CN115856418A - 一种功率探测器 - Google Patents

一种功率探测器 Download PDF

Info

Publication number
CN115856418A
CN115856418A CN202211686234.7A CN202211686234A CN115856418A CN 115856418 A CN115856418 A CN 115856418A CN 202211686234 A CN202211686234 A CN 202211686234A CN 115856418 A CN115856418 A CN 115856418A
Authority
CN
China
Prior art keywords
bipolar transistor
resistor
power detector
branch
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211686234.7A
Other languages
English (en)
Inventor
赖志国
杨清华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Huntersun Electronics Co Ltd
Original Assignee
Suzhou Huntersun Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Huntersun Electronics Co Ltd filed Critical Suzhou Huntersun Electronics Co Ltd
Priority to CN202211686234.7A priority Critical patent/CN115856418A/zh
Publication of CN115856418A publication Critical patent/CN115856418A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

本发明提供的功率探测器的电路设计使用双极型晶体管来实现,将双极型晶体管的微电流放大技术应用到功率探测器中,利用了器件的非线性来产生直流或低频的电流,并用于表征射频信号功率的大小。相较于传统的基于二极管的功率探测器,本发明的功率探测器具有灵敏度高、噪声系数低等优点,相较于基于CMOS场效应晶体管的功率探测器,本发明的功率探测器具有更好的性能。此外,根据所述功率探测器的第二电阻和第二滤波电容的设置方式,该功率探测器的对称性和线性度得到了显著提升。

Description

一种功率探测器
技术领域
本发明涉及电子通信器件技术领域,尤其涉及一种功率探测器。
背景技术
随着数据速率需求的增加,现代移动通信标准正朝着毫米波频率发展,功率探测器是一种广泛应用在毫米波成像、毫米波高速通信等系统中的器件,其主要功能是实现功率的检波以及信号的解调。
传统的功率探测器的电路设计利用二极管来实现,同时,传统的功率探测器也具有灵敏度低、噪声系数大等缺点。随着工艺技术的进步,该领域技术人员逐渐考虑使用双极型晶体管和CMOS场效应晶体管来替代二极管,以实现功率探测器的电路设计。
其中,CMOS技术可以为实现完整的片上系统提供较低成本的解决方案,由于基于CMOS的功率探测器所需的COMS场效应晶体管的固有平方律特性,通常将CMOS场效应晶体管设计在强反型区工作。但是在深亚微米技术中,短沟道效应占主导地位,CMOS场效应晶体管的伏安特性曲线的性质不再符合平方律特性,同时,强反型区的二阶跨导取决于器件尺寸和工艺参数,而上述两项属性COMS场效应晶体管远低于双极型晶体管。因此,基于双极型晶体管实现的功率探测器,相较于基于CMOS场效应晶体管功率探测器,具有更好的性能而广受欢迎。为了满足射频信号预期的功率探测需求,提供一种基于双极型晶体管的功率探测器一直是本领域的研究重点之一,并且此类功率探测器的对称性和线性度一直难以达到理想值。
发明内容
本发明的目的在于提供一种功率探测器,该功率探测器包括输入端、放大器电路单元和输出端,其中:
所述输入端接入射频信号,所述输出端输出表征所述射频信号的功率的电流参数或电压参数;
所述放大器电路单元包括N条支路,N为正整数,每一所述支路至少包括耦合电容、第一双极型晶体管、第二双极型晶体管、第一电阻、第二电阻、第一滤波电容和第二滤波电容;
所述第一双极型晶体管的基极通过依次串联的所述第二电阻和所述第一电阻与所述第二双极型晶体管的基极连接,所述第一双极型晶体管的基极还通过所述第二电阻与所述第一双极型晶体管的集电极短接,所述第二电阻通过与所述第一电阻并联的第二滤波电容接地,所述第一电阻的两端分别通过所述第一滤波电容和所述第二滤波电容接地,所述第二滤波电容连接于所述第一电阻和所述第二电阻之间,所述第一电阻和所述第二电阻的阻值相等;
所述第二双极型晶体管的集电极与所述输出端连接,所述第一双极型晶体管的发射极和所述第二双极型晶体管的发射极均接地;
当N等于1时,第N条支路的第一双极型晶体管的集电极通过所述第1条支路的耦合电容与所述输入端连接,当N大于1时,第N条支路的第一双极型晶体管的集电极通过所述第N支路上的耦合电容连接至第N-1条支路上的耦合电容的输出端;
每一所述支路中,所述第一双极型晶体管的集电极接入与其匹配的第一基准电流,所述第二双极型晶体管的集电极接入与其匹配的第二基准电流。
根据本发明的一个方面,所述功率探测器中所述第一双极型晶体管与所述第二双极型晶体管具有相同的电流放大系数。
根据本发明的另一个方面,所述功率探测器中所述第二双极型晶体管的基极电压的计算公式为:
Figure BDA0004021089710000021
所述计算公式中,B″为所述第二双极型晶体管的基极电压,Vbe0为静态分析时所述第一双极型晶体管的基极/发射极电压,
Figure BDA0004021089710000022
为温度的电压当量,k是玻尔兹曼常数,T是绝对温度,q是电子的电荷量,I0(·)为第一类零阶贝塞尔函数,Is1为所述第一双极型晶体管的反向饱和电流,Is2为所述第二双极型晶体管的反向饱和电流,β1为所述第一双极型晶体管的放大系数,β2为所述第二双极型晶体管的放大系数;/>
Figure BDA0004021089710000031
所述射频信号的表达式为Ain*sin(ωt),Ain为所述射频信号的幅度,ω为所述射频信号的角频率,Crf为所述第二双极型晶体管所在支路的耦合电容,Cbe为所述所在支路中的第一双极型晶体管的所有对地寄生电容。
根据本发明的另一个方面,所述功率探测器中所述第一基准电流和/或所述第二基准电流由恒流源提供;所述恒流源包括由MOS管构成的电流源电路。
根据本发明的另一个方面,所述功率探测器还包括:负载电阻,所述负载电阻的一端与所述第二双极型晶体管的集电极连接,另一端接地。
根据本发明的另一个方面,所述功率探测器还包括:误差源,所述误差源与所述负载电阻的接地端串联,用于输出失调电压。
本发明提供的功率探测器的电路设计使用双极型晶体管来实现,将双极型晶体管的微电流放大技术应用到功率探测器中,利用了器件的非线性来产生直流或低频的电流,并用于表征射频信号功率的大小。相较于传统的基于二极管的功率探测器,本发明的功率探测器具有灵敏度高、噪声系数低等优点,相较于基于CMOS场效应晶体管的功率探测器,本发明的功率探测器具有更好的性能。此外,根据所述功率探测器的第二电阻和第二滤波电容的设置方式,该功率探测器的对称性和线性度得到了显著提升。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1是根据本发明的功率探测器的一个具体实施方式的电路结构示意图;
图2是根据本发明的功率探测器的另一个具体实施方式的电路结构示意图;
图3至图7是图1或图2示出的功率探测器中一些关键参数关联变化的仿真示意图;
图8是根据本发明的功率探测器的另一个具体实施方式的电路结构示意图;
附图中相同或相似的附图标记代表相同或相似的部件。
具体实施方式
为了更好地理解和阐释本发明,下面将结合附图对本发明作进一步的详细描述。本发明并不仅仅局限于这些具体实施方式。相反,对本发明进行的修改或者等同替换,均应涵盖在本发明的权利要求范围当中。
需要说明的是,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有这些具体细节,本发明同样可以实施。在下文给出的多个具体实施方式中,对于本领域熟知的结构和部件未作详细描述,以便于凸显本发明的主旨。
本发明提供了一种功率探测器,该功率探测器包括输入端、放大器电路单元和输出端,其中:
所述输入端接入射频信号,所述输出端输出表征所述射频信号的功率的电流参数或电压参数;
所述放大器电路单元包括N条支路,N为正整数,每一所述支路至少包括耦合电容、第一双极型晶体管、第二双极型晶体管、第一电阻、第二电阻、第一滤波电容和第二滤波电容;
所述第一双极型晶体管的基极通过依次串联的所述第二电阻和所述第一电阻与所述第二双极型晶体管的基极连接,所述第一双极型晶体管的基极还通过所述第二电阻与所述第一双极型晶体管的集电极短接,所述第二电阻通过与所述第一电阻并联的第二滤波电容接地,所述第一电阻的两端分别通过所述第一滤波电容和所述第二滤波电容接地,所述第二滤波电容连接于所述第一电阻和所述第二电阻之间,所述第一电阻和所述第二电阻的阻值相等;
所述第二双极型晶体管的集电极与所述输出端连接,所述第一双极型晶体管的发射极和所述第二双极型晶体管的发射极均接地;
当N等于1时,第N条支路的第一双极型晶体管的集电极通过所述第1条支路的耦合电容与所述输入端连接,当N大于1时,第N条支路的第一双极型晶体管的集电极通过所述第N支路上的耦合电容连接至第N-1条支路上的耦合电容的输出端;
每一所述支路中,所述第一双极型晶体管的集电极接入与其匹配的第一基准电流,所述第二双极型晶体管的集电极接入与其匹配的第二基准电流。
本领域技术人员可理解,随着N的取值的变化,所述功率探测器的级数随之变化,其响应的功率探测也随之变化。本发明的实施者可以根据所需的功率探测范围需求选择合适的N的取值。为了更好地说明本发明提供的功率探测器的原理,下文中首先介绍当所述功率探测器具有仅一条所述支路,且仅输出所述电流参数时的最简结构,旨在说明N=1时所述功率探测器的工作原理。请参考图1,图1是根据本发明的功率探测器的一个具体实施方式的电路结构示意图,更具体而言,当前文所述N的取值为1时,本发明提供的功率探测器的一个具体实施方式的电路结构如图1所示。
在该具体实施方式中,功率探测器包括输入端RFin、一条支路和输出端,所述输入端接入射频信号,将所述射频信号记为Input,所述输出端输出表征所述射频信号的功率的电流参数,将所述电流参数记为Iout
所述支路至少包括第1耦合电容Crf、第一双极型晶体管Q1、第二双极型晶体管Q2、第一电阻R1、第二电阻R2、第一滤波电容C1和第二滤波电容C2,其中,Q1的基极通过依次串联的R1和R2与Q2的基极连接,Q1的基极还通过R2与Q1的集电极短接,R2通过与R1并联的C2接地,R1的两端分别通过C1和C2接地,C2连接于R1和R2之间,R1和R2的阻值相等。
Q2的集电极与所述输出端连接,Q1的发射极和Q2的发射极均接地;Q1的集电极通过Crf与输入端RFin连接;Q1的集电极接入与Q1匹配的第一基准电流,将所述第一基准电流记为Iref,Q2的集电极接入与Q2匹配的第二基准电流(简便起见图1中未示出)。
此外,结合所述功率探测器的电路结构,在用数学函数表示所述功率探测器涉及的工作原理时,Q1本身的所有对地寄生电容也应纳入考虑范围,因此图1还示出了Q1的所有对地寄生电容的等效电容Cbe
继续参考图1,从输入端RFin接入的射频信号的表达式为Input=Ain*sin(ωt),其中Ain为所述射频信号的幅度,ω为所述射频信号的角频率。当该射频信号通过Crf传输到Q1后,所述射频信号的幅值和相位均发生了变化,表达式可描述为
Figure BDA0004021089710000061
其中,B指的是低频信号。
同时,由于耦合电容Crf和等效电容Cbe的存在,可知
Figure BDA0004021089710000062
为了提升所述放大器电路单元的对称性,当前支路中,应设置Q1和Q2具有相同的电流放大系数,相应地,Q1和Q2具有相同的反向饱和电流,优选地,Q1和Q2是具有相同工作参数的双极型晶体管,例如Q1和Q2选择性地实施为相同尺寸的双极型晶体管。
基于图1示出的电路结构,分析电流的直流特性,第一基准电流Iref的总值应设置为Q1的基极电流、Q1的集电极电流以及Q2的基极电流三者的数值之和。所述第一基准电流Iref可由一个恒流源提供,如图1所示,该恒流源与Q1的集电极连接,所述恒流源包括由MOS管构成的电流源电路。
将双极型晶体管的电流放大系数记为β,将双极型晶体管的反向饱和电流记为Is,Is1为所述第一双极型晶体管的反向饱和电流,Is2为所述第二双极型晶体管的反向饱和电流,β1为所述第一双极型晶体管的放大系数,β2为所述第二双极型晶体管的放大系数,因为Q1和Q2是具有相同工作参数的双极型晶体管,则可知β=β1=β2,且Is=Is1=Is2。进一步,将Q1的基极电流记为Ib1,Q1的集电极电流记为Ic1,Q2的基极电流记为Ib2
此时Iref的可用如下数学公式描述:
Figure BDA0004021089710000063
其中,
Figure BDA0004021089710000064
为温度的电压当量,k是玻尔兹曼常数,T是绝对温度,q是电子的电荷量,Vbe0为静态分析时Q1的基极/发射极电压。
此时,基于Iref对应的数学公式,可推导出Vbe0可用如下数学公式描述:
Figure BDA0004021089710000065
从输入端RFin输入的所述射频信号Input=Ain*sin(ωt)首先通过Crf传输到Q1,如前文所述描述为
Figure BDA0004021089710000066
其中低频信号B可用如下数学公式描述:
Figure BDA0004021089710000071
其中,I0(·)为第一类零阶贝塞尔函数。
使R1和R2的阻值相等,可以在Q2的基极获得一个比低频信号B更稳定的低频信号B″。
请继续参考图1,低频信号B″可用如下数学公式描述:
B″=B-Ib2*R1
由此可见,低频信号B″和低频信号B正相关。
Q2的基极电流Ib2可以通过如下数学公式描述:
Figure BDA0004021089710000072
由上述两个数学公式,可知低频信号B″可以通过如下数学公式描述:
Figure BDA0004021089710000073
进一步得知,B″可用如下数学公式描述:
Figure BDA0004021089710000074
Q2的集电极与所述输出端连接,由于从RFin输入的所述射频信号先通过Q1,再通过R2、C2 R1、C1构成的滤波器后传输到Q2的基极,仅保留了低频信号B″,因此Q2的输出即所述电流参数Iout,该电流参数Iout是低频或直流的电流,Iout等于与输入电压成比例的电流加上限幅放大器提供的固定电流,可用如下数学公式描述:
Figure BDA0004021089710000075
图1示出的是功率探测器输出所述电流参数Iout的情况,Iout是被放大器电路单元放大后的微电流,可以通过负载电阻将该Iout转换为电压参数用于功率计算。请参考图2,图2是根据本发明的功率探测器的另一个具体实施方式的电路结构示意图。图2示出的电路结构与图1相比,不同之处在于所述功率探测器还包括负载电阻,所述负载电阻的一端与所述第二双极型晶体管的集电极连接,另一端接地。
将所述电压参数记为Vdet,将所述负载电阻记为RL,将Iout转换为Vdet的基本原理为:Vdet=RL*Iout。在所述功率探测器的制造中或工作时,因为工艺、电压、温度的不同,所引起的电路失配会造成误差,因此优选地所述功率探测器还包括误差源,如图2中的误差源Vos,Vos与RL的接地端串联,用于输出失调电压,失调电压用于补偿所述误差。
对于图1和图2工作原理的进一步说明可以参考图3至图7,图3至图7是图1或图2示出的功率探测器中一些关键参数关联变化的仿真示意图。
图3表示输入的射频信号的峰值电压分别为0.2V、0.6V和1.0V时,幅值参数Ain在时间维度上的数值变化所形成的对应波形。
图4表示输入的射频信号的峰值电压分别为0.2V、0.6V和1.0V时,幅值参数A在时间维度上的数值变化所形成的对应波形。
图5表示输入的射频信号的峰值电压分别为0.2V、0.6V和1.0V时,低频信号B在时间维度上的数值变化所形成的对应波形,不难发现,低频信号B的波形呈现为一条基本平直的直线,表明低频信号B的电压值在时间维度上基本维持不变。
图6表示输入的射频信号的峰值电压分别为0.2V、0.6V和1.0V时,电压参数Vdet在时间维度上的数值变化所形成的对应波形,同样,Vdet呈现为一条基本平直的直线,表明Vdet的电压值在时间维度上基本维持不变,可用于表征所述射频信号的功率。
图7表示电压参数Vdet和幅值参数Ain的对应曲线,可见在所述功率探测器的响应范围内,电压参数Vdet随着幅值参数Ain的变化而有规律地同向变化。
图1或图2揭露的是功率探测器仅具有一条支路时的工作原理,理论上,功率探测器的输入信号的动态范围取决于该功率探测器中放大器电路的单极增益和级数,级数越多,所适配的输入信号的动态范围就越大,但级数增加的同时功率探测器稳定性就会变差。可视为所述放大器电路的性能决定了对数检波的动态范围、输出电压斜率和截距。因此,考虑将功率探测器设计为并联求和型(也即分段逼近型)结构,此时,就需要在所述放大器电路内设置更多的支路。例如将图2示出的功率探测器的结构拓展为并联求和型,可得到如图8所示的具体实施方式。
请参考图8,图8是根据本发明的功率探测器的另一个具体实施方式的电路结构示意图,更具体而言,当前文所述N的取值大于1时,本发明提供的功率探测器的另一个具体实施方式的电路结构如图8所示。
与图2揭露的具体实施方式相同,在图8示出的具体实施方式中,功率探测器包括输入端RFin、放大器电路单元和输出端,所述输入端接入射频信号,将所述射频信号记为Input,所述输出端输出表征所述射频信号的功率的电流参数Vdet,将所述电流参数记为Iout
所述放大器电路单元包括N条支路,N为正整数,每一所述支路至少包括耦合电容、第一双极型晶体管、第二双极型晶体管、第一电阻、第二电阻、第一滤波电容和第二滤波电容。
当N等于1时,第1条支路的第一双极型晶体管的集电极通过所述第1条支路的耦合电容与所述输入端连接,具体如图8所示,第1条支路的第一双极型晶体管Q11的集电极通过第1耦合电容Crf1与输入端RFin连接;当N大于1时,第N条支路的第一双极型晶体管的集电极通过所述第N支路上的耦合电容连接至第N-1条支路上的耦合电容的输出端,同样具体如图8所示,第2条支路的第2耦合电容Crf2与第1耦合电容Crf1的输出端连接,第2条支路的第3耦合电容Crf3与第2耦合电容Crf2的输出端连接,以此类推。所述N条支路中,为便于说明,第N条支路的第一双极型晶体管为Q1N,第N条支路的第二双极型晶体管为Q2N,每一条所述支路都包括R2、C2 R1、C1构成的滤波器。
每一所述支路中,所述第一双极型晶体管的集电极接入与其匹配的第一基准电流,所述第二双极型晶体管的集电极接入与其匹配的第二基准电流。同样,考虑到为了提升所述放大器电路单元的对称性,Q1N和Q2N具有相同的电流放大系数β,相应地,Q1N和Q2N具有相同的反向饱和电流Is,优选地,Q1N和Q2N是具有相同工作参数的双极型晶体管,例如Q1N和Q2N选择性地实施为相同尺寸的双极型晶体管。此时,在第N条支路中,所述第一基准电流和所述第二基准电流的取值相同。这意味着Q1N和Q2N都接入同一数值的Iref,所述第一基准电流和所述第二基准电流由至少一个恒流源提供。例如在图8中,所有的Q2N连接至一个输出N*Iref的恒流源,每一个Q2N都接入同等数值的Iref
参考前文中对于Iref的说明,可知对于任一所述支路而言,Iref的可用如下数学公式描述:
Figure BDA0004021089710000101
也即Iref的总值应设置为当前支路的Q1N的基极电流、Q1N的集电极电流以及Q2N的基极电流三者的数值之和。
进一步地,图8示出的功率探测器可以直接输出电压参数Vdet,优选地,该功率探测器还包括串联的负载电阻RL和误差源Vos,负载电阻RL的一端与Q2N的集电极连接,另一端通过误差源Vos接地,误差源Vos输出失调电压。
当所有所述支路中的所述第二双极型晶体管,也即Q21至Q2N的基极连接在一起后,其输出通过负载电阻RL转换为电压参数Vdet,对于图8示出的电路结构而言,Vdet可以用如下数学公式来描述:
Figure BDA0004021089710000102
需要说明的是,所述N条支路中,第1耦合电容至第N耦合电容应选择合适的参数,令Ai/Ai+1为常数。此时,所述功率探测器输出的电压参数Vdet是一个精确对数的分段逼近。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,在权利要求的等同要件的含义和范围内的所有变化均涵括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他部件、单元或步骤,单数不排除复数。权利要求中陈述的多个部件、单元或装置也可以由一个部件、单元或装置通过软件或者硬件来实现。
本发明提供的功率探测器的电路设计使用双极型晶体管来实现,将双极型晶体管的微电流放大技术应用到功率探测器中,利用了器件的非线性来产生直流或低频的电流,并用于表征射频信号功率的大小。相较于传统的基于二极管的功率探测器,本发明的功率探测器具有灵敏度高、噪声系数低等优点,相较于基于CMOS场效应晶体管的功率探测器,本发明的功率探测器具有更好的性能。此外,根据所述功率探测器的第二电阻和第二滤波电容的设置方式,该功率探测器的对称性和线性度得到了显著提升。
以上所披露的仅为本发明的一些较佳具体实施方式,不能以此来限定本发明之权利范围,依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (6)

1.一种功率探测器,该功率探测器包括输入端、放大器电路单元和输出端,其中:
所述输入端接入射频信号,所述输出端输出表征所述射频信号功率的电流参数或电压参数;
所述放大器电路单元包括N条支路,N为正整数,每一所述支路至少包括耦合电容、第一双极型晶体管、第二双极型晶体管、第一电阻、第二电阻、第一滤波电容和第二滤波电容;
所述第一双极型晶体管的基极通过依次串联的所述第二电阻和所述第一电阻与所述第二双极型晶体管的基极连接,所述第一双极型晶体管的基极还通过所述第二电阻与所述第一双极型晶体管的集电极短接,所述第二电阻通过与所述第一电阻并联的第二滤波电容接地,所述第一电阻的两端分别通过所述第一滤波电容和所述第二滤波电容接地,所述第二滤波电容连接于所述第一电阻和所述第二电阻之间,所述第一电阻和所述第二电阻的阻值相等;
所述第二双极型晶体管的集电极与所述输出端连接,所述第一双极型晶体管的发射极和所述第二双极型晶体管的发射极均接地;
当N等于1时,第N条支路的第一双极型晶体管的集电极通过所述第1条支路的耦合电容与所述输入端连接,当N大于1时,第N条支路的第一双极型晶体管的集电极通过所述第N支路上的耦合电容连接至第N-1条支路上的耦合电容的输出端;
每一所述支路中,所述第一双极型晶体管的集电极接入与其匹配的第一基准电流,所述第二双极型晶体管的集电极接入与其匹配的第二基准电流。
2.根据权利要求1所述的功率探测器,其中:
所述第一双极型晶体管与所述第二双极型晶体管具有相同的电流放大系数。
3.根据权利要求2所述的功率探测器,其中,所述第二双极型晶体管的基极电压的计算公式为:
Figure FDA0004021089700000021
所述计算公式中,B″为所述第二双极型晶体管的基极电压,Vbe0为静态分析时所述第一双极型晶体管的基极/发射极电压,
Figure FDA0004021089700000022
为温度的电压当量,k是玻尔兹曼常数,T是绝对温度,q是电子的电荷量,I0(·)为第一类零阶贝塞尔函数,Is1为所述第一双极型晶体管的反向饱和电流,Is2为所述第二双极型晶体管的反向饱和电流,β1为所述第一双极型晶体管的放大系数,β2为所述第二双极型晶体管的放大系数;
Figure FDA0004021089700000023
所述射频信号的表达式为Ain*sin(ωt),Ain为所述射频信号的幅度,ω为所述射频信号的角频率,Crf为所述第二双极型晶体管所在支路的耦合电容,Cbe为所述所在支路中的第一双极型晶体管的所有对地寄生电容。
4.根据权利要求2所述的功率探测器,其中:
所述第一基准电流和/或所述第二基准电流由恒流源提供;
所述恒流源包括由MOS管构成的电流源电路。
5.根据权利要求1所述的功率探测器,所述功率探测器还包括:
负载电阻,所述负载电阻的一端与所述第二双极型晶体管的集电极连接,另一端接地。
6.根据权利要求5所述的功率探测器,该功率探测器还包括:
误差源,所述误差源与所述负载电阻的接地端串联,用于输出失调电压。
CN202211686234.7A 2022-12-27 2022-12-27 一种功率探测器 Pending CN115856418A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211686234.7A CN115856418A (zh) 2022-12-27 2022-12-27 一种功率探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211686234.7A CN115856418A (zh) 2022-12-27 2022-12-27 一种功率探测器

Publications (1)

Publication Number Publication Date
CN115856418A true CN115856418A (zh) 2023-03-28

Family

ID=85655079

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211686234.7A Pending CN115856418A (zh) 2022-12-27 2022-12-27 一种功率探测器

Country Status (1)

Country Link
CN (1) CN115856418A (zh)

Similar Documents

Publication Publication Date Title
US9455735B2 (en) High speed sampling front-end circuit
KR101162337B1 (ko) 무선 통신 시스템의 신호 변환 장치 및 수신 장치
US9236960B1 (en) Calibration circuit and methods for calibrating harmonics in a mixer
US7825735B1 (en) Dual-range linearized transimpedance amplifier system
US6825715B2 (en) Temperature compensated, high efficiency diode detector
CN104781679A (zh) 电压检测装置
CN102753981A (zh) 对数均方功率检测器
Guo et al. Periodic time-varying noise in current-commutating cmos mixers
CN111147088A (zh) 一种模拟延迟线接收机及其实现方法
US10135393B2 (en) Signal detector including a set of resistors and a collection unit for generating a detection signal
CN115856418A (zh) 一种功率探测器
US11909361B2 (en) Broadband logarithmic detector with high dynamic range
Maundy et al. Practical voltage/current-controlled grounded resistor with dynamic range extension
US7911278B1 (en) Biased low differential input impedance current receiver/converter device and method for low noise readout from voltage-controlled detectors
WO2023097941A1 (zh) 功率检测电路、功率放大器模块及射频前端架构
CN115856417A (zh) 一种功率探测器
Roy et al. A new method of realization of four-quadrant analog multiplier using operational amplifiers and MOSFETs
Su et al. A highly linear low power envelope detector
CN210405325U (zh) 功率检测器
CN114487579A (zh) 电流检测电路
CN113595510A (zh) 一种低噪声电荷灵敏前置放大器及减小输入电容的方法
RU2526756C1 (ru) Зарядочувствительный предусилитель
US7177613B2 (en) Reducing noise and distortion in a receiver system
Kron Developments in the Practical Use of Photocells for Measuring Faint Light.
Alexeev et al. The eight-channel fast comparator IC

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination