CN115891168A - A continuous 3D printing method for long trusses based on laser ranging feedback control - Google Patents
A continuous 3D printing method for long trusses based on laser ranging feedback control Download PDFInfo
- Publication number
- CN115891168A CN115891168A CN202211348225.7A CN202211348225A CN115891168A CN 115891168 A CN115891168 A CN 115891168A CN 202211348225 A CN202211348225 A CN 202211348225A CN 115891168 A CN115891168 A CN 115891168A
- Authority
- CN
- China
- Prior art keywords
- point cloud
- cloud data
- printing
- data set
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Abstract
本发明公开了一种基于激光测距反馈控制的长桁架连续3D打印方法,在进行长桁架连续3D打印过程中,首先是提取当前层3D模型,当3D打印头带动激光测距传感器整体运动过程中,激光传感器实时采集已打印模型的测距数据,并与轴位置组合成点云数据,然后通过对测量数据进行特征识别,并与当前层3D模型特征进行比较,得出3D模型的补偿控制量,最终通过多轴协同控制,实现出现整个打印过程中的自适应补偿控制;本发明设计了一种基于激光测距反馈自适应补偿控制的长桁架连续3D打印方法,可替代工作人员监控3D打印过程中打印件是否异常以及对打印件进行自适应补偿控制,从而节省了打印材料,提高了打印效率。
The invention discloses a long truss continuous 3D printing method based on laser ranging feedback control. In the process of continuous 3D printing of long trusses, firstly, the 3D model of the current layer is extracted. When the 3D printing head drives the laser ranging sensor in the overall movement process Among them, the laser sensor collects the distance measurement data of the printed model in real time, and combines it with the axis position to form point cloud data, and then performs feature recognition on the measurement data and compares it with the current layer 3D model features to obtain the compensation control of the 3D model Finally, through multi-axis collaborative control, adaptive compensation control in the entire printing process is realized; the present invention designs a continuous 3D printing method for long trusses based on laser ranging feedback adaptive compensation control, which can replace staff monitoring 3D In the printing process, whether the printed matter is abnormal or not and the self-adaptive compensation control is performed on the printed matter, thereby saving printing materials and improving printing efficiency.
Description
技术领域technical field
本发明属于3D打印状态检测、补偿控制技术领域,尤其涉及一种基于激光测距反馈控制的长桁架连续3D打印方法。The invention belongs to the technical field of 3D printing state detection and compensation control, and in particular relates to a continuous 3D printing method for long trusses based on laser ranging feedback control.
背景技术Background technique
3D打印技术近年来已经应用到航天在轨制造领域,通过携带3D打印原材料和3D打印机,可以根据实际需求完成在轨维修工具、零部件以及相关结构件的在轨打印,并且在轨零重力环境使得超长打印件可以实现无支撑设计,无须考虑重力影响。但超长件打印往往需要较长时间,在中间往往可能会出现打印件异常或者打印失败,例如打印丝材断掉、挤出轮压不紧丝材导致丝材给进缺少、喷嘴磨损导致挤出不均或者运动参数设置不合理导致打印件尺寸发生偏差、打印件断裂等问题,这些问题严重影响整个打印效率或丝材严重浪费问题。3D printing technology has been applied to aerospace on-orbit manufacturing in recent years. By carrying 3D printing raw materials and 3D printers, on-orbit maintenance tools, parts and related structural parts can be printed on-orbit according to actual needs, and in-orbit zero-gravity environment This enables super-long prints to be designed without support, without having to consider the impact of gravity. However, it takes a long time to print super-long parts, and there may be abnormalities or printing failures in the middle, such as broken printing filaments, insufficient filament feeding due to insufficient extrusion wheel pressure, and extrusion due to nozzle wear. Uneven output or unreasonable motion parameter setting will lead to problems such as deviation of print size and breakage of prints. These problems seriously affect the entire printing efficiency or serious waste of filaments.
本发明就是针对此类问题提出一种解决方案,通过将同一时刻激光测距数据、当前X、Y轴步进电机位置组成点云数据,并进行位姿坐标换算,与当前层打印的切片模型数据进行特征和状态识别,最后计算出当前层打印件与切片模型的差值,并识别当前打印件是否正常,如果异常,则根据差值进行补偿控制或判断为打印失败进行停机保护,如果在偏差允许范围内则对各个运动轴进行补偿控制。因此,提出一种基于激光测距反馈自适应补偿控制的长桁架连续3D打印方法。The present invention proposes a solution to this kind of problem. By combining the laser ranging data at the same time and the current X and Y axis stepping motor positions to form point cloud data, and performing pose coordinate conversion, it can be compared with the slice model printed on the current layer. Identify the characteristics and status of the data, and finally calculate the difference between the current layer print and the slice model, and identify whether the current print is normal. If it is abnormal, perform compensation control according to the difference or judge that the print has failed and stop protection. Compensation control is performed on each movement axis within the allowable range of deviation. Therefore, a continuous 3D printing method for long trusses based on laser ranging feedback adaptive compensation control is proposed.
发明内容Contents of the invention
有鉴于此,本发明提供了一种基于激光测距反馈控制的长桁架连续3D打印方法,来对打印件实时自适应补偿,避免打印出现异常或打印失败,包括:In view of this, the present invention provides a continuous 3D printing method for long trusses based on laser ranging feedback control to self-adaptively compensate the printed parts in real time to avoid printing abnormalities or printing failures, including:
步骤1,获取激光传感器安装位置处的源点云数据集Ps,获取当前打印层的3D模型目标点云数据集Pt;Step 1, obtain the source point cloud data set P s at the installation position of the laser sensor, and obtain the 3D model target point cloud data set P t of the current printing layer;
步骤2,通过对所述源点云数据集Ps中激光测距与Z轴电机位置数据进行预处理和坐标转换后得到第二源点云数据集psnew;Step 2, obtaining the second source point cloud data set p snew by performing preprocessing and coordinate transformation on the laser ranging and Z-axis motor position data in the source point cloud data set P s ;
步骤3,提取所述目标点云数据集Pt的对应坐标点云数据,并重新组成相应线段的第二目标点云数据集ptnew;Step 3, extracting the corresponding coordinate point cloud data of the target point cloud data set P t , and recomposing the second target point cloud data set p tnew of the corresponding line segment;
步骤4,对所述第二源点云数据集psnew和所述第二目标点云数据集ptnew分别采用线性最小二乘法拟合得到线段集ls={ls0,ls1,....,lsm}、线段集lt={lt0,lt1,....,ltm};比较各个线段特征值差值是否在设定的阈值∈范围内,判断当前打印部分位姿偏差是否在控制补偿范围内,并得出可补偿控制状态字集sk={sk0,sk1,....,skm};Step 4: Fit the second source point cloud data set p snew and the second target point cloud data set p tnew respectively to obtain a line segment set l s ={l s0 ,l s1 ,.. ..,l sm }, line segment set l t ={l t0 ,l t1 ,....,l tm }; compare whether the eigenvalue difference of each line segment is within the set threshold ∈ range, and judge the position of the current printing part Whether the attitude deviation is within the range of control compensation, and obtain the compensable control state word set s k ={s k0 ,s k1 ,....,s km };
步骤5,根据状态字集sk,对所述第二源点云数据集psnew和所述第二点目标云数据集ptnew对应线段中的点云数据进行匹配点计算,得到线段集偏差平方和集εl,并根据阈值εj生成补偿控制量γb={γb0,γb1,...,γbm};Step 5, according to the state word set sk , perform matching point calculation on the point cloud data in the line segment corresponding to the second source point cloud data set p snew and the second point target cloud data set p tnew , and obtain the line segment set deviation Square sum set ε l , and generate compensation control quantity γ b ={γ b0 ,γ b1 ,...,γ bm } according to threshold ε j ;
步骤6,根据所述补偿控制量γb计算各个运动轴补偿控制量δb。Step 6, calculating the compensation control quantity δ b of each motion axis according to the compensation control quantity γ b .
特别地,所述步骤1包括:In particular, step 1 includes:
步骤1-1,基于同一时刻的激光传感器数据和当前X、Y、Z轴电机位置数据组合成激光传感器安装位置处的源点云数据集Ps;其中根据当前切片数据,建立以Δt为时间刻度的坐标轴,生成ti时刻的组合数据Psi=(ti,xsi,ysi,zsi,lsi),组合成激光传感器安装位置处的源点云数据集Ps={Ps0,Ps1,...,Psn};其中lsi表示当前切片的组合数据中的线段的特征值,是ti时刻的激光传感器数据;xsi,ysi,zsi代表三维坐标;Step 1-1, based on the laser sensor data at the same moment and the current X, Y, Z axis motor position data to form the source point cloud data set P s at the installation position of the laser sensor; where Δt is established according to the current slice data coordinate axis of the scale, generate the combined data P si =(t i , x si , y si , z si , l si ) at time t i , and combine it into the source point cloud data set P s ={P s0 , P s1 ,...,P sn }; where l si represents the eigenvalue of the line segment in the combined data of the current slice, which is the laser sensor data at time t i ; x si , y si , z si represent three-dimensional coordinates;
步骤1-2,根据所述Δt,提取当前切片数据对应的Pti=(ti,xti,yti,zti),并组合成当前打印层的3D模型目标点云数据集Pt={Pt0,Pt1,...,Ptn}。Step 1-2, according to the Δt, extract P ti =(t i , x ti , y ti , z ti ) corresponding to the current slice data, and combine it into a 3D model target point cloud data set P t = {P t0 ,P t1 ,...,P tn }.
特别地,所述步骤2包括:In particular, said step 2 includes:
步骤2-1,设定预处理阈值εp,对所述源点云数据集Ps对应ti时刻的Psi=(ti,xsi,ysi,zsi,lsi)进行预处理,按照公式Step 2-1, set the preprocessing threshold ε p , and perform preprocessing on the source point cloud data set P s corresponding to P si = (t i , x si , y si , z si , l si ) at time t i , according to the formula
将在阈值εp范围外的数据清出,生成预处理后的源点云数据集P′s;Clear the data outside the range of the threshold ε p to generate the preprocessed source point cloud data set P′ s ;
步骤2-2,对所述预处理后的源点云数据集P′s,根据激光传感器安装位置和打印头安装位置进行坐标换算,两者关系为:Step 2-2, for the preprocessed source point cloud data set P′ s , perform coordinate conversion according to the installation position of the laser sensor and the installation position of the print head, the relationship between the two is:
上式中(Δδx,Δδy,θz)为激光传感器相对打印头的安装位姿,并重新计算得到所述第二源点云数据集psnew={ps0,ps1,...,psn}。In the above formula (Δδ x , Δδ y , θ z ) is the installation pose of the laser sensor relative to the print head, and recalculated to obtain the second source point cloud data set p snew ={p s0 ,p s1 ,... , p sn }.
特别地,所述步骤3包括:In particular, the step 3 includes:
步骤3-1,剔除当前层切片模型数据集Pt中对应预处理后的源点云数据集P′s中ti时刻阈值范围外的无效点数据,重新组成所述第二目标点云数据集ptnew={pt0,pt1,...,ptn}。Step 3-1, eliminate the invalid point data outside the threshold range at time t i in the corresponding preprocessed source point cloud data set P′ s in the current layer slice model data set P t , and recompose the second target point cloud data Set p tnew = {p t0 , p t1 , . . . , p tn }.
特别地,所述步骤4包括:In particular, step 4 includes:
步骤4-1,对所述第二源点云数据集psnew中,根据所述步骤2-1,将其中所述预处理后的源点云数据集P′s中的连续点组成新的线段集ds={ds0,ds1,...,dsm},将所述第二目标点云数据集ptnew中的连续点组成新的线段集dt={dt0,dt1,...,dtm};Step 4-1, for the second source point cloud data set p snew , according to the step 2-1, the continuous points in the preprocessed source point cloud data set P' s form a new Line segment set d s ={d s0 ,d s1 ,...,d sm }, the continuous points in the second target point cloud data set p tnew form a new line segment set d t ={d t0 ,d t1 ,...,d tm };
步骤4-2,根据目标打印模型的特性,通过线段集ds的第i段建立f(yi)=kixi+bi拟合函数,并通过对损失函数J(ki,bi)分别对ki,bi求偏导,令偏导为0反推对应ki,bi,即lsi=(ki,bi),并组成线段集ls={ls0,ls1,....,lsm};Step 4-2, according to the characteristics of the target printing model, establish f(y i )=k i x i + bi fitting function through the i-th segment of the line segment set d s , and pass the loss function J(k i ,b i ) Calculate the partial derivatives for ki and bi respectively, let the partial derivatives be 0 and deduce the corresponding ki and bi , that is, l si =( ki ,bi ) , and form a line segment set l s ={l s0 , l s1 ,....,l sm };
步骤4-3,根据所述步骤4-2,对当前打印层的3D模型的第二目标点云数据集ptnew同样采用线性最小二乘法拟合处线段lt={lt0,lt1,....,ltm};Step 4-3, according to the step 4-2, the second target point cloud data set p tnew of the 3D model of the current printing layer is also fitted with the linear least squares method l t = {l t0 , l t1 , ....,l tm };
步骤4-4,设置线段特征值有效阈值∈=(∈k,∈b),对线段集ls和lt进行比较,并判断当前打印部分位姿偏差是否在可控制补偿范围内,并得出可补偿控制状态字集sk={sk0,sk1,....,skm}。Step 4-4, set the effective threshold of the line segment feature value ∈=(∈ k , ∈ b ), compare the line segment set l s and l t , and judge whether the pose deviation of the current printing part is within the controllable compensation range, and obtain Get the compensable control state word set s k ={s k0 ,s k1 ,....,s km }.
特别地,所述步骤5包括:In particular, step 5 includes:
步骤5-1,根据状态字集sk,选出需要进行匹配点计算的线段;Step 5-1, according to the state word set s k , select the line segment that needs to be calculated for matching points;
步骤5-2,对所述线段集ls中的lsi和所述线段集lt的lti的对应点数据计算各轴偏差平方和εli,即:Step 5-2, calculate the sum of squared deviations ε li of each axis for the corresponding point data of l si in the line segment set l s and l ti of the line segment set l t , namely:
得到线段集偏差平方和的开方集εl={εl0,εl1,...,εlm};并生成补偿系数μl=max(εl);Obtain the square root set ε l ={ε l0 ,ε l1 ,...,ε lm } of the deviation sum of the squares of the line segment set; and generate the compensation coefficient μ l =max(ε l );
步骤5-3,根据所述补偿系数μl,计算线段集中点的补偿控制量γb={γb0,γb1,...,γbm},其中:Step 5-3, according to the compensation coefficient μ l , calculate the compensation control quantity γ b ={γ b0 ,γ b1 ,...,γ bm } of the concentrated point of the line segment, where:
特别地,其中所述步骤6包括:Particularly, wherein said step 6 includes:
步骤6-1,通过时刻k的补偿控制量γbk={σxk,σyk,σzk},计算对应时刻的各个运动轴补偿控制量δbk:Step 6-1, through the compensation control quantity γ bk ={σ xk ,σ yk ,σ zk } at time k, calculate the compensation control quantity δ bk of each motion axis at the corresponding time:
δbk(x,y,z)=(σxkxtk,σykytk,σzkztk)δ bk (x,y,z)=(σ xk x tk ,σ yk y tk ,σ zk z tk )
其中(xtk,ytk,ztk)为下一层切片3D模型对应k时刻的打印轨迹坐标;针对x,y轴,则直接生成补偿后的x,y轴坐标数据(x'tk,y'tk):Among them (x tk , y tk , z tk ) are the print trajectory coordinates of the next slice 3D model corresponding to time k; for the x, y axis, the compensated x, y axis coordinate data (x' tk , y ' tk ):
(x'tk,y'tk)=((1+σxk)xtk,(1+σyk)ytk)(x' tk ,y' tk )=((1+σ xk )x tk ,(1+σ yk )y tk )
步骤6-2,由于z轴运动是通过A、B、C以及z轴组合运动实现,当整个打印在正常打印段,即非换手过程时,A、B、C轴为固定状态,此时设定z轴补偿控制量δb(z):Step 6-2, since the movement of the z-axis is realized through the combined movement of the A, B, C and z-axis, when the entire printing is in the normal printing section, that is, when the hand is not changed, the A, B, and C axes are in a fixed state. Set the z-axis compensation control amount δ b (z):
当打印处于换手操作段时,通过A、C轴压紧,B轴抬起,此时z轴往zmin方向运动实现z轴回零;然后B轴压紧,A、C抬起,此时z轴可以往zmax方向运动,进入正常打印阶段,在这个过程中,z轴补偿控制量δb(z):When the printing is in the hand-changing operation section, the A and C axes are pressed, and the B axis is lifted. At this time, the z axis moves in the z min direction to realize the z axis back to zero; then the B axis is pressed, and the A and C are lifted. At this time, the z-axis can move in the z max direction and enter the normal printing stage. During this process, the z-axis compensation control amount δ b (z):
其中dbz为单次正常打印的z轴距离,hz为z轴上的回程间隙;即补偿后的z轴坐标数据z'tk:z'tk=ztk+δb(z)。Among them, d bz is the z-axis distance of a single normal printing, h z is the return clearance on the z-axis; that is, the compensated z-axis coordinate data z' tk : z' tk =z tk +δ b (z).
有益效果:Beneficial effect:
1)通过本发明,可替代工作人员监控3D打印过程中打印件是否异常以及对打印件进行自适应补偿控制,从而节省了打印材料,提高了打印效率;1) Through the present invention, it can replace the staff to monitor whether the printed parts are abnormal during the 3D printing process and perform adaptive compensation control on the printed parts, thereby saving printing materials and improving printing efficiency;
2)通过本发明,可根据实时获取激光传感器安装位置处的源点云数据集,以及获取当前打印层的3D模型目标点云数据集,准确掌握当前3D打印的状态;2) Through the present invention, the current state of 3D printing can be accurately grasped according to the real-time acquisition of the source point cloud data set at the installation position of the laser sensor and the acquisition of the 3D model target point cloud data set of the current printing layer;
3)通过本发明,通过对源点云数据集的预处理及对源点云数据集和目标数据集中无效点的剔除,提高了检测效率;3) by the present invention, by the preprocessing to source point cloud data set and the elimination of invalid points in source point cloud data set and target data set, improved detection efficiency;
4)通过本发明,根据目标打印模型的特性,通过最小二乘法拟合确定当前打印部分位姿偏差,提高了检测的准确性;4) Through the present invention, according to the characteristics of the target printing model, the pose deviation of the current printing part is determined by least squares fitting, which improves the accuracy of detection;
5)通过本发明,通过某一时刻的补偿控制量,计算对应时刻的各个运动轴补偿控制量,并针对不同坐标轴进行不同的补偿方式,最大限度保证了打印质量。5) Through the present invention, the compensation control amount of each motion axis at the corresponding time is calculated through the compensation control amount at a certain moment, and different compensation methods are performed for different coordinate axes, thereby ensuring the printing quality to the maximum extent.
附图说明Description of drawings
图1为本发明实施例中方法流程示意图;Fig. 1 is the schematic flow chart of method in the embodiment of the present invention;
图2为本发明提供的3D打印模型异常形状识别方法流程示意图。Fig. 2 is a schematic flowchart of a method for identifying abnormal shapes of 3D printing models provided by the present invention.
具体实施方式Detailed ways
下面结合附图并举实施例,对本发明进行详细描述。The present invention will be described in detail below with reference to the accompanying drawings and examples.
本发明提供了一种基于激光测距反馈控制的长桁架连续3D打印方法,该方法具体步骤包括:The present invention provides a long truss continuous 3D printing method based on laser ranging feedback control. The specific steps of the method include:
步骤1,基于同一时刻的激光传感器数据和当前X、Y、Z轴电机位置数据组合成激光传感器安装位置处的源点云数据集Ps,同时基于单片机存储模型切片数据获取当前打印层的3D模型目标点云数据集Pt;Step 1: Based on the laser sensor data at the same time and the current X, Y, and Z axis motor position data, the source point cloud data set P s at the laser sensor installation position is combined, and at the same time, the 3D data of the current printing layer is obtained based on the single-chip storage model slice data. Model target point cloud dataset P t ;
其中,步骤1具体包括:Among them, step 1 specifically includes:
步骤1-1,根据当前切片数据,建立以Δt为时间刻度的坐标轴,生成ti时刻的组合数据Psi=(ti,xsi,ysi,zsi,lsi),并组合成激光传感器安装位置处的源点云数据集Ps={Ps0,Ps1,...,Psn};Step 1-1, according to the current slice data, establish the coordinate axis with Δt as the time scale, generate the combined data P si =(t i ,x si ,y si ,z si ,l si ) at time t i , and combine them into Source point cloud data set P s at the laser sensor installation position = {P s0 , P s1 ,...,P sn };
步骤1-2,根据步骤1-1的Δt,提取当前切片数据对应的Pti=(ti,xti,yti,zti),并组合成当前打印层的3D模型目标点云数据集Pt=={Pt0,Pt1,...,Ptn};Step 1-2, according to Δt in step 1-1, extract P ti =(t i , x ti , y ti , z ti ) corresponding to the current slice data, and combine it into the 3D model target point cloud data set of the current printing layer P t == {P t0 ,P t1 ,...,P tn };
步骤2,通过对源点云数据集Ps中激光测距与Z轴电机位置数据进行预处理,滤除清理无效数据并重新组成多个线段点云数据集P′s={Ps0,Ps1,...,Psn},同时基于激光传感器安装位置旋转、平移ps,获得第二源点云数据集psnew={ps0,ps1,...,psn};Step 2, by preprocessing the laser ranging and Z-axis motor position data in the source point cloud dataset P s , filtering out invalid data and recomposing multiple line segment point cloud datasets P′ s ={P s0 ,P s1 ,...,P sn }, while rotating and translating p s based on the installation position of the laser sensor, to obtain the second source point cloud data set p snew ={p s0 ,p s1 ,...,p sn };
其中,步骤2具体包括:Among them, step 2 specifically includes:
步骤2-1,设定预处理阈值εp,对源点云数据集Ps对应ti时刻的Psi=(ti,xsi,ysi,zsi,lsi)进行预处理,在阈值范围外即滤除清出:Step 2-1, set the preprocessing threshold ε p , and perform preprocessing on the source point cloud data set P s corresponding to time t i at P si = (t i , x si , y si , z si , l si ). Filter out if outside the threshold range:
其中lsi表示当前切片的组合数据中的线段的特征值,是ti时刻的激光传感器数据;xsi,ysi,zsi代表三维坐标;Where l si represents the eigenvalue of the line segment in the combined data of the current slice, which is the laser sensor data at time t i ; x si , y si , z si represent three-dimensional coordinates;
按照上述步骤,对各个时刻的数据进行预处理,并生成新的点云数据集P′s。According to the above steps, the data at each moment are preprocessed, and a new point cloud data set P' s is generated.
步骤2-2,对激光传感器安装位置和打印头安装位置进行坐标换算,两者关系为:Step 2-2, perform coordinate conversion on the installation position of the laser sensor and the installation position of the print head, the relationship between the two is:
上式中(Δδx,Δδy,θz)为激光传感器相对打印头的安装位姿,并重新计算新的psnew={ps0,ps1,...,psn};In the above formula (Δδ x ,Δδ y ,θ z ) is the installation pose of the laser sensor relative to the print head, and recalculate the new p snew ={p s0 ,p s1 ,...,p sn };
步骤3,提取当前层切片模型数据集Pt的对应坐标点云数据,并重新组成相应线段的第二点云数据集ptnew={pt0,pt1,...,ptn};Step 3, extract the corresponding coordinate point cloud data of the slice model data set P t of the current layer, and recompose the second point cloud data set p tnew ={p t0 , p t1 ,..., p tn } of the corresponding line segment;
其中,所述步骤3包括:Wherein, said step 3 includes:
步骤3-1,剔除当前层切片模型数据集Pt中对应P′s中ti时刻阈值范围外的无效点数据,重新组成新的第二点云数据集ptnew={pt0,pt1,...,ptn};Step 3-1: Eliminate invalid point data in the current layer slice model data set P t that is outside the threshold range at time t i corresponding to P′ s , and recompose a new second point cloud data set p tnew ={p t0 ,p t1 ,...,p tn };
步骤4,对点云数据集psnew采用线性最小二乘法拟合处线段集ls={ls0,ls1,....,lsm},对第二目标点云数据集ptnew同样采用线性最小二乘法拟合处线段lt={lt0,lt1,....,ltm},通过比较各个线段特征值差值是否在设定的阈值∈范围内,来判断当前打印部分位姿偏差是否在控制补偿范围内,并得出可补偿控制状态字集sk={sk0,sk1,....,skm};Step 4, use the linear least squares method to fit the line segment set l s ={l s0 ,l s1 ,...,l sm } for the point cloud dataset p snew, and do the same for the second target point cloud dataset p tnew Use the linear least squares method to fit the line segment l t = {l t0 ,l t1 ,....,l tm }, and judge whether the current printing is by comparing whether the eigenvalue difference of each line segment is within the set threshold ∈ range Whether part of the pose deviation is within the control compensation range, and obtain the compensable control state word set s k ={s k0 ,s k1 ,....,s km };
其中,步骤4包括:Among them, step 4 includes:
步骤4-1,对所述第二源点云数据集psnew中,根据所述步骤2-1,将其中所述预处理后的源点云数据集P′s中的连续点组成新的线段集ds={ds0,ds1,...,dsm},将所述第二目标点云数据集ptnew中的连续点组成新的线段集dt={dt0,dt1,...,dtm};Step 4-1, for the second source point cloud data set p snew , according to the step 2-1, the continuous points in the preprocessed source point cloud data set P' s form a new Line segment set d s ={d s0 ,d s1 ,...,d sm }, the continuous points in the second target point cloud data set p tnew form a new line segment set d t ={d t0 ,d t1 ,...,d tm };
步骤4-2,根据目标打印模型的特性,通过线段集ds的第i段建立f(yi)=kixi+bi拟合函数,即采用线性最小二乘法,并通过对损失函数J(ki,bi)分别对ki,bi求偏导,令偏导为0反推对应ki,bi,即lsi=(ki,bi),并组成线段集ls={ls0,ls1,....,lsm};Step 4-2, according to the characteristics of the target printing model, establish f(y i )=k i x i + bi fitting function through the i-th segment of the line segment set d s , that is, adopt the linear least square method, and pass the loss The function J(k i , b i ) calculates partial derivatives for k i and b i respectively, and sets the partial derivatives to 0 to deduce the corresponding k i and b i , that is, l si = (k i , b i ), and forms a set of line segments l s = {l s0 ,l s1 ,...,l sm };
步骤4-3,根据步骤4-2,对点云数据集ptnew同样采用线性最小二乘法拟合处线段lt={lt0,lt1,....,ltm};Step 4-3, according to step 4-2, the line segment l t ={l t0 ,l t1 ,....,l tm } is also fitted to the point cloud data set p tnew using the linear least squares method;
步骤4-4,设置线段特征值有效阈值∈=(∈k,∈b),对线段集ls和lt进行比较,并判断当前打印部分位姿偏差是否在可控制补偿范围内,并得出可补偿控制状态字集sk={sk0,sk1,....,skm};Step 4-4, set the effective threshold of the line segment feature value ∈=(∈ k , ∈ b ), compare the line segment set l s and l t , and judge whether the pose deviation of the current printing part is within the controllable compensation range, and obtain Output compensable control state word set s k = {s k0 , s k1 ,...., s km };
步骤5,根据状态字集sk,对点云数据集ps和pt对应线段中的点云数据进行匹配点计算,得到线段集偏差平方和集εl,并根据阈值εj生成补偿控制量γb={γb0,γb1,...,γbm};Step 5, according to the state word set s k , perform matching point calculation on the point cloud data in the corresponding line segment of the point cloud data set p s and p t , obtain the line segment set deviation square sum set ε l , and generate compensation control according to the threshold ε j Quantity γ b = {γ b0 ,γ b1 ,...,γ bm };
其中,所述步骤5包括:Wherein, the step 5 includes:
步骤5-1,根据状态字集sk,选出需要进行匹配点计算的线段;Step 5-1, according to the state word set s k , select the line segment that needs to be calculated for matching points;
步骤5-2,对线段集ls中的lsi和线段集lt的lti的对应点数据计算各轴偏差平方和εli,即:Step 5-2, calculate the sum of the square deviations ε li of each axis for the corresponding point data of l si in the line segment set l s and l ti in the line segment set l t , namely:
得到线段集偏差平方和的开方集εl={εl0,εl1,...,εlm};并生成补偿系数μl=max(εl);Obtain the square root set ε l ={ε l0 ,ε l1 ,...,ε lm } of the deviation sum of the squares of the line segment set; and generate the compensation coefficient μ l =max(ε l );
步骤5-3,根据补偿系数μl,计算线段集中点的补偿控制量γb={γb0,γb1,...,γbm},其中:Step 5-3, according to the compensation coefficient μ l , calculate the compensation control quantity γ b ={γ b0 ,γ b1 ,...,γ bm } of the point where the line segment is concentrated, where:
步骤6,根据补偿控制量γb计算各个运动轴补偿控制量δb,其中将x轴和y轴的补偿量直接与下一层切片3D模型的x轴和y轴坐标上,对z轴补偿量则才采用多轴组合控制完成。其中,所述步骤6包括:Step 6, calculate the compensation control amount δ b of each motion axis according to the compensation control amount γ b , where the compensation amount of the x-axis and y-axis are directly related to the x-axis and y-axis coordinates of the next slice 3D model, and the z-axis is compensated Quantity is completed by multi-axis combined control. Wherein, said step 6 includes:
步骤6-1,通过时刻k的补偿控制量γbk={σxk,σyk,σzk},计算对应时刻的各个运动轴补偿控制量δbk:Step 6-1, through the compensation control quantity γ bk ={σ xk ,σ yk ,σ zk } at time k, calculate the compensation control quantity δ bk of each motion axis at the corresponding time:
δbk(x,y,z)=(σxkxtk,σykytk,σzkztk)δ bk (x,y,z)=(σ xk x tk ,σ yk y tk ,σ zk z tk )
其中(xtk,ytk,ztk)为下一层切片3D模型对应k时刻的打印轨迹坐标。针对x,y轴,则直接生成补偿后的x,y轴坐标数据(x'tk,y'tk):Among them (x tk , y tk , z tk ) are the print trajectory coordinates corresponding to time k of the sliced 3D model of the next layer. For the x and y axes, the compensated x and y axis coordinate data (x' tk , y' tk ) are directly generated:
(x'tk,y'tk)=((1+σxk)xtk,(1+σyk)ytk)(x' tk ,y' tk )=((1+σ xk )x tk ,(1+σ yk )y tk )
步骤6-2,由于z轴运动是通过A、B、C以及z轴组合运动实现,当整个打印在正常打印段,即非换手过程时,A、B、C轴为固定状态,此时设定z轴补偿控制量δb(z):Step 6-2, since the movement of the z-axis is realized through the combined movement of the A, B, C and z-axis, when the entire printing is in the normal printing section, that is, when the hand is not changed, the A, B, and C axes are in a fixed state. Set the z-axis compensation control amount δ b (z):
当打印处于换手操作段时,通过A、C轴压紧,B轴抬起,此时z轴往zmin方向运动实现z轴”回零”;然后B轴压紧,A、C抬起,此时z轴可以往zmax方向运动,进入正常打印阶段,在这个过程中,z轴补偿控制量δb(z):When the printing is in the hand-changing operation section, the A and C axes are pressed, and the B axis is lifted. At this time, the z axis moves in the z min direction to realize the z axis "return to zero"; then the B axis is pressed, and the A and C are lifted. , at this time, the z-axis can move in the z max direction and enter the normal printing stage. During this process, the z-axis compensation control amount δ b (z):
其中dbz为单次正常打印的z轴距离,hz为z轴上的回程间隙。Among them, d bz is the z-axis distance of a single normal printing, and h z is the return clearance on the z-axis.
即补偿后的z轴坐标数据z'tk:That is, the compensated z-axis coordinate data z' tk :
z'tk=ztk+δb(z)z' tk =z tk +δ b (z)
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。To sum up, the above are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
对于本领域技术人员而言,显然本发明实施例不限于上述示范性实施例的细节,而且在不背离本发明实施例的精神或基本特征的情况下,能够以其他的具体形式实现本发明实施例。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明实施例的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明实施例内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。系统、装置或终端权利要求中陈述的多个单元、模块或装置也可以由同一个单元、模块或装置通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。For those skilled in the art, it is obvious that the embodiments of the present invention are not limited to the details of the above-mentioned exemplary embodiments, and that the embodiments of the present invention can be implemented in other specific forms without departing from the spirit or essential features of the embodiments of the present invention. example. Therefore, no matter from any point of view, the embodiments should be regarded as exemplary and non-restrictive, and the scope of the embodiments of the present invention is defined by the appended claims rather than the above description, so it is intended that the All changes within the meaning and range of equivalents to the claims are included in the embodiments of the present invention. Any reference sign in a claim should not be construed as limiting the claim concerned. In addition, it is obvious that the word "comprising" does not exclude other elements or steps, and the singular does not exclude the plural. Multiple units, modules or devices stated in system, device or terminal claims may also be realized by the same unit, module or device through software or hardware. The words first, second, etc. are used to denote names and do not imply any particular order.
最后应说明的是,以上实施方式仅用以说明本发明实施例的技术方案而非限制,尽管参照以上较佳实施方式对本发明实施例进行了详细说明,本领域的普通技术人员应当理解,可以对本发明实施例的技术方案进行修改或等同替换都不应脱离本发明实施例的技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the embodiments of the present invention and not to limit them. Although the embodiments of the present invention have been described in detail with reference to the above preferred embodiments, those of ordinary skill in the art should understand that they can Modifications or equivalent replacements to the technical solutions of the embodiments of the present invention should not deviate from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211348225.7A CN115891168B (en) | 2022-10-31 | 2022-10-31 | A method for continuous 3D printing of long trusses based on laser ranging feedback control |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211348225.7A CN115891168B (en) | 2022-10-31 | 2022-10-31 | A method for continuous 3D printing of long trusses based on laser ranging feedback control |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115891168A true CN115891168A (en) | 2023-04-04 |
CN115891168B CN115891168B (en) | 2025-03-21 |
Family
ID=86475350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211348225.7A Active CN115891168B (en) | 2022-10-31 | 2022-10-31 | A method for continuous 3D printing of long trusses based on laser ranging feedback control |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115891168B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024250621A1 (en) * | 2023-06-09 | 2024-12-12 | 奥比中光科技集团股份有限公司 | Printing anomaly detection method, 3d printer and computer-readable storage medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105666877A (en) * | 2016-03-22 | 2016-06-15 | 中国工程物理研究院材料研究所 | 3D printing machine with three-dimensional figure feedback system and printing method of 3D printing machine |
CN109501241A (en) * | 2018-11-05 | 2019-03-22 | 北京工业大学 | The multi-direction FDM 3D printing method of high intensity of stereoscopic vision monitoring |
CN109532021A (en) * | 2018-10-10 | 2019-03-29 | 浙江大学 | Layer-by-layer detection method of 3D printing deposition defects based on structural light linear anomalies |
US20190377843A1 (en) * | 2018-06-06 | 2019-12-12 | Hamilton Sundstrand Corporation | Additive manufacturing including compensation modeling methodology with shape transformation |
WO2021226891A1 (en) * | 2020-05-13 | 2021-11-18 | 中国科学院福建物质结构研究所 | 3d printing device and method based on multi-axis linkage control and machine visual feedback measurement |
-
2022
- 2022-10-31 CN CN202211348225.7A patent/CN115891168B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105666877A (en) * | 2016-03-22 | 2016-06-15 | 中国工程物理研究院材料研究所 | 3D printing machine with three-dimensional figure feedback system and printing method of 3D printing machine |
US20190377843A1 (en) * | 2018-06-06 | 2019-12-12 | Hamilton Sundstrand Corporation | Additive manufacturing including compensation modeling methodology with shape transformation |
CN109532021A (en) * | 2018-10-10 | 2019-03-29 | 浙江大学 | Layer-by-layer detection method of 3D printing deposition defects based on structural light linear anomalies |
CN109501241A (en) * | 2018-11-05 | 2019-03-22 | 北京工业大学 | The multi-direction FDM 3D printing method of high intensity of stereoscopic vision monitoring |
WO2021226891A1 (en) * | 2020-05-13 | 2021-11-18 | 中国科学院福建物质结构研究所 | 3d printing device and method based on multi-axis linkage control and machine visual feedback measurement |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024250621A1 (en) * | 2023-06-09 | 2024-12-12 | 奥比中光科技集团股份有限公司 | Printing anomaly detection method, 3d printer and computer-readable storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN115891168B (en) | 2025-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102020001169B4 (en) | Device and system for setting machining conditions | |
WO2020155229A1 (en) | Method for self-adaptive compensation for feed shaft thermal error | |
Song et al. | A method for grinding removal control of a robot belt grinding system | |
US7974722B2 (en) | Methods and systems for processing surface data for the manufacturing of optimum fit mating parts | |
CN110069041B (en) | A workpiece processing method and system based on on-machine measurement | |
CN102785166B (en) | Kinematic transformation based grinding machining method for numerically controlled grinding wheel | |
CN115891168A (en) | A continuous 3D printing method for long trusses based on laser ranging feedback control | |
CN101251754A (en) | A processing and control method of error flow in multi-process machining process | |
CN115099123B (en) | Method for predicting spindle assembly precision of winding machine by fusing data and mechanism | |
CN105005265A (en) | A Feed Rate Planning Method for NC Machining Based on Curve Smooth Deformation | |
CN119472507A (en) | Control method, device, equipment and storage medium for five-axis high-precision CNC machine tool | |
CN107479499A (en) | Thin-wall part cuts interface mismachining tolerance compensating Modeling and penalty coefficient learning control method | |
CN111338296B (en) | A five-axis machine tool geometric error compensation method for the improvement of the overall toolpath smoothing of the curved surface | |
CN107138857A (en) | A kind of double laser beam compensates synchronous school shape and intensifying device and method automatically | |
CN110045682B (en) | Five-axis machining cutter deformation error off-line compensation method based on least square method | |
CN112947294A (en) | Automobile assembly workshop monitoring simulation system based on digital twins | |
Lu et al. | A dynamic condition-based maintenance policy for heterogeneous-wearing tools with considering product quality deterioration | |
CN118864704A (en) | A deep learning-based method for reconstructing difference models of additive repair of industrial equipment | |
CN115091283B (en) | Control and adjustment method and system for efficient grinding of crankshaft | |
CN116882582A (en) | Tobacco factory equipment production plan formulation method based on output forecast | |
CN111243013A (en) | Visual printing machine deviation rectifying pose prediction method based on integrated multi-target regression chain | |
CN116700001A (en) | A press-fit predictive control method based on hierarchical feature fusion and multi-attention mechanism | |
Lin et al. | Pose estimation in industrial machine vision systems under sensing dynamics: A statistical learning approach | |
CN116834977A (en) | Range control method for satellite orbit data | |
CN109977855A (en) | A kind of face's method for registering based on student-t distribution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |