CN115892460A - 一种分布式多旋翼倾转机翼飞行器及飞行控制方法 - Google Patents

一种分布式多旋翼倾转机翼飞行器及飞行控制方法 Download PDF

Info

Publication number
CN115892460A
CN115892460A CN202211442586.8A CN202211442586A CN115892460A CN 115892460 A CN115892460 A CN 115892460A CN 202211442586 A CN202211442586 A CN 202211442586A CN 115892460 A CN115892460 A CN 115892460A
Authority
CN
China
Prior art keywords
wing
aircraft
rotor
mode
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211442586.8A
Other languages
English (en)
Inventor
陈金鹤
陈立霞
曾伟
苏兵兵
刘纪福
侯祥民
汪正中
黄水林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Shenzhou Liuhe Helicopter Co ltd
China Helicopter Research and Development Institute
Original Assignee
Jiangxi Shenzhou Liuhe Helicopter Co ltd
China Helicopter Research and Development Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Shenzhou Liuhe Helicopter Co ltd, China Helicopter Research and Development Institute filed Critical Jiangxi Shenzhou Liuhe Helicopter Co ltd
Priority to CN202211442586.8A priority Critical patent/CN115892460A/zh
Publication of CN115892460A publication Critical patent/CN115892460A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Toys (AREA)

Abstract

本发明涉及飞行器结构设计技术领域,公开了一种分布式多旋翼倾转机翼飞行器及飞行控制方法;所述分布式多旋翼倾转机翼飞行器包括机身、前机翼、后机翼、垂直尾翼、至少8套动力系统、2套倾转机构和襟/副翼;本发明通过倾转机翼机构控制飞行器的飞行模式,包括多旋翼垂直模式、固定翼高速巡航模式、倾转过渡任务模式,实现飞行器长航程、大前飞速度、高有效载荷的性能提升;通过分布式的旋翼和固定翼模式下的控制面融合设计,完成不同模式下的控制切换,实现不同模式下的控制最佳配置;采用分布式动力系统,拥有极高的动力冗余,在部分动力失效或控制面卡制、破损等情况下仍可安全执行任务,有利于个体飞行器的生存及性能提升。

Description

一种分布式多旋翼倾转机翼飞行器及飞行控制方法
技术领域
本发明涉及飞行器结构设计技术领域,尤其涉及一种分布式多旋翼倾转机翼飞行器及其控制方法。
背景技术
垂直起降飞行器具有较为高效的垂直起降性能、悬停、低空低速飞行以及独特的后飞和侧飞能力,使得其可以在复杂地域垂直起降,常规直升机(单旋翼带尾桨构型)前飞时旋翼桨叶左右气流不对称,其最大飞行速度受到很大的限制;同时,受限于旋翼类飞行器的气动效率问题,其航程和航时均十分有限。然而,传统固定翼飞行器却在高速飞行以及长航时飞行上极具优势。倾转机翼类飞行器通过融合旋翼飞行器和固定翼飞行发展出的独特构型,可兼具传统旋翼飞行器和固定翼飞行器的优势,拥有垂直起降、悬停等功能以及高巡航速度、长航程、较高有效载荷等性能,是未来飞行器的发展方向之一。由于倾机翼类飞行器随着机翼倾转,飞行速度、惯量、重心等发生变化,尤其是在动态倾转过渡过程中飞行动力学特性快速变化,因此倾转过渡过程的鲁棒控制难度较大,另外倾转机翼飞行器在倾转过渡过程中存在动力损失、舵面卡制等潜在故障。分布式动力技术与倾转机翼技术的融合具有较高的控制裕度,在倾转控制方式上可靠性更高、面向不同任务性能提升能力更佳,同时可极大提高事故状态的可控制性和安全性。
在已经公开的技术中,提出了诸多倾转机翼形式的飞行器设计;比如,发明专利CN106516080A公开了一种气动布局以及倾转机构的倾转机翼飞行器及机翼是否松脱的检测方法,该专利采用前后动力装置错开布置的倾转机翼式布局,其设计的飞行器布局中未考虑到舵面作用,倾转至倾转至固定翼模式后对机体姿态的调节相对较差。发明专利CN205440867U公开了一种可倾转机翼飞机,其采用串列式四边形动力装置布置倾转机翼布局,但其前后动力装置造成后机翼上的动力装置处在前动力装置尾流影响区域,降低了后动力装置效率;其采用双垂直舵面布置,缺乏垂直安定面,造成飞行器的横向稳定性差;倾转机翼与机身在翼根处直接倾转,机翼机身无过渡段造成机翼机身间的气流干扰。发明专利CN107600403B还公开了一种梯形布局串列式倾转机翼飞行器及倾转机构,其采用串列式机翼布局、梯形动力系统布置、多舵面及电动动力系统差动组合控制,但动力装置偏少,无法满足多裕度控制,无法提高故障状态的可控性和安全性。
发明内容
本发明的目的:本发明的目的在于针对现有技术的不足,提供一种分布式倾转多旋翼飞行器的飞行模式控制方法。
本发明的技术方案:本发明一方面提出了一种分布式多旋翼倾转机翼飞行器,所述分布式多旋翼倾转机翼飞行器还包括机身、前机翼、后机翼和垂直尾翼、至少8套动力系统、2套倾转机构和襟/副翼,所述的前机翼和后机翼分别设于机身的前部和后部形成串列翼布局,前/后机翼共同提供飞行器在固定翼模式下的升力。所述的垂直尾翼,位于机身后部,与传统的固定翼飞行器的垂尾位置一致,故可用作固定翼飞行器偏航控制的方向舵布置于垂尾上。所述的动力系统相对于机身轴对称分布于前/后机翼上,包括动力电机和旋翼,所述的旋翼设于动力电机输出轴上、动力电机内置于前/后机翼上,所述的动力系统通过倾转机构驱动机翼的倾转实现旋翼动力方向的角度变化,所述的倾转机构设于机身内,用于实现前/后机翼角度变化,进而实现不同飞行模式即固定翼模式和多旋翼模式的切换。其中动力系统动力方向全水平为固定翼模式,主要实现水平前飞;动力系统动力方向全竖直为多旋翼模式,主要实现垂直起降;倾转动力系统动力方向与水平方向呈一定夹角为倾转过渡模式。所述的襟/副翼铰接在前/后机翼后缘切口处,襟翼位于机翼内侧,副翼位于机翼外侧,且襟/副翼可绕铰链上下转动。
上述飞行器布局中,所述的分布式多旋翼动力系统与前机翼、后机翼固定连接,位于前机翼或后机翼上的分布式动力系统均匀分布于机翼且呈现左右对称,且分布式动力系统中动力电机部分内置于机翼,前半部分旋翼伸出机翼前缘。其中优选方案还可以在机翼翼尖布置有一对动力系统,翼尖的动力系统将有效减少翼尖涡,提高气动性能。
上述飞行器结构设计中,所述的分布式动力系统在整个飞行器上的分布数量不少于8个,少于8个的动力系统无法满足分布式动力系统的控制要求。分布式动力系统伸出机翼,动力方向随机翼可倾转90°;所有分布式动力系统呈现竖直状态时飞行器重心应满足多旋翼飞行器对重心分布及动力分布的要求。固定翼模式时所述的控制装置襟/副翼接在前/后机翼后缘内侧,前机翼襟翼下偏,后机翼襟翼上偏,则飞行器抬头飞行,前机翼襟翼上偏,后机翼襟翼下偏,则飞行器低头飞行。所述的控制装置副翼联接与前/后机翼后缘外侧,前/后右侧机翼副翼上偏,前/后左侧机翼副翼下偏,则飞行器右滚,前/后右侧机翼副翼下偏,前/后左侧机翼副翼上偏,则飞行器左滚。所述的控制装置方向舵联接于垂直尾翼后缘,向右偏转则右偏航,向左偏转则左偏航。
进一步地,所述的分布式多旋翼倾转机翼飞行器的飞行控制主要由动力系统及襟/副翼和垂尾作为飞行姿态的主要控制装置,机翼倾转机构、旋翼桨距、襟/副翼和方向舵偏转角度作为主要的控制参数,所述的飞行姿态包括:俯仰、滚转、偏航,以及对应的飞行状态为:低头/抬头、左/右侧飞、改变航向,其中根据飞行器处于的不同飞行模式,对应的控制方式:
动力系统动力方向竖直(多旋翼飞行模式):通过控制位于飞行器前/后机翼上动力系统中的旋翼桨距不同,达到俯仰控制效果;通过控制位于飞行器左/右机翼上动力系统中旋翼桨距不同,达到滚转控制效果;通过控制飞行器顺时针和逆时针的旋翼桨距不同和左/右机翼襟翼的差动偏转,达到偏航控制效果;通过控制飞行器所有动力系统的旋翼桨距一致性变化,达到飞行器高度的控制效果。
动力系统动力方向与水平方向一致(固定翼飞行模式):通过控制位于前/后机翼上的襟翼差动,达到飞行器抬头低头飞行的效果;通过控制左/右机翼上的副翼差动,达到滚转控制效果;通过控制位于左/右机翼上的动力系统中的桨距不同和垂直尾翼上的方向舵偏转,达到偏航控制效果;通过控制飞行器分布式动力系统的旋翼桨距一致变化,达到前飞加减速度控制效果。
动力系统动力方向与水平方向呈一定夹角(倾转过渡模式):通过前/后机翼上倾转机构,同步倾转一定角度实现动力系统动力方向与水平呈一定夹角,在动力方向与水平角度大于45°,通过控制位于前/后机翼上的分布式动力系统中旋翼桨距差动,实现飞行器抬头低头效果;动力方向与水平线角度由45°逐渐递减至0°,动力方向角度递减过程中采用前/后旋翼桨距差动和前/后机翼襟翼差动两种方式并用,其中前/后旋翼桨毂差动的比例随动力方向的偏转逐渐减小至0,以实现飞行器俯仰控制效果。在动力方向与水平角度大于45°,通过控制左/右机翼动力系统的旋翼桨毂差动,实现飞行器左/右滚转的效果;动力方向与水平线角度由45°逐渐递减至0°,动力方向角度递减过程中采用左/右旋翼桨距差动和左/右机翼襟翼差动两种方式并用,其中左/右旋翼桨毂差动的比例随动力方向的偏转逐渐减小至0,以实现倾转过渡过程中滚转控制效果。在动力方向与水平角度大于45°,控制顺时针和逆时针的旋翼桨距不同和左/右机翼襟翼的差动偏转,随着动力方向由90°逐渐减小至45°,左/右机翼襟翼差动偏转逐渐减小为0,以实现飞行器偏航操纵;动力方向由45°逐渐减小至0°,采用左/右旋翼桨距差动和顺时钟/逆时钟旋翼桨距不同并用,其中顺时钟/逆时钟旋翼桨距不同的控制随动力方向的偏转逐渐减小至0,以实现倾转过渡过程中的偏航控制效果。
飞行器的高度升降则可由竖直动力系统整体加减速以及前/后机翼的襟翼差动控制,其中竖直动力整体加减速对飞行器的高度升降效果直接,而前/后机翼的襟翼差动偏转需要在固定翼模式前飞中逐步体现飞行器升降效果;飞行器的前飞速度则可由水平动力系统的整体加减速控制。
本发明另一方面还提出了一种分布式多旋翼倾转机翼飞行器的飞行控制方法,具体控制方法如下:
步骤S1、飞控系统接收地面站的位置指令、前/后机翼倾转机构倾转指令以及实时接收来自GPS提供的位置信息,并由获得的当前位置信息分析出飞行器下一时刻的期望姿态;
步骤S2、飞控系统接收到的地面站指令后进行当前飞行状态的判断(机翼倾转机构偏转角度),如果处于多旋翼模式进入步骤S3,如果处于固定翼模式进入步骤S4,如果处于过渡模式则进入步骤S5;
步骤S3、飞行器将采用控制模式1进行飞行控制,此模式基于多旋翼构型,将通过上述多旋翼飞行模式控制动力系统中旋翼桨距和襟翼差动实现飞行器姿态调整;
步骤S4、飞行器将采用控制模式3进行飞行控制,此模式基于固定翼构型,将通过上述固定翼模式控制前/后襟翼差动、左/右副翼差动、左/右动力旋翼桨距差动和方向舵实现飞行器姿态调整;
步骤S5、飞行器将采用控制模式2进行飞行控制,此模式为多旋翼构型至固定翼构型或固定翼构型至多旋翼构型的中间过程,将通过上述倾转过渡模式,进行多旋翼模式和固定翼模式控制的转换,以实现飞行器姿态调整;
步骤S6、飞行器利用步骤S3、S4或S5的控制模式并基于步骤S1分析得到的飞行器下一时刻期望姿态,进行飞行器姿态的调整;
步骤S7、飞行器位置调整完成,来自地面站的任务指令执行完毕。
本发明的有益效果:本发明采用分布式多旋翼动力系统组和倾转机翼机构,通过倾转机翼机构控制飞行器的飞行模式,包括多旋翼垂直模式、固定翼高速巡航模式、倾转过渡任务模式,实现飞行器长航程、大前飞速度、高有效载荷的性能提升;
采用分布式多旋翼动力系统组和固定翼模式下的副翼、襟翼、方向舵等结构,通过分布式的旋翼和固定翼模式下的控制面融合设计,完成不同模式下的控制切换,实现不同模式下的控制最佳配置;
采用分布式动力系统,拥有极高的动力冗余,在部分动力失效或控制面卡制、破损等情况下仍可安全执行任务,有利于个体飞行器的生存及性能提升。
附图说明
图1是分布式多旋翼倾转机翼飞行器的多旋翼模式垂直起降示意图;
图2是分布式多旋翼倾转机翼飞行器的固定翼模式巡航飞行示意图;
其中,1机身,2主旋翼,3前机翼,4后机翼,5襟翼,6副翼,7垂尾。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明具体设计的一种分布式多旋翼倾转机翼飞行器,该分布式多旋翼倾转机翼飞行器包括机身、前机翼、后机翼、垂直尾翼、至少8套动力系统、2套倾转机构和襟/副翼,所述前机翼和后机翼分别设于机身的前部和后部形成串列翼布局,前/后机翼共同提供飞行器在固定翼模式下的升力,所述垂直尾翼,位于机身后部,与传统的固定翼飞行器的垂尾位置一致,垂尾上还布置有用作固定翼飞行器偏航控制的方向舵;所述动力系统相对于机身轴对称分布于前/后机翼上,包括动力电机和旋翼,所述旋翼设于动力电机输出轴上、动力电机内置于前/后机翼上,所述动力系统通过倾转机构驱动机翼的倾转实现旋翼动力方向的角度变化,所述倾转机构还可用于实现前/后机翼角度变化,进而实现不同飞行模式即固定翼模式和多旋翼模式的切换。
作为以上设计的分布式多旋翼倾转机翼飞行器,动力系统作为飞行器气动布局调节的核心动力来源,所设计的动力系统相对于机身轴对称分布于前/后机翼上,包括动力电机和旋翼,所设计的旋翼设于动力电机输出轴上、动力电机内置于前/后机翼上,所设计的动力系统通过倾转机构驱动机翼的倾转实现旋翼动力方向的角度变化,所设计的倾转机构设于机身内,用于实现前/后机翼角度变化,进而实现不同飞行模式即固定翼模式和多旋翼模式的切换。其中动力系统动力方向全水平为固定翼模式,主要实现水平前飞;动力系统动力方向全竖直为多旋翼模式,主要实现垂直起降;倾转动力系统动力方向与水平方向呈一定夹角为倾转过渡模式。所设计的襟/副翼铰接在前/后机翼后缘切口处,襟翼位于机翼内侧,副翼位于机翼外侧,且襟/副翼可绕铰链上下转动;通过倾转机翼机构控制飞行器的飞行模式,包括多旋翼垂直模式、固定翼高速巡航模式、倾转过渡任务模式,实现飞行器长航程、大前飞速度、高有效载荷的性能提升。
参见附图1,一种分布式多旋翼倾转机翼飞行器,该飞行器包括机身1、主旋翼2、前机翼3、后机翼4、襟翼5、副翼6、垂尾7,还包括至少八套动力系统、两套倾转机构;所述的前机翼3和后机翼4分别设于机身1的前部和后部形成串列翼布局,前/后机翼共同提供飞行器在固定翼模式下的升力;所述的垂直尾翼,位于机身1后部,与传统的固定翼飞行器的垂尾位置一致;在垂尾7上还布置有方向舵;用于飞行器在固定翼模式下的偏航控制。所述的动力系统相对于机身1轴对称分布于前/后机翼上,包括动力电机和旋翼,所述的旋翼设于动力电机输出轴上、动力电机内置于前/后机翼上,所述的动力系统通过倾转机构驱动机翼的倾转实现旋翼动力方向的角度变化;所述的倾转机构设于机身内,用于实现前/后机翼角度变化,进而实现不同飞行模式即固定翼模式和多旋翼模式的切换。其中动力系统动力方向全水平为固定翼模式,主要实现水平前飞;动力系统动力方向全竖直为多旋翼模式,主要实现垂直起降;倾转动力系统动力方向与水平方向呈一定夹角为倾转过渡模式。所述的襟/副翼铰接在前/后机翼后缘切口处,襟翼5位于机翼内侧,副翼6位于机翼外侧,且襟/副翼可绕铰链上下转动。
在具体设计过程中,飞行器中动力系统与前机翼3、后机翼4固定连接,位于前机翼3或后机翼4上的分布式动力系统均匀分布于机翼且呈现左右对称,且分布式动力系统中动力电机部分内置于机翼,前半部分旋翼伸出机翼前缘。其中可选的实施方案为在机翼翼尖布置有一对动力系统,翼尖的动力系统将有效减少翼尖涡,提高气动性能。所述的分布式动力系统在整个飞行器上的分布数量不少于8个,仿真结果表明,少于8个的动力系统无法满足分布式动力系统的控制要求。分布式动力系统伸出机翼,动力方向随机翼可倾转90°;所有分布式动力系统呈现竖直状态时飞行器重心应满足多旋翼飞行器对重心分布及动力分布的要求。固定翼模式时所述的控制装置襟/副翼接在前/后机翼后缘内侧,前机翼襟翼下偏,后机翼襟翼上偏,则飞行器抬头飞行,前机翼襟翼上偏,后机翼襟翼下偏,则飞行器低头飞行。所述的控制装置副翼联接与前/后机翼后缘外侧,前/后右侧机翼副翼上偏,前/后左侧机翼副翼下偏,则飞行器右滚,前/后右侧机翼副翼下偏,前/后左侧机翼副翼上偏,则飞行器左滚。所述的控制装置方向舵联接于垂直尾翼后缘,向右偏转则右偏航,向左偏转则左偏航。
在另一则具体实施案例中,对应设计的分布式多旋翼倾转机翼飞行器的飞行控制主要由动力系统及襟/副翼和垂尾作为飞行姿态的主要控制装置,机翼倾转机构、旋翼桨距、襟/副翼和方向舵偏转角度作为主要的控制参数,所述的飞行姿态包括:俯仰、滚转、偏航,以及对应的飞行状态为:低头/抬头、左/右侧飞、改变航向,其中根据飞行器处于的不同飞行模式,至少包括多旋翼飞行模式、固定翼飞行模式、倾转过渡模式;通过分布式的旋翼和固定翼模式下的控制面融合设计,完成不同模式下的控制切换,实现不同模式下的控制最佳配置;对应各模式的控制过程如下:
在多旋翼飞行模式下,动力系统动力方向竖直,通过控制位于飞行器前/后机翼上动力系统中的旋翼桨距不同,达到俯仰控制效果;通过控制位于飞行器左/右机翼上动力系统中旋翼桨距不同,达到滚转控制效果;通过控制飞行器顺时针和逆时针的旋翼桨距不同和左/右机翼襟翼的差动偏转,达到偏航控制效果;通过控制飞行器所有动力系统的旋翼桨距一致性变化,达到飞行器高度的控制效果。
在固定翼飞行模式下,动力系统动力方向与水平方向一致,通过控制位于前/后机翼上的襟翼差动,达到飞行器抬头低头飞行的效果;通过控制左/右机翼上的副翼差动,达到滚转控制效果;通过控制位于左/右机翼上的动力系统中的桨距不同和垂直尾翼上的方向舵偏转,达到偏航控制效果;通过控制飞行器分布式动力系统的旋翼桨距一致变化,达到前飞加减速度控制效果。
在倾转过渡模式下,动力系统动力方向与水平方向呈一定夹角,通过前/后机翼上倾转机构,同步倾转一定角度实现动力系统动力方向与水平呈一定夹角,在动力方向与水平角度大于45°,通过控制位于前/后机翼上的分布式动力系统中旋翼桨距差动,实现飞行器抬头低头效果;动力方向与水平线角度由45°逐渐递减至0°,动力方向角度递减过程中采用前/后旋翼桨距差动和前/后机翼襟翼差动两种方式并用,其中前/后旋翼桨毂差动的比例随动力方向的偏转逐渐减小至0,以实现飞行器俯仰控制效果。在动力方向与水平角度大于45°,通过控制左/右机翼动力系统的旋翼桨毂差动,实现飞行器左/右滚转的效果;动力方向与水平线角度由45°逐渐递减至0°,动力方向角度递减过程中采用左/右旋翼桨距差动和左/右机翼襟翼差动两种方式并用,其中左/右旋翼桨毂差动的比例随动力方向的偏转逐渐减小至0,以实现倾转过渡过程中滚转控制效果。在动力方向与水平角度大于45°,控制顺时针和逆时针的旋翼桨距不同和左/右机翼襟翼的差动偏转,随着动力方向由90°逐渐减小至45°,左/右机翼襟翼差动偏转逐渐减小为0,以实现飞行器偏航操纵;动力方向由45°逐渐减小至0°,采用左/右旋翼桨距差动和顺时钟/逆时钟旋翼桨距不同并用,其中顺时钟/逆时钟旋翼桨距不同的控制随动力方向的偏转逐渐减小至0,以实现倾转过渡过程中的偏航控制效果。
另外,飞行器的高度升降则可由竖直动力系统整体加减速以及前/后机翼的襟翼差动控制,其中竖直动力整体加减速对飞行器的高度升降效果直接,而前/后机翼的襟翼差动偏转需要在固定翼模式前飞中逐步体现飞行器升降效果;飞行器的前飞速度则可由水平动力系统的整体加减速控制。
对于上述所设计的分布式多旋翼倾转机翼飞行器,其飞行控制方法包括如下过程:
第一步、飞控系统接收地面站的位置指令、前/后机翼倾转机构倾转指令以及实时接收来自GPS提供的位置信息,并由获得的当前位置信息分析出飞行器下一时刻的期望姿态;
第二步、飞控系统接收到的地面站指令后进行当前飞行状态的判断,具体判断可通过机翼倾转机构偏转角度来实现;如果处于多旋翼模式进入第三步,如果处于固定翼模式进入第四步,如果处于过渡模式则进入第五步;
第三步、飞行器将采用控制模式1进行飞行控制,此模式基于多旋翼构型,将通过上述多旋翼飞行模式控制动力系统中旋翼桨距和襟翼差动实现飞行器姿态调整;
第四步、飞行器将采用控制模式3进行飞行控制,此模式基于固定翼构型,将通过上述固定翼模式控制前/后襟翼差动、左/右副翼差动、左/右动力旋翼桨距差动和方向舵实现飞行器姿态调整;
第五步、飞行器将采用控制模式2进行飞行控制,此模式为多旋翼构型至固定翼构型或固定翼构型至多旋翼构型的中间过程,将通过上述倾转过渡模式,进行多旋翼模式和固定翼模式控制的转换,以实现飞行器姿态调整;
第六步、飞行器利用步骤三、四或五的控制模式并基于第一步分析得到的飞行器下一时刻期望姿态,进行飞行器姿态的调整;
第七步、飞行器位置调整完成,来自地面站的任务指令执行完毕。
以上所述,仅为本发明的具体实施例,对本发明进行详细描述,未详尽部分为常规技术。但本发明的保护范围不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

1.一种分布式多旋翼倾转机翼飞行器,其特征在于,所述分布式多旋翼倾转机翼飞行器包括机身、前机翼、后机翼、垂直尾翼、至少8套动力系统、2套倾转机构和襟/副翼,所述前机翼和后机翼分别设于机身的前部和后部形成串列翼布局,前/后机翼共同提供飞行器在固定翼模式下的升力,所述垂直尾翼,位于机身后部,与传统的固定翼飞行器的垂尾位置一致,垂尾上还布置有用作固定翼飞行器偏航控制的方向舵;所述动力系统相对于机身轴对称分布于前/后机翼上,包括动力电机和旋翼,所述旋翼设于动力电机输出轴上、动力电机内置于前/后机翼上,所述动力系统通过倾转机构驱动机翼的倾转实现旋翼动力方向的角度变化,所述倾转机构还可用于实现前/后机翼角度变化,进而实现不同飞行模式即固定翼模式和多旋翼模式的切换。
2.如权利要求1所述的一种分布式多旋翼倾转机翼飞行器,其特征在于,动力系统动力方向全水平时,为固定翼模式,实现水平前飞;动力系统动力方向全竖直时,为多旋翼模式,实现垂直起降;倾转动力系统动力方向与水平方向呈一定夹角时,为倾转过渡模式。
3.如权利要求2所述的一种分布式多旋翼倾转机翼飞行器,其特征在于,固定翼模式时,控制装置襟/副翼接在前/后机翼后缘内侧,前机翼襟翼下偏,后机翼襟翼上偏,则飞行器抬头飞行,前机翼襟翼上偏,后机翼襟翼下偏,则飞行器低头飞行;控制装置副翼联接与前/后机翼后缘外侧,前/后右侧机翼副翼上偏,前/后左侧机翼副翼下偏,则飞行器右滚,前/后右侧机翼副翼下偏,前/后左侧机翼副翼上偏,则飞行器左滚;控制装置方向舵联接于垂直尾翼后缘,向右偏转则右偏航,向左偏转则左偏航。
4.如权利要求1所述的一种分布式多旋翼倾转机翼飞行器,其特征在于,所述的襟/副翼铰接在前/后机翼后缘切口处,襟翼位于机翼内侧,副翼位于机翼外侧,且襟/副翼可绕铰链上下转动。
5.如权利要求1所述的一种分布式多旋翼倾转机翼飞行器,其特征在于,所述动力系统与前机翼、后机翼固定连接,位于前机翼或后机翼上的分布式动力系统均匀分布于机翼且呈现左右对称,且分布式动力系统中动力电机部分内置于机翼,前半部分旋翼伸出机翼前缘。
6.如权利要求5所述的一种分布式多旋翼倾转机翼飞行器,其特征在于,在机翼翼尖布置有一对动力系统。
7.如权利要求1所述的一种分布式多旋翼倾转机翼飞行器,其特征在于,所述动力系统可伸出机翼,动力方向随机翼可倾转90°;所有动力系统呈现竖直状态时飞行器重心应满足多旋翼飞行器对重心分布及动力分布的要求。
8.如权利要求1所述的一种分布式多旋翼倾转机翼飞行器,其特征在于,动力系统及襟/副翼和垂尾作为飞行姿态的主要控制装置,机翼倾转机构、旋翼桨距、襟/副翼和方向舵偏转角度作为主要的控制参数,所述的飞行姿态包括:俯仰、滚转、偏航,以及对应的飞行状态为:低头/抬头、左/右侧飞、改变航向,其中根据飞行器处于的不同飞行模式,对应的控制方式:
多旋翼飞行模式:通过控制位于飞行器前/后机翼上动力系统中的旋翼桨距不同,达到俯仰控制效果;通过控制位于飞行器左/右机翼上动力系统中旋翼桨距不同,达到滚转控制效果;通过控制飞行器顺时针和逆时针的旋翼桨距不同和左/右机翼襟翼的差动偏转,达到偏航控制效果;通过控制飞行器所有动力系统的旋翼桨距一致性变化,达到飞行器高度的控制效果;
固定翼飞行模式:通过控制位于前/后机翼上的襟翼差动,达到飞行器抬头低头飞行的效果;通过控制左/右机翼上的副翼差动,达到滚转控制效果;通过控制位于左/右机翼上的动力系统中的桨距不同和垂直尾翼上的方向舵偏转,达到偏航控制效果;通过控制飞行器分布式动力系统的旋翼桨距一致变化,达到前飞加减速度控制效果;
倾转过渡模式:通过前/后机翼上倾转机构,同步倾转一定角度实现动力系统动力方向与水平呈一定夹角,在动力方向与水平角度大于45°,通过控制位于前/后机翼上的分布式动力系统中旋翼桨距差动,实现飞行器抬头低头效果;动力方向与水平线角度由45°逐渐递减至0°,动力方向角度递减过程中采用前/后旋翼桨距差动和前/后机翼襟翼差动两种方式并用,其中前/后旋翼桨毂差动的比例随动力方向的偏转逐渐减小至0,以实现飞行器俯仰控制效果。
9.如权利要求8所述的一种分布式多旋翼倾转机翼飞行器,其特征在于,倾转过渡模式中,在动力方向与水平角度大于45°,通过控制左/右机翼动力系统的旋翼桨毂差动,实现飞行器左/右滚转的效果;动力方向与水平线角度由45°逐渐递减至0°,动力方向角度递减过程中采用左/右旋翼桨距差动和左/右机翼襟翼差动两种方式并用,其中左/右旋翼桨毂差动的比例随动力方向的偏转逐渐减小至0,以实现倾转过渡过程中滚转控制效果;在动力方向与水平角度大于45°,控制顺时针和逆时针的旋翼桨距不同和左/右机翼襟翼的差动偏转,随着动力方向由90°逐渐减小至45°,左/右机翼襟翼差动偏转逐渐减小为0,以实现飞行器偏航操纵;动力方向由45°逐渐减小至0°,采用左/右旋翼桨距差动和顺时钟/逆时钟旋翼桨距不同并用,其中顺时钟/逆时钟旋翼桨距不同的控制随动力方向的偏转逐渐减小至0,以实现倾转过渡过程中的偏航控制效果。
10.一种分布式多旋翼倾转机翼飞行器的飞行控制方法,其特征在于,所述控制过程如下:
步骤S1、飞控系统接收地面站的位置指令、前/后机翼倾转机构倾转指令以及实时接收来自GPS提供的位置信息,并由获得的当前位置信息分析出飞行器下一时刻的期望姿态;
步骤S2、飞控系统接收到的地面站指令后进行当前飞行状态的判断,如果处于多旋翼模式进入步骤S3,如果处于固定翼模式进入步骤S4,如果处于过渡模式则进入步骤S5;
步骤S3、飞行器将采用控制模式1进行飞行控制,此模式基于多旋翼构型,将通过上述多旋翼飞行模式控制动力系统中旋翼桨距和襟翼差动实现飞行器姿态调整;
步骤S4、飞行器将采用控制模式3进行飞行控制,此模式基于固定翼构型,将通过上述固定翼模式控制前/后襟翼差动、左/右副翼差动、左/右动力旋翼桨距差动和方向舵实现飞行器姿态调整;
步骤S5、飞行器将采用控制模式2进行飞行控制,此模式为多旋翼构型至固定翼构型或固定翼构型至多旋翼构型的中间过程,将通过上述倾转过渡模式,进行多旋翼模式和固定翼模式控制的转换,以实现飞行器姿态调整;
步骤S6、飞行器利用步骤S3、S4或S5的控制模式并基于步骤S1分析得到的飞行器下一时刻期望姿态,进行飞行器姿态的调整;
步骤S7、飞行器位置调整完成,来自地面站的任务指令执行完毕。
CN202211442586.8A 2022-11-17 2022-11-17 一种分布式多旋翼倾转机翼飞行器及飞行控制方法 Pending CN115892460A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211442586.8A CN115892460A (zh) 2022-11-17 2022-11-17 一种分布式多旋翼倾转机翼飞行器及飞行控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211442586.8A CN115892460A (zh) 2022-11-17 2022-11-17 一种分布式多旋翼倾转机翼飞行器及飞行控制方法

Publications (1)

Publication Number Publication Date
CN115892460A true CN115892460A (zh) 2023-04-04

Family

ID=86491042

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211442586.8A Pending CN115892460A (zh) 2022-11-17 2022-11-17 一种分布式多旋翼倾转机翼飞行器及飞行控制方法

Country Status (1)

Country Link
CN (1) CN115892460A (zh)

Similar Documents

Publication Publication Date Title
CN106828915B (zh) 一种倾转螺旋桨可垂直起降的高速飞行器的控制方法
EP3868660A1 (en) Vertical take-off and landing (vtol) aircraft and related methods
CN108298064B (zh) 非常规偏航控制系统
CN106672232A (zh) 一种高效垂直起降飞行器
CN106043685A (zh) 双矢量推进桨旋翼/固定翼复合式垂直起降飞行器
CN113525678B (zh) 一种牵引-推进式倾转翼垂直起降载人飞行器
CN110466752B (zh) 一种倾转旋翼无人机的控制方法及倾转旋翼无人机
CN105083551A (zh) 一种可倾转旋翼机及其控制方法
US20220363376A1 (en) Free Wing Multirotor Transitional S/VTOL Aircraft
CN112224400B (zh) 一种新型倾转旋翼飞行器及其工作方法
CN106828918A (zh) 一种三翼面垂直起降飞行器
CN111498103A (zh) 飞行器
CN113371190A (zh) 一种基于常规旋翼构型的复合式高速直升机
CN105923154A (zh) 纵列式双旋翼固定翼复合式垂直起降飞行器
CN111051197B (zh) 不对称飞行器
CN106043687A (zh) 双发后推式鸭式旋翼/固定翼复合式垂直起降飞行器
CN212243812U (zh) 一种倾转鸭式布局飞行器
CN211281472U (zh) 一种涵道尾坐式垂直起降无人机
CN218617171U (zh) 一种多旋翼飞行器
CN112744352B (zh) 一种分布式倾转多旋翼飞行器及飞行控制方法
CN218463872U (zh) 一种倾转式和固定式螺旋桨组合布局的垂直起降飞行器
CN115892460A (zh) 一种分布式多旋翼倾转机翼飞行器及飞行控制方法
WO2024103278A1 (zh) 一种多桨倾转飞行器及其飞行控制方法
WO2024103279A1 (zh) 一种双旋翼倾转飞行器及其飞行控制方法
CN215043676U (zh) 一种飞机倾转旋翼系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination