CN115878943A - 一种物联网能源监测方法及系统 - Google Patents
一种物联网能源监测方法及系统 Download PDFInfo
- Publication number
- CN115878943A CN115878943A CN202310046690.3A CN202310046690A CN115878943A CN 115878943 A CN115878943 A CN 115878943A CN 202310046690 A CN202310046690 A CN 202310046690A CN 115878943 A CN115878943 A CN 115878943A
- Authority
- CN
- China
- Prior art keywords
- sub
- energy data
- nodes
- node
- common
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Telephonic Communication Services (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Selective Calling Equipment (AREA)
Abstract
本申请涉及数据处理领域,尤其涉及一种物联网能源监测方法及系统,抱:依据子级厂区的类型,从子级厂区的普通节点中选择相应数量的计算节点;将子级厂区内剩余的普通节点和与相应的计算节点关联;依据计算节点接收到的能源数据的类别,为计算节点选择计算模型;子级厂区的计算节点将预处理后的能源数据发送给父级厂区的分析节点,父级厂区的分析节点依据区域后台的能源数据调用请求对预处理后的能源数据进行再处理;父级厂区的分析节点将再处理后的能源数据发送至区域后台,以响应区域后台的能源数据调用请求。本申请可以使得某地区的能源监测系统简单、统一,易于一体化控制,利于实际使用。
Description
技术领域
本申请涉及数据处理领域,尤其涉及一种物联网能源监测方法及系统。
背景技术
不同工业企业的工艺流程、装置情况、产品类型、能源管理水平对工业企业的能源消耗都会产生不同的影响,因此现有的针对某地区的不同工业企业的能源监测大都会人为制定相应的监测方式,同一工业企业内的不同功能厂区的能源监测也大都会人为制定相应的监测方式,例如:A钢厂和B纺织厂均人为制定相应的能源监测方式,A钢厂的A1厂区、A2厂区、A3厂区人为制定相应的能源监测方式,这样就导致某地区的能源监测系统复杂混乱,不易一体化控制,不利于实际使用。
因此,如何使得某地区的能源监测系统简单、统一,易于一体化控制,利于实际使用,是目前本领域技术人员急需解决的技术问题。
发明内容
本申请提供了一种物联网能源监测方法机系统,以使得某地区的能源监测系统简单、统一,易于一体化控制,利于实际使用。
为解决上述技术问题,本申请提供如下技术方案:
一种物联网能源监测方法,包括如下步骤:步骤S110、依据子级厂区的类型,从子级厂区的普通节点中选择相应数量的计算节点;步骤S120、将该子级厂区内剩余的普通节点和与相应的计算节点关联,以使普通节点监测的能源数据发送给与其关联的计算节点;步骤S130、依据计算节点接收到的能源数据的类别,为计算节点选择计算模型,以预处理该计算节点接收到的能源数据;步骤S140、子级厂区的计算节点将预处理后的能源数据发送给父级厂区的分析节点,父级厂区的分析节点依据区域后台的能源数据调用请求对预处理后的能源数据进行再处理;步骤S150、父级厂区的分析节点将再处理后的能源数据发送至区域后台,以响应区域后台的能源数据调用请求。
如上所述的物联网能源监测方法,其中,优选的是,获取子级厂区的特征参数,并且将子级厂区的特征参数集合在一起形成子级厂区特征参数集;依据子级厂区特征参数集,获得子级厂区所需的计算节点的数量;计算子级厂区内的每个普通节点的计算能力评价值,并按照计算能力评价值从高至低的顺序,选择所需数量的普通计算作为计算节点。
如上所述的物联网能源监测方法,其中,优选的是,将一个普通节点的所有计算能力响应参数集合在一起,形成该普通节点计算能力响应参数集;依据普通节点计算能力响应参数集,得到该普通节点的计算能力评价值。
如上所述的物联网能源监测方法,其中,优选的是,计算子级厂区内的普通节点与计算节点之间的熵距离,将普通节点关联至与之熵距离最小的计算节点。
如上所述的物联网能源监测方法,其中,优选的是,获取能源数据的类别特征,并且将能源数据的类别特征集合在一起,形成能源数据类别特征集;为能源数据类别特征集的每个类别特征参数匹配特征权重;依据能源数据类别特征集和特征权重集从预先创建的计算模型库中选择出计算模型。
一种物联网能源监测系统,包括:计算节点选择单元、节点关联单元、计算模型选择单元、传输单元和对外通信单元;计算节点选择单元依据子级厂区的类型,从子级厂区的普通节点中选择相应数量的计算节点;节点关联单元将该子级厂区内剩余的普通节点和与相应的计算节点关联,以使普通节点监测的能源数据发送给与其关联的计算节点;计算模型选择单元依据计算节点接收到的能源数据的类别,为计算节点选择计算模型,以预处理该计算节点接收到的能源数据;传输单元将子级厂区的计算节点预处理后的能源数据发送给父级厂区的分析节点,以使父级厂区的分析节点依据区域后台的能源数据调用请求对预处理后的能源数据进行再处理;对外通信单元将父级厂区的分析节点再处理后的能源数据发送至区域后台,以响应区域后台的能源数据调用请求。
如上所述的物联网能源监测系统,其中,优选的是,获取子级厂区的特征参数,并且将子级厂区的特征参数集合在一起形成子级厂区特征参数集;依据子级厂区特征参数集,获得子级厂区所需的计算节点的数量;计算子级厂区内的每个普通节点的计算能力评价值,并按照计算能力评价值从高至低的顺序,选择所需数量的普通计算作为计算节点。
如上所述的物联网能源监测系统,其中,优选的是,将一个普通节点的所有计算能力响应参数集合在一起,形成该普通节点计算能力响应参数集;依据普通节点计算能力响应参数集,得到该普通节点的计算能力评价值。
如上所述的物联网能源监测系统,其中,优选的是,计算子级厂区内的普通节点与计算节点之间的熵距离,将普通节点关联至与之熵距离最小的计算节点。
如上所述的物联网能源监测系统,其中,优选的是,获取能源数据的类别特征,并且将能源数据的类别特征集合在一起,形成能源数据类别特征集;为能源数据类别特征集的每个类别特征参数匹配特征权重;依据能源数据类别特征集和特征权重集从预先创建的计算模型库中选择出计算模型。
相对上述背景技术,本申请所提供的物联网能源监测方法及系统会自动依据子级厂区的类型选择计算节点,并且还会自动依据能源数据的类别预处理能源数据,因此使得某地区的能源监测系统简单、统一,易于一体化控制,利于实际使用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1是本申请实施例所提供的物联网能源监测方法的流程图;
图2是本申请实施例所提供的物联网能源监测系统的示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
实施例一
请参阅图1,图1是本申请实施例所提供的物联网能源监测方法的流程图。
本申请提供了一种物联网能源监测方法,包括如下步骤:
步骤S110、依据子级厂区的类型,从子级厂区的普通节点中选择相应数量的计算节点;
获取子级厂区的特征参数,并且将子级厂区的特征参数集合在一起形成子级厂区特征参数集 ,其中,/>为子级厂区/>的特征参数集,/>为子级厂区/>的第1个特征参数,/>为子级厂区/>的第2个特征参数,/>为子级厂区/>的第/>个特征参数,/>为子级厂区的第/>个特征参数。例如:/>为子级厂区/>的工艺流程特征、/>为子级厂区/>的装置情况特征、/>为子级厂区/>的产品类型特征、/>为子级厂区/>的能源管理水平特征。
依据子级厂区特征参数集,获得子级厂区所需的计算节点的数量/>。具体的,依据公式/>得到子级厂区/>所需的计算节点的数量/>,其中,为子级厂区/>的第/>个特征参数/>对子级厂区/>所需的计算节点的数量/>的影响权重,/>为对/>向上取整。
计算子级厂区内的每个普通节点的计算能力评价值,并按照计算能力评价值从高至低的顺序,选择所需数量的普通计算作为计算节点。子级厂区/>内的每个普通节点均具有多个计算能力响应参数,将一个普通节点的所有计算能力响应参数集合在一起,形成该普通节点计算能力响应参数集,其中,/>为子级厂区/>内的第/>个普通节点的计算能力响应参数集,/>为子级厂区/>内的第/>个普通节点的第1个计算能力响应参数,/>为子级厂区/>内的第/>个普通节点的第2个计算能力响应参数,/>为子级厂区/>内的第/>个普通节点的第/>个计算能力响应参数,/>为子级厂区/>内的第/>个普通节点的第/>个计算能力响应参数。例如:/>为子级厂区/>内的第/>个普通节点的硬盘占用率、/>为子级厂区/>内的第/>个普通节点的CPU利用率、为子级厂区/>内的第/>个普通节点的内存占用率、/>为子级厂区/>内的第/>个普通节点的运行状态参数。依据普通节点计算能力响应参数集/>,得到该普通节点的计算能力评价值。具体的,依据公式/>计算得到子级厂区内的第/>个普通节点的计算能力评价值/>,其中,/>为子级厂区/>内的第/>个普通节点的第/>个计算能力响应参数的预期值,/>为第/>个计算能力响应参数对计算能力评价值影响的权重,/>,且/>。
步骤S120、将该子级厂区内剩余的普通节点和与相应的计算节点关联,以使普通节点监测的能源数据发送给与其关联的计算节点;
计算子级厂区内的普通节点与计算节点之间的熵距离,将普通节点关联至与之熵距离最小的计算节点。具体的,依据公式计算普通节点/>与计算节点/>之间的熵距离/>,其中,/>为普通节点/>在该子级厂区内的所有节点中的重要度,/>为计算节点/>在该子级厂区内的所有节点中的重要度。另外,也可以根据其他的标准进行普通节点和计算节点之间的关联,例如:根据经验指定关联、根据计算能力匹配关联等。
普通节点监测采集到能源数据,并且将能源数据发送给与普通节点关联的计算节点中,以使计算节点对接收到的能源数据进行预处理。
步骤S130、依据计算节点接收到的能源数据的类别,为计算节点选择计算模型,以预处理该计算节点接收到的能源数据;
计算节点接收到普通节点监测采集的能源数据后,获取能源数据的类别特征,并且将能源数据的类别特征集合在一起,形成能源数据类别特征集,其中,/>为子级厂区/>内的第/>个计算节点接收到的能源数据的类别特征集,/>为子级厂区/>内的第/>个计算节点接收到的与之关联的第1个普通节点发送的能源数据的类别特征参数,/>为子级厂区/>内的第/>个计算节点接收到的与之关联的第2个普通节点发送的能源数据的类别特征参数,/>为子级厂区/>内的第/>个计算节点接收到的与之关联的第/>个普通节点发送的能源数据的类别特征参数,/>为子级厂区/>内的第/>个计算节点接收到的与之关联的第/>个普通节点发送的能源数据的类别特征参数。
为能源数据类别特征集中的每个类别特征参数匹配特征权重。具体的,计算能源数据类别特征集/>中的每个类别特征参数与之前预设的每个预设类别特征之间的相似度,将能源数据类别特征集/>中的每个类别特征参数归入最大相似度所对应的预设类别特征中,将能源数据类别特征集/>中的每个类别特征参数所对应的预设类别特征的特征权重作为该能源数据类别特征集 />中的每个类别特征参数的特征权重,构成特征权重集/>,其中,/>为/>的特征权重,/>为/>的特征权重,/>为/>的特征权重,/>为/>的特征权重。
子级厂区内的每个计算节点依据为其选择的计算模型,计算接收得到的普通节点监测的能源数据,从而对能源数据进行预处理。
步骤S140、子级厂区的计算节点将预处理后的能源数据发送给父级厂区的分析节点,父级厂区的分析节点依据区域后台的能源数据调用请求对预处理后的能源数据进行再处理;
父级厂区的分析节点接收区域后台的能源数据调用请求,其中能源数据调用请求中包含了对能源数据的需求,例如:需求哪些能源数据,父级厂区的分析节点依据接收到区域后台的能源数据调用请求,对预处理后的能源数据进行再处理,以得到符合能源数据调用请求的能源数据。
步骤S150、父级厂区的分析节点将再处理后的能源数据发送至区域后台,以响应区域后台的能源数据调用请求;
待父级厂区的分析节点对预处理后的能源数据进行再处理完毕后,将再处理后的能源数据发送给区域后台,以响应区域后台向父级厂区分析节点发送的能源数据调用请求。
实施例二
请参阅图2,图2是本申请实施例所提供的物联网能源监测系统的示意图。
本申请提供了一种物联网能源监测系统200,包括:计算节点选择单元210、节点关联单元220、计算模型选择单元230、传输单元240和对外通信单元250。
计算节点选择单元210依据子级厂区的类型,从子级厂区的普通节点中选择相应数量的计算节点。
获取子级厂区的特征参数,并且将子级厂区的特征参数集合在一起形成子级厂区特征参数集,其中,/>为子级厂区/>的特征参数集,/>为子级厂区/>的第1个特征参数,/>为子级厂区/>的第2个特征参数,/>为子级厂区/>的第/>个特征参数,/>为子级厂区的第/>个特征参数。例如:为子级厂区/>的工艺流程特征、/>为子级厂区/>的装置情况特征、/>为子级厂区/>的产品类型特征、/>为子级厂区/>的能源管理水平特征。
依据子级厂区特征参数集,获得子级厂区所需的计算节点的数量/>。具体的,依据公式/> 得到子级厂区/>所需的计算节点的数量/>,其中,为子级厂区/>的第/>个特征参数/>对子级厂区/>所需的计算节点的数量/>的影响权重,/>为对/>向上取整。
计算子级厂区内的每个普通节点的计算能力评价值,并按照计算能力评价值从高至低的顺序,选择所需数量的普通计算作为计算节点。子级厂区/>内的每个普通节点均具有多个计算能力响应参数,将一个普通节点的所有计算能力响应参数集合在一起,形成该普通节点计算能力响应参数集,其中,/>为子级厂区/>内的第/>个普通节点的计算能力响应参数集,/>为子级厂区/>内的第/>个普通节点的第1个计算能力响应参数,/>为子级厂区/>内的第/>个普通节点的第2个计算能力响应参数,/>为子级厂区/>内的第/>个普通节点的第/>个计算能力响应参数,/>为子级厂区/>内的第/>个普通节点的第/>个计算能力响应参数。例如:/>为子级厂区/>内的第/>个普通节点的硬盘占用率、/>为子级厂区/>内的第/>个普通节点的CPU利用率、为子级厂区/>内的第/>个普通节点的内存占用率、/>为子级厂区/>内的第/>个普通节点的运行状态参数。依据普通节点计算能力响应参数集/>,得到该普通节点的计算能力评价值。具体的,依据公式/>计算得到子级厂区内的第/>个普通节点的计算能力评价值/>,其中,/>为子级厂区/>内的第/>个普通节点的第/>个计算能力响应参数的预期值,/>为第/>个计算能力响应参数对计算能力评价值影响的权重,/>,且/>。
节点关联单元220将该子级厂区内剩余的普通节点和与相应的计算节点关联,以使普通节点监测的能源数据发送给与其关联的计算节点。
计算子级厂区内的普通节点与计算节点之间的熵距离,将普通节点关联至与之熵距离最小的计算节点。具体的,依据公式计算普通节点/>与计算节点/>之间的熵距离/>,其中,/>为普通节点/>在该子级厂区内的所有节点中的重要度,/>为计算节点/>在该子级厂区内的所有节点中的重要度。另外,也可以根据其他的标准进行普通节点和计算节点之间的关联,例如:根据经验指定关联、根据计算能力匹配关联等。
普通节点监测采集到能源数据,并且将能源数据发送给与普通节点关联的计算节点中,以使计算节点对接收到的能源数据进行预处理。
计算模型选择单元230依据计算节点接收到的能源数据的类别,为计算节点选择计算模型,以预处理该计算节点接收到的能源数据。
计算节点接收到普通节点监测采集的能源数据后,获取能源数据的类别特征,并且将能源数据的类别特征集合在一起,形成能源数据类别特征集,其中,/>为子级厂区/>内的第/>个计算节点接收到的能源数据的类别特征集,/>为子级厂区/>内的第/>个计算节点接收到的与之关联的第1个普通节点发送的能源数据的类别特征参数,/>为子级厂区/>内的第/>个计算节点接收到的与之关联的第2个普通节点发送的能源数据的类别特征参数,/>为子级厂区/>内的第/>个计算节点接收到的与之关联的第/>个普通节点发送的能源数据的类别特征参数,/>为子级厂区/>内的第/>个计算节点接收到的与之关联的第/>个普通节点发送的能源数据的类别特征参数。
为能源数据类别特征集中的每个类别特征参数匹配特征权重。具体的,计算能源数据类别特征集/>中的每个类别特征参数与之前预设的每个预设类别特征之间的相似度,将能源数据类别特征集/>中的每个类别特征参数归入最大相似度所对应的预设类别特征中,将能源数据类别特征集/>中的每个类别特征参数所对应的预设类别特征的特征权重作为该能源数据类别特征集/>中的每个类别特征参数的特征权重,构成特征权重集/>,其中,/>为/>的特征权重,为/>的特征权重,/>为/>的特征权重,/>为/>的特征权重。
子级厂区内的每个计算节点依据为其选择的计算模型,计算接收得到的普通节点监测的能源数据,从而对能源数据进行预处理。
传输单元240将子级厂区的计算节点预处理后的能源数据发送给父级厂区的分析节点,以使父级厂区的分析节点依据区域后台的能源数据调用请求对预处理后的能源数据进行再处理。
父级厂区的分析节点接收区域后台的能源数据调用请求,其中能源数据调用请求中包含了对能源数据的需求,例如:需求哪些能源数据,父级厂区的分析节点依据接收到区域后台的能源数据调用请求,对预处理后的能源数据进行再处理,以得到符合能源数据调用请求的能源数据。
对外通信单元250将父级厂区的分析节点再处理后的能源数据发送至区域后台,以响应区域后台的能源数据调用请求。
待父级厂区的分析节点对预处理后的能源数据进行再处理完毕后,将再处理后的能源数据发送给区域后台,以响应区域后台向父级厂区分析节点发送的能源数据调用请求。
由于本申请中会自动依据子级厂区的类型选择计算节点,并且还会自动依据能源数据的类别预处理能源数据,因此使得某地区的能源监测系统简单、统一,易于一体化控制,利于实际使用。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
Claims (10)
1.一种物联网能源监测方法,其特征在于,包括如下步骤:
步骤S110、依据子级厂区的类型,从子级厂区的普通节点中选择相应数量的计算节点;
步骤S120、将该子级厂区内剩余的普通节点和与相应的计算节点关联,以使普通节点监测的能源数据发送给与其关联的计算节点;
步骤S130、依据计算节点接收到的能源数据的类别,为计算节点选择计算模型,以预处理该计算节点接收到的能源数据;
步骤S140、子级厂区的计算节点将预处理后的能源数据发送给父级厂区的分析节点,父级厂区的分析节点依据区域后台的能源数据调用请求对预处理后的能源数据进行再处理;
步骤S150、父级厂区的分析节点将再处理后的能源数据发送至区域后台,以响应区域后台的能源数据调用请求。
2.根据权利要求1所述的物联网能源监测方法,其特征在于,获取子级厂区的特征参数,并且将子级厂区的特征参数集合在一起形成子级厂区特征参数集;
依据子级厂区特征参数集,获得子级厂区所需的计算节点的数量;
计算子级厂区内的每个普通节点的计算能力评价值,并按照计算能力评价值从高至低的顺序,选择所需数量的普通计算作为计算节点。
3.根据权利要求2所述的物联网能源监测方法,其特征在于,将一个普通节点的所有计算能力响应参数集合在一起,形成该普通节点计算能力响应参数集;
依据普通节点计算能力响应参数集,得到该普通节点的计算能力评价值。
4.根据权利要求1至3任一项所述的物联网能源监测方法,其特征在于,计算子级厂区内的普通节点与计算节点之间的熵距离,将普通节点关联至与之熵距离最小的计算节点。
5.根据权利要求1至3任一项所述的物联网能源监测方法,其特征在于,获取能源数据的类别特征,并且将能源数据的类别特征集合在一起,形成能源数据类别特征集;
为能源数据类别特征集的每个类别特征参数匹配特征权重;
依据能源数据类别特征集和特征权重集从预先创建的计算模型库中选择出计算模型。
6.一种物联网能源监测系统,其特征在于,包括:计算节点选择单元、节点关联单元、计算模型选择单元、传输单元和对外通信单元;
计算节点选择单元依据子级厂区的类型,从子级厂区的普通节点中选择相应数量的计算节点;
节点关联单元将该子级厂区内剩余的普通节点和与相应的计算节点关联,以使普通节点监测的能源数据发送给与其关联的计算节点;
计算模型选择单元依据计算节点接收到的能源数据的类别,为计算节点选择计算模型,以预处理该计算节点接收到的能源数据;
传输单元将子级厂区的计算节点预处理后的能源数据发送给父级厂区的分析节点,以使父级厂区的分析节点依据区域后台的能源数据调用请求对预处理后的能源数据进行再处理;
对外通信单元将父级厂区的分析节点再处理后的能源数据发送至区域后台,以响应区域后台的能源数据调用请求。
7.根据权利要求6所述的物联网能源监测系统,其特征在于,获取子级厂区的特征参数,并且将子级厂区的特征参数集合在一起形成子级厂区特征参数集;
依据子级厂区特征参数集,获得子级厂区所需的计算节点的数量;
计算子级厂区内的每个普通节点的计算能力评价值,并按照计算能力评价值从高至低的顺序,选择所需数量的普通计算作为计算节点。
8.根据权利要求7所述的物联网能源监测系统,其特征在于,将一个普通节点的所有计算能力响应参数集合在一起,形成该普通节点计算能力响应参数集;
依据普通节点计算能力响应参数集,得到该普通节点的计算能力评价值。
9.根据权利要求6至8任一项所述的物联网能源监测系统,其特征在于,计算子级厂区内的普通节点与计算节点之间的熵距离,将普通节点关联至与之熵距离最小的计算节点。
10.根据权利要求6至8任一项所述的物联网能源监测系统,其特征在于,获取能源数据的类别特征,并且将能源数据的类别特征集合在一起,形成能源数据类别特征集;
为能源数据类别特征集的每个类别特征参数匹配特征权重;
依据能源数据类别特征集和特征权重集从预先创建的计算模型库中选择出计算模型。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310046690.3A CN115878943B (zh) | 2023-01-31 | 2023-01-31 | 一种物联网能源监测方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310046690.3A CN115878943B (zh) | 2023-01-31 | 2023-01-31 | 一种物联网能源监测方法及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115878943A true CN115878943A (zh) | 2023-03-31 |
CN115878943B CN115878943B (zh) | 2023-05-30 |
Family
ID=85758559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310046690.3A Active CN115878943B (zh) | 2023-01-31 | 2023-01-31 | 一种物联网能源监测方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115878943B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150163289A1 (en) * | 2013-12-06 | 2015-06-11 | Tata Consultancy Services Limited | Data partitioning in internet-of-things (iot) network |
CN112486665A (zh) * | 2020-11-03 | 2021-03-12 | 深圳市中博科创信息技术有限公司 | 一种基于对等网络的边缘人工智能计算任务调度方法 |
CN113986521A (zh) * | 2020-07-23 | 2022-01-28 | 中国联合网络通信集团有限公司 | 边缘计算节点的部署方法及装置 |
CN114565325A (zh) * | 2022-04-28 | 2022-05-31 | 睿至科技集团有限公司 | 一种电力物联网的大数据分析方法及系统 |
WO2022171083A1 (zh) * | 2021-02-10 | 2022-08-18 | 中国移动通信有限公司研究院 | 基于物联网设备的信息处理方法、相关设备及存储介质 |
-
2023
- 2023-01-31 CN CN202310046690.3A patent/CN115878943B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150163289A1 (en) * | 2013-12-06 | 2015-06-11 | Tata Consultancy Services Limited | Data partitioning in internet-of-things (iot) network |
CN113986521A (zh) * | 2020-07-23 | 2022-01-28 | 中国联合网络通信集团有限公司 | 边缘计算节点的部署方法及装置 |
CN112486665A (zh) * | 2020-11-03 | 2021-03-12 | 深圳市中博科创信息技术有限公司 | 一种基于对等网络的边缘人工智能计算任务调度方法 |
WO2022171083A1 (zh) * | 2021-02-10 | 2022-08-18 | 中国移动通信有限公司研究院 | 基于物联网设备的信息处理方法、相关设备及存储介质 |
CN114565325A (zh) * | 2022-04-28 | 2022-05-31 | 睿至科技集团有限公司 | 一种电力物联网的大数据分析方法及系统 |
Non-Patent Citations (1)
Title |
---|
曾志 等: "云环境下基于Entropy-KNN算法的节点选择策略" * |
Also Published As
Publication number | Publication date |
---|---|
CN115878943B (zh) | 2023-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10965554B2 (en) | Data processing method and related device, and system | |
CN116361377B (zh) | 基于工业物联网服务平台的负载预测系统、方法及介质 | |
US11060885B2 (en) | Univariate anomaly detection in a sensor network | |
CN114610559A (zh) | 设备运行环境评估方法、判决模型训练方法、电子设备 | |
CN107180088A (zh) | 基于模糊c均值聚类算法的新闻推荐方法 | |
CN105871634A (zh) | 检测集群异常的方法及应用、管理集群的系统 | |
CN110531988B (zh) | 应用程序的状态预测方法及相关装置 | |
CN112650580A (zh) | 一种基于边缘计算的工业大数据监测系统 | |
CN104657457B (zh) | 一种用户评价视频的数据处理方法、视频推荐方法及装置 | |
CN116980284B (zh) | 一种基于物联网的光缆分纤箱运维信息传输方法和系统 | |
US20230034061A1 (en) | Method for managing proper operation of base station and system applying the method | |
CN112149967A (zh) | 基于复杂系统理论的电力通信网脆弱性评估方法和系统 | |
CN117097026A (zh) | 一种基于源网荷储新型电力系统运维监控平台的操作方法 | |
WO2020057402A1 (zh) | 系统状态监视方法、装置和存储介质 | |
CN117852896A (zh) | 一种施工监理风险控制预警系统及方法 | |
CN117118810B (zh) | 一种网络通信异常预警方法及系统 | |
JP7095988B2 (ja) | 異常監視システム、異常監視方法及びプログラム | |
CN115878943A (zh) | 一种物联网能源监测方法及系统 | |
CN115801361B (zh) | 一种网络安全运维能力评估方法及系统 | |
CN114119292B (zh) | 一种基于物联网与大数据的建筑管理系统 | |
US20190145646A1 (en) | Method of evaluating an hvac unit | |
CN113794646B (zh) | 能源行业的监控数据传输系统及方法 | |
CN114048020B (zh) | 一种基于大数据客房管理系统 | |
CN112907124A (zh) | 一种数据链路异常评测方法、装置、电子设备及存储介质 | |
CN117930669B (zh) | 基于物联网的智能家居远程控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |