent ceramic material | |
CN116947477B (en) | Composite fluorescent ceramic and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |