CN115836398A - 太阳能电池的制造 - Google Patents

太阳能电池的制造 Download PDF

Info

Publication number
CN115836398A
CN115836398A CN202180049703.1A CN202180049703A CN115836398A CN 115836398 A CN115836398 A CN 115836398A CN 202180049703 A CN202180049703 A CN 202180049703A CN 115836398 A CN115836398 A CN 115836398A
Authority
CN
China
Prior art keywords
layer
solar cell
forming
tunnel oxide
another step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180049703.1A
Other languages
English (en)
Inventor
梁周弘
雷蒙德·德孟尼克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semco Intelligent Technology Co Of France
Original Assignee
Semco Intelligent Technology Co Of France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semco Intelligent Technology Co Of France filed Critical Semco Intelligent Technology Co Of France
Publication of CN115836398A publication Critical patent/CN115836398A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本公开涉及一种制造太阳能电池的方法,该方法依次包括:在半导体衬底(50)的至少一个表面之上形成隧道氧化物(52);在所述隧道氧化物之上形成掺杂有第一导电类型掺杂物的层;在掺杂层上形成掩模(56);和在包含第二导电类型掺杂物的气体气氛(62)中,使用激光对所述掺杂层的至少一个第一区域(66)进行掺杂。

Description

太阳能电池的制造
本申请要求2020年7月13日提交的标题为“formation de contacts passivespour cellules solaires IBC”的2007380号法国专利申请和2020年10月28日提交的标题为“Fabrication de cellules solaires”的2011028号法国专利申请的优先权,在法律允许的最大范围内,其内容通过引用并入本文。
技术领域
本公开总体上涉及太阳能电池,更具体地涉及背面接触太阳能电池的结构和制造工艺。
背景技术
太阳能电池是将太阳光转化为电能的装置。通常,太阳能电池的结构是基于同一半导体衬底上存在的p型区域和n型区域。在背面接触太阳能电池中,每个区域都耦合到太阳能电池的背面的金属接触件,以允许外部电路或装置耦合到太阳能电池,并由太阳能电池供电,如US2016/0351737和US7468485中所述。
发明内容
需要对当前的太阳能电池和当前的太阳能电池的制造工艺进行改进,特别是减少工艺时间。
一个实施例解决了已知的太阳能电池及其制造工艺的全部或部分缺点。
一个实施例提供了一种制造太阳能电池的方法,该方法依次包括:
在半导体衬底的至少一个表面之上形成隧道氧化物;
在隧道氧化物之上形成掺杂有第一类型导电掺杂物的层;
在掺杂层上形成掩模;和
在包括第二类型导电掺杂物的气体气氛中,使用激光对掺杂层的至少一个第一区域中进行掺杂。
根据实施例,所述方法包括在掩模形成后形成在掩模、隧道氧化物和掺杂层中延伸的沟槽。
根据实施例,沟槽将掺杂层的第一区域与掺杂层的第二区域分隔开。
根据实施例,该气体包括三氯氧化磷。
根据实施例,该方法包括在另一表面上对半导体衬底进行纹理化。
根据实施例,该方法包括在掺杂层之上形成钝化膜,所述钝化层重新覆盖沟槽的内部。
一个实施例提供了通过如上所述的方法获得的叉指式背面接触或IBC太阳能电池。
一个实施例提供了一种包括叉指式背面接触太阳能电池的太阳能板。
附图说明
借助于对附图的说明并且不限于对附图的参考,前述特征和优点以及其他特征和优点将在以下具体实施例的描述中得到详细描述,其中:
图1示出了太阳能电池的示例的截面图;
图2示出了制造图1所示的太阳能电池的方法的示例的步骤的截面图;
图3示出了图2的制造方法的另一步骤;
图4示出了图2的制造方法的另一步骤;
图5示出了图2的制造方法的另一步骤;
图6示出了图2的制造方法的另一步骤;
图7示出了图2的制造方法的另一步骤;
图8示出了图2的制造方法的另一步骤;
图9示出了图2的制造方法的另一步骤;
图10示出了图2的制造方法的另一步骤;
图11示出了图2的制造方法的另一步骤;
图12示出了图2的制造方法的另一步骤;
图13示出了图2的制造方法的另一步骤;
图14示出了图2的制造方法的另一步骤;
图15示出了图2的制造方法的另一步骤;
图16示出了图2的制造方法的另一步骤;
图17示出了根据本说明书的实施例的太阳能电池的截面图;
图18示出了根据本说明书的实施例的制造太阳能电池的方法的步骤的截面图;
图19示出了图18的制造方法的另一步骤;
图20示出了图18的制造方法的另一步骤;
图21示出了图18的制造方法的另一步骤;
图22示出了图18的制造方法的另一步骤;
图23示出了图18的制造方法的另一步骤;
图24示出了图18的制造方法的另一步骤;
图25示出了图18的制造方法的另一步骤;
图26示出了图18的制造方法的另一步骤;
图27示出了图18的制造方法的另一步骤;
图28示出了图18的制造方法的另一步骤;
图29示出了图18的制造方法的另一步骤;和
图30示出了图18的制造方法的另一步骤。
具体实施方式
在各种附图中,相似的特征已经被标识为类似的编号。特别是,在各种实施例中共同的结构和/或功能特征可能具有同样的编号,并且可能具有相同的结构、尺寸和材料特性。
为了清楚起见,仅对有助于理解本文所描述的实施例的操作和元件进行了详细的说明和描述。
除非另有说明,当对连接在一起的两个元件进行引用时,这表示该连接是不需要除导体以外的任何中间元件的直接连接,并且当对耦合在一起的两个元件进行引用时,这表示这两个元件能够连接或者它们能够通过一个或更多个其它元件耦合。
在下文的公开中,除非另有说明,当对绝对位置限定符进行引用时,例如术语“前”、“后”、“上”、“下”、“左”、“右”等,或对相对位置限定符进行引用时,例如术语“上方”、“下方”、“较高”、“较低”等,或对指向限定符进行引用时,例如“水平的”、“垂直的”等时,该引用是参考附图中所示的方向。
除非另有说明,词语“大约”、“接近于”、“基本上”和“量级”表示在10%以内,并且优选在5%以内。
图1是示出太阳能电池的示例的截面图。
图1所示的太阳能电池由半导体衬底10制成,所述半导体衬底10具有正面部分和背面部分,所述正面部分用于在正常运行期间接收太阳辐射,所述背面部分形成太阳能电池的金属接触件。太阳能电池具有被掺杂层37覆盖的纹理化正面。
图1的太阳能电池包括第一导电类型的第一区域32,例如p型区域,和第二导电类型的第二区域36,例如n型区域,所述第一区域32和第二区域36在衬底10的背面之上的未掺杂层30B中形成。隧道氧化层20B可以形成在衬底10的背面上,更准确地说,形成在衬底10和未掺杂层30B之间。层37是第二导电类型。
金属接触件41连接到区域32和36,以允许外部电路和装置接收来自太阳能电池的电能。
图1的太阳能电池可以包括钝化层38、39、40,以保护结构免受外部电气损坏。
图2至图16是示出图1所示的制造太阳能电池的方法的示例的步骤的截面图。
图1所示的制造太阳能电池的接触件的工艺可以包括:
-半导体衬底10的制备(图2);
-在衬底10的正面101上形成隧道氧化层20F,并且在衬底10的背面103上形成另一隧道氧化层20B(图3);
-在层20F的正面上形成半导体层30F,并且在层20B的背面上形成另一半导体层30B;
-在层30B的背面上形成层31,所述层31由掺杂层制成,并且在整个层30B之上形成,并且在整个掺杂层之上形成未掺杂层。该掺杂层包括第一导电类型(p型或n型)的掺杂物(图4);
-例如使用湿法蚀刻工艺在层31中形成开口310(图5);
-通过使用激光在层30B中进行层31的掺杂物的热扩散,在层30B中形成区域32(图6);
-在结构周围沉积掩蔽层33(图7);
-将掩蔽层33从结构的正面去除,更准确地说,是从层30F的正面和层30F的侧面、层20F和衬底10的一部分去除(图8);
-将层20F和层30F以及层30F正面的纹理化工艺去除(图9);
-在掩蔽层33中形成开口34(图10);
-在包含第二导电类型掺杂物的气体气氛35下进行处理,以在层30B中形成区域36并在衬底10的正面上形成层37(图11);
-去除掩蔽层33(图12);
-热处理,以使区域36的掺杂物扩散到层30B的所有深度中(图13);
-在层37的正面中形成钝化和抗反射膜38(图14);
-在结构的背面中形成钝化膜39,并在结构的横向侧面中形成钝化膜40;和
-通过湿法蚀刻层39的步骤和金属沉积的步骤在结构的背面上形成电极41(图16)。
图17是示出根据本说明书的实施例的太阳能电池的截面图。
图17所示的太阳能电池由具有正面部分和背面部分的半导体衬底50制成,所述正面部分用于在正常运行期间接收太阳辐射,所述背面部分形成太阳能电池的金属接触件。太阳能电池具有被掺杂层64覆盖的纹理化正面。
图17的太阳能电池包括一个或更多个第一导电类型的区域541(例如p型区域)和一个或更多个第二导电类型的区域66(例如n型区域),所述区域541和区域66形成在衬底50的背面之上。隧道氧化层52可以形成在衬底50的背面上,更准确地说,形成在衬底50和区域541、66之间。
金属接触件76和78分别连接到区域541和66,以允许外部电路和装置接收来自太阳能电池的电能。
图17的太阳能电池可以包括钝化层70、72、74,以保护结构免受外部电气损坏。
此外,图17所示的太阳能电池可以包括区域66和区域541、在区域66和区域541之间的沟槽60,以及位于衬底50中的掺杂有第二导电类型掺杂物的衬底68的低深度。
图18示出了根据本说明书的实施例的制造接触式太阳能电池的步骤。
在本实施例中,衬底50是半导体衬底,例如硅晶圆,优选掺杂有诸如磷(P)之类的n型掺杂物或诸如镓(Ga)和硼(B)之类的p型掺杂物的硅晶圆。
衬底50具有正面501和背面503。正面501是用于接收太阳辐射的太阳能电池的一侧。使用同样蚀刻晶圆表面损伤的工艺(锯损伤蚀刻–SDE)将衬底50减薄至例如约240μm的厚度。
图19示出了根据本说明书的实施例的制造接触式太阳能电池的另一步骤。
在图19中,隧道氧化层52形成在衬底的背面503之上,例如形成在衬底的正面之上。隧道氧化层52形成以足够薄以增加电子直接穿过隧道氧化层52的可能性。隧道氧化层52可以具有约7埃(Angstroms)至约20埃的厚度。在一个实施例中,隧道氧化层52具有约10埃的厚度。隧道氧化层52可以通过例如热生长或化学沉积(例如,等离子体增强化学气相沉积(PECVD)或低压化学气相沉积(LPCVD))形成。可以使用臭氧氧化工艺形成隧道氧化层52,臭氧氧化工艺涉及将衬底50浸入包含悬浮在去离子水中的臭氧的沐浴中。例如,可以首先使用氢氧化钾对衬底50进行湿法蚀刻以使衬底50变薄,然后进行漂洗-清洁循环,然后进行臭氧氧化处理以形成隧道氧化层52,这些步骤全部在同一设备中进行。在臭氧氧化过程期间,隧道氧化物的层在衬底50的两侧生长。
根据替代实施例,也可以使用其它工艺形成隧道氧化层52,而不减损本说明书所述的优点。
图20示出了根据本说明书的实施例的制造接触式太阳能电池的另一步骤。
在图20中,在隧道氧化层52之上形成掺杂层54,例如p型掺杂多晶硅层。
多晶硅层54可以具有约2000埃的厚度。可以使用三氯化硼(BCl3)或乙硼烷(B2H6)与硅烷(SiH4)通过PECVD或LPCVD在隧道氧化物52上沉积多晶硅层。
图21示出了根据本说明书的实施例制造接触式太阳能电池的另一步骤。
图21中,在层54之上在正面和背面上形成掩蔽层56,以完全包裹图20的结构。掩蔽层56将在随后的蚀刻和激光工艺(图23和24)中将层54的部分暴露。可以通过例如热生长或化学沉积(PECVD或LPCVD)形成掩蔽层56。然而,可以使用各种其它方法来形成掩蔽层56。
掩蔽层56可以由被选择为不具有导电掺杂物的未掺杂材料并且具有防止n型导电掺杂物的扩散的能力的材料形成。在示例中,掩蔽层56可以是包括氧化硅(SiOx)、氮化硅(SiHx)、氮氧化硅(SiOxNy)、本征非晶硅或碳化硅(SiC)的单层。特别地,当掩蔽层56是由碳化硅形成的单层时,掩蔽层56可以有效地阻止掺杂物的扩散。
图22示出了根据本说明书的实施例的制造接触式太阳能电池的另一步骤。
在图22中,掩蔽层56被从正面(从衬底50的正面501的一侧)和例如从结构的横向侧面的一部分去除。
图23示出了根据本说明书的实施例的制造太阳能电池的另一步骤。
在图23中,掩蔽层56被从背面(从衬底50的背面)的某些区域中去除,以便通过掩蔽层56和层54创建孔径58。在本实施例中,在掩蔽层56上创建了两个孔径58,然而,孔径的数量能够不同于两个。每个孔径的宽度为30nm到200μm,并且其深度近似等于掩蔽层56的厚度。例如,孔径58是使用激光制成的。
图24示出了根据本说明书的实施例的制造接触式太阳能电池的另一步骤。
在图24中,衬底50的正面501被纹理化。可以使用湿法刻蚀工艺或者包括例如氢氧化钾和异丙醇或TMAH(四甲基氢氧化铵)溶液的其他化学工艺来纹理化正面501。将正面501纹理化的湿法刻蚀工艺使正面501具有随机的椎体,从而有利地提高太阳辐射收集效率。
在图24中,掩蔽层56被用于蚀刻p型掺杂层54和隧道氧化层52。在一个实施例中,使用湿法刻蚀工艺对层54、层52和衬底50进行图案化,该湿法刻蚀工艺包括经稀释的氢氟酸、氢氧化钾与异丙醇或TMAH(四甲基氢氧化铵TertraMethylAmmonium Hydroxid)溶液。湿法蚀刻工艺对层54、隧道氧化层52和衬底50的未被掩蔽层56覆盖的部分进行蚀刻。湿法蚀刻工艺蚀刻以创建沟槽60,所述沟槽60从孔径58延伸到层54、隧道氧化层52和衬底50中。沟槽60将层54的区域分隔开,以在层54中形成区域541和542。
在一个实施例中,半导体衬底50的正面501在形成沟槽60之前被纹理化。
不过,实施例不限于此。因此,半导体衬底50的正面501可以在沟槽60形成之后被纹理化或者在单独的工艺中被纹理化。
图25示出了根据本说明书的实施例的制造接触式太阳能电池的另一步骤。
图24所示的结构是,在图25中被放置在包括n型导电掺杂物的气体气氛62中的结构。可以使用包括n型导电掺杂物的各种气体来生成气体气氛62。在示例中,当导电掺杂物为磷(P)时,气体气氛62可以包括三氯氧化磷(POCl3)。
此时,半导体衬底50的正面501可以掺杂有n型导电掺杂物。因此,在掺杂过程中还可以形成正面场64区域。然而,本说明书的实施例不限于此。因此,在掺杂过程中,可以在半导体衬底50的正面501之上形成防扩散膜,使得在掺杂过程中不会形成正面场64区域。在该实例中,正面场区域64可以在单独的工艺中形成,该单独的工艺是从包括例如离子注入、热扩散和激光掺杂的各种工艺中选择出来的。
图26示出了根据本说明书的实施例的制造接触式太阳能电池的另一步骤。
图26示出了区域542的掺杂以创建区域66。区域66的掺杂过程是使用激光进行的。
在该掺杂过程中形成区域68。在该掺杂过程中还能实现场区域64,其都是在POCl3下。
激光的波长可以为1064nm或更小。这是因为很难产生波长超过1064nm的激光。也就是说,所有红外光、紫外光和可见光的波长都可以用作激光。此时,在一个示例中,激光可以是波长在500nm至650nm范围内的激光,即绿色激光。
图27示出了根据本说明书的实施例的制造接触式太阳能电池的另一步骤。
在图27中,通过使用图26中提到的激光对衬底50进行掺杂。在实施例中,衬底50的掺杂与区域542的掺杂是同时进行的。此时,掩蔽层56被去除并且结构离开气体气氛62。
图28示出了根据本说明书的实施例的制造接触式太阳能电池的另一步骤。
在图28中,在半导体衬底50的正面形成绝缘膜70。绝缘膜70包括正面钝化膜和抗反射膜,所述正面钝化膜和抗反射膜在层64的正面形成。例如,正面钝化膜和抗反射膜在层64的整个正面上形成。可以使用各种方法形成正面钝化膜和抗反射膜,例如,使用真空沉积、化学气相沉积、旋涂、丝网印刷或喷涂。正面钝化膜和抗反射膜的形成顺序未定义。
图29示出了根据本说明书的实施例的制造接触式太阳能电池的另一步骤。
在图29中,绝缘膜72和74分别在结构的背面和侧面上形成。
例如,背表面钝化膜72在结构的整个背面之上形成。可以使用各种方法形成背面钝化膜72,例如使用真空沉积、化学气相沉积、旋涂、丝网印刷或喷涂。
图30示出了根据本说明书的实施例的制造接触式太阳能电池的另一步骤。
图30示出了第一电极76和第二电极78的形成,所述第一电极76和第二电极78分别连接到导电区域541和66。
可以通过在背面施加粘剂来形成第一电极76和第二电极78,通过例如丝网印刷,以及此后执行的例如穿火或激光射击接触。在金属沉积之前,对背面进行蚀刻,例如蚀刻钝化膜72,以产生金属化。
第二实施例及实施方式的优点在于:与第一实施例相反,隧道氧化物、掺杂层和掩模沉积是一步实现的。
第二实施例及实施方式的优点在于:与第一实施例相比,太阳能电池的制造过程更短并且更便宜。
已经对各种实施例及变体进行了描述。本领域技术人员将明白,这些实施例的某些特征能够组合并且对于本领域技术人员来说很容易生成其它变体。
最后,本文描述的实施例和变体的实际实现是在基于本领域技术人员能力范围之内的由本文所提供的功能描述。

Claims (8)

1.一种制造太阳能电池的方法,所述方法依次包括:
在半导体衬底(50)的至少一个表面(503)之上形成隧道氧化物(52);
在所述隧道氧化物之上形成掺杂有第一导电类型掺杂物的层(54);
在掺杂层上形成掩模(56);和
在包含第二导电类型掺杂物的气体气氛(62)中,使用激光对所述掺杂层的至少一个第一区域(542,66)进行掺杂。
2.根据权利要求1所述的方法,所述方法包括在所述掩模形成后形成在所述掩模(56)、隧道氧化物(52)和掺杂层(54)中延伸的沟槽(60)。
3.根据权利要求2所述的方法,其中,所述沟槽(60)将所述掺杂层的第一区域(542,66)与所述掺杂层的第二区域(541)分隔开。
4.根据权利要求2或3所述的方法,所述方法包括在所述掺杂层(54)之上形成钝化膜(72),所述钝化层重新覆盖沟槽(20)的内部。
5.根据权利要求1至4中任一项所述的方法,其中,所述气体包括三氯氧化磷。
6.根据权利要求1至5中任一项所述的方法,所述方法包括在另一表面(501)上对所述半导体衬底(50)进行纹理化。
7.一种IBC太阳能电池,其由根据权利要求1至6中的任何一项所述的方法获得。
8.一种太阳能板,其包括根据权利要求7所述的IBC太阳能电池。
CN202180049703.1A 2020-07-13 2021-07-12 太阳能电池的制造 Pending CN115836398A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR2007380 2020-07-13
FR2007380A FR3112427A1 (fr) 2020-07-13 2020-07-13 Formation de contacts passivés pour cellules solaires IBC
FR2011025 2020-10-28
FR2011025A FR3112429A1 (fr) 2020-07-13 2020-10-28 Fabrication de cellules solaires
PCT/EP2021/069368 WO2022013165A1 (fr) 2020-07-13 2021-07-12 Fabrication de cellules solaires

Publications (1)

Publication Number Publication Date
CN115836398A true CN115836398A (zh) 2023-03-21

Family

ID=74045811

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180049703.1A Pending CN115836398A (zh) 2020-07-13 2021-07-12 太阳能电池的制造

Country Status (9)

Country Link
US (1) US20230253521A1 (zh)
EP (1) EP4179579A1 (zh)
JP (1) JP2023534500A (zh)
KR (1) KR20230048041A (zh)
CN (1) CN115836398A (zh)
CA (1) CA3188777A1 (zh)
FR (2) FR3112427A1 (zh)
TW (1) TW202218176A (zh)
WO (1) WO2022013165A1 (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1770122A1 (de) 1968-04-03 1971-09-30 Bayer Ag Verfahren zur Herstellung neuartiger 1,2-Benzisothiazol-Derivate
US7468485B1 (en) 2005-08-11 2008-12-23 Sunpower Corporation Back side contact solar cell with doped polysilicon regions
US7737357B2 (en) * 2006-05-04 2010-06-15 Sunpower Corporation Solar cell having doped semiconductor heterojunction contacts
US8134217B2 (en) * 2010-12-14 2012-03-13 Sunpower Corporation Bypass diode for a solar cell
EP2938761A1 (de) * 2012-12-28 2015-11-04 Merck Patent GmbH Dotiermedien zur lokalen dotierung von siliziumwafern
WO2016149174A1 (en) * 2015-03-13 2016-09-22 Natcore Technology, Inc. Laser processed back contact heterojunction solar cells
KR102373649B1 (ko) 2015-05-28 2022-03-11 엘지전자 주식회사 태양 전지 및 이의 제조 방법

Also Published As

Publication number Publication date
US20230253521A1 (en) 2023-08-10
FR3112429A1 (fr) 2022-01-14
CA3188777A1 (fr) 2022-01-20
JP2023534500A (ja) 2023-08-09
EP4179579A1 (fr) 2023-05-17
TW202218176A (zh) 2022-05-01
WO2022013165A1 (fr) 2022-01-20
KR20230048041A (ko) 2023-04-10
FR3112427A1 (fr) 2022-01-14

Similar Documents

Publication Publication Date Title
US8912038B2 (en) Method of forming emitters for a back-contact solar cell
JP6145144B2 (ja) 太陽電池および太陽電池の製造方法
US7633006B1 (en) Back side contact solar cell with doped polysilicon regions
TWI474494B (zh) 多晶矽發射極太陽能電池所用的圖案化摻雜
US9070804B2 (en) Back contact sliver cells
US20160204288A1 (en) Hybrid emitter all back contact solar cell
US20130267059A1 (en) Method of manufacturing photoelectric device
US8481356B2 (en) Method for manufacturing a back contact solar cell
US8334160B2 (en) Semiconductor photovoltaic devices and methods of manufacturing the same
CN113871494A (zh) 一种太阳能电池及其制作方法
CN117423762A (zh) 太阳电池及其制备方法、光伏组件、光伏系统
KR101160116B1 (ko) 후면 접합 태양전지의 제조방법
TW202404111A (zh) 具有鈍化觸點的背接觸式太陽電池及製造方法
KR101054985B1 (ko) 태양전지 제조 방법
JP2013197538A (ja) 光電変換素子の製造方法
US20230253521A1 (en) Solar cell manufacture
WO2014137284A1 (en) Method of fabricating a solar cell
US20230253520A1 (en) Solar cell manufacture
KR101146782B1 (ko) 태양전지 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination