CN115825743A - 一种电池soh值计算方法、控制装置和电池管理系统 - Google Patents

一种电池soh值计算方法、控制装置和电池管理系统 Download PDF

Info

Publication number
CN115825743A
CN115825743A CN202210216543.1A CN202210216543A CN115825743A CN 115825743 A CN115825743 A CN 115825743A CN 202210216543 A CN202210216543 A CN 202210216543A CN 115825743 A CN115825743 A CN 115825743A
Authority
CN
China
Prior art keywords
battery
soh
model
models
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210216543.1A
Other languages
English (en)
Inventor
王霞
请求不公布姓名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Contemporary Amperex Technology Co Ltd
Original Assignee
Contemporary Amperex Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Contemporary Amperex Technology Co Ltd filed Critical Contemporary Amperex Technology Co Ltd
Priority to CN202210216543.1A priority Critical patent/CN115825743A/zh
Priority to PCT/CN2023/075285 priority patent/WO2023169134A1/zh
Publication of CN115825743A publication Critical patent/CN115825743A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种电池SOH值计算方法、控制装置和电池管理系统,该方法包括获取n组电池的n个第一SOH值,其中,n≥1;获取m个第一模型,并得到所述n组电池在所述m个第一模型下的第二SOH值,其中,m≥1;根据所述m个第一模型、所述n个第一SOH值和(m*n)个所述第二SOH值,确定第二模型;基于所述第二模型,计算待测电池的SOH值。该方法通过不同的第一模型构建出对电池SOH值估计的第二模型,然后用第二模型对待测电池的SOH值进行估计,该第二模型能够综合利用不同第一模型所提供的信息,从而提高计算待测电池SOH值的精确度和可靠性。

Description

一种电池SOH值计算方法、控制装置和电池管理系统
技术领域
本申请实施例涉及电池技术领域,特别涉及一种电池SOH值计算方法、控制装置和电池管理系统。
背景技术
随着社会的发展和进步,传统能源越来越接近于枯竭,因此开发新能源势在必行,包括核能、太阳能和可燃冰等多种新型能源将是未来能源科技发展的趋势,也将成为电动汽车动力的来源。
随着锂离子电池在新能源汽车上的广泛应用,电池健康状态(State of Health,SOH)越来越多的受到工业界和学术界的关注,如何对电池 SOH进行较为准确的预测,是目前急需解决的问题。
申请内容
本申请实施例的目的是提供一种电池SOH值计算方法、控制装置和电池管理系统,该方法中的第二模型可用于计算电池SOH值,并能提高计算电池SOH值的准确性。
第一方面,本申请实施方式提供一种电池SOH值计算方法,该方法包括:获取n组电池的n个第一SOH值,其中,n≥1;获取m个第一模型,并得到所述n组电池在所述m个第一模型下的第二SOH值,其中, m≥1;根据所述m个第一模型、所述n个第一SOH值和(m*n)个所述第二SOH值,确定第二模型;基于所述第二模型,计算待测电池的SOH 值。
本申请实施例的技术方案中,通过不同的第一模型构建出对电池SOH计算的第二模型,后续在对电池SOH值进行估计时,能够综合利用不同第一模型所提供的信息,从而提高估算电池SOH值的精确度和可靠性。
在一些实施例中,所述根据所述m个第一模型、所述n个第一SOH 值和(m*n)个所述第二SOH值,确定第二模型,包括:根据所述n个第一SOH值和所述(m*n)个第二SOH值,得到各所述电池在m个所述第一模型下的拟合误差平方;以各所述拟合误差平方和最小为目标、并采用最小二乘法得到各所述权重系数;根据所述m个第一模型和各所述权重系数,得到所述第二模型。
在本申请上述实施例中,通过对拟合误差平方和在最下二乘原理下求解数学规划,得到m个第一模型在第二模型中的最优权重系数,能有效降低不同的第一模型在进行估计电池SOH值时的偏差,能够优化对电池SOH值估计的结果,提高了计算电池SOH值的精度和稳健性。
在一些实施例中,所述根据所述m个第一模型和各所述权重系数,得到所述第二模型,包括:通过以下公式构建所述第二模型Y:
Figure RE-GDA0003614786630000021
其中,yi为第i个所述第一模型,pi为第i个所述第一模型在所述第二模型中的权重系数。
在本申请上述实施例中,提供了一种构建组合预测模型的方式,通过对不同的第一模型进行加权组合得到第二模型,可以综合不同的第一模型,从而提高估算电池SOH值的准确性。
在一些实施例中,所述以各所述拟合误差平方和最小为目标、并采用最小二乘法得到各所述权重系数,包括:通过以下公式计算得到各所述权重系数:
Figure RE-GDA0003614786630000022
其中,R=[1,1,...1]T
Figure RE-GDA0003614786630000031
Figure RE-GDA0003614786630000032
yit为第t组电池的所述第一SOH值,
Figure RE-GDA0003614786630000033
为第t组电池在第i个所述第一模型下的所述第二SOH值,eit为第t组电池的所述第一SOH值与第 t组电池在第i个所述第一模型下的所述第二SOH值的拟合误差,i为大于等于1且小于等于m的整数,t为大于等于1且小于等于n的整数。
在本申请上述实施例中,提供了一种计算不同的第一模型的权重系数的方式,后续应用过程可快速根据第一SOH值、第二SOH值和不同的第一模型、得到不同第一模型的权重系数,从而提高确定第二模型的速度。
在一些实施例中,所述获取n组电池的n个第一SOH值,包括:通过电池循环电量法获取所述n个第一SOH值。在本申请上述实施例中,通过使用电池循环电量法计算得到n组电池对应的n个第一SOH值,可以提高计算电池实际的SOH值的精度,从而获取较为准确的实际SOH值,有利于后续进行标定,从而能提高后续构建计算待测电池SOH值的第二模型的准确性。
在一些实施例中,所述第一模型表征至少一个影响因子与SOH的对应关系。在本申请上述实施例中,通过用第一模型表征影响因子与SOH 的对应关系,可以通过m个第一模型来求得在不同影响因子下的SOH估计值。
在一些实施例中,所述影响因子为电池开路电压、欧姆内阻、极化电阻、极化电容、电池温度、电流倍率、电池荷电状态中的其中一种。在本申请上述实施例中,提供了多种影响因子,提高了构建m个第一模型的灵活性,从而提高构建计算电池SOH值的第二模型的灵活性和适应性。
第二方面,本申请实施例还提供一种控制装置,该控制装置包括:至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如第一方面任意一项所述的方法。
第三方面,本申请实施例还提供一种电池管理系统,该电池管理系统包括如第二方面所述的控制装置。
第四方面,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如上第一方面任意一项所述的方法。
第五方面,本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行如上第一方面所述的方法。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
一个或多个实施例中通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件/模块和步骤表示为类似的元件/模块和步骤,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施例提供的一种电池SOH值计算方法的流程示意图;
图2是本申请实施例提供的图1中的步骤S30的一种流程示意图;
图3是本申请实施例提供的图1中的步骤S10的一种流程示意图;
图4是本申请实施例提供的一种控制装置的结构框图示意图。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组)。
目前,SOH估计方法可以概略地分为基于实验的方法、基于模型的方法和基于数据驱动的方法三类。
基于实验的方法有累计电量查表法、经验公式法、电化学阻抗谱(Electrochemical Impedance Spectroscopy,EIS)法和容量增长分析 (IncrementalCapacity Analysis,ICA)或微分电压分析(Dynamic Voltage Analysis,DVA)法等。其中,累计电量查表法通过事先实验获得累计充/放电数据与SOH之间的关系,再将当前电池的累计充/放电数据查表,得到电池的SOH,该方法简单,但是由于电池实际运行工况与实验工况有差异,两者衰减速度不同,直接查表得到的数据不精确,而且事先的实验往往耗时较长。经验公式法是将实验数据用经验公式拟合,得到电池SOH衰减公式,再利用该公式计算当前电池的SOH,经验公式法的缺点与累计电量查表法类似,而且不合适的拟合公式还会带来额外误差。EIS法根据电池的频谱确定阻抗,从而得到电池的老化程度,但是该方法只停留在离线检测SOH的阶段。ICA和DVA类似,都是利用不同老化程度的恒流充/放电曲线有差异这一特性,其缺点是不能避免传感器带来的误差。
基于模型的方法主要是利用电池的等效电路模型进行参数辨识,得到电池的内阻,再利用相关公式计算SOH,该方法仅仅依赖于电池内阻进行计算,对电池内阻估算精度要求很高。
基于数据的方法是指采用统计学习、神经网络等机器学习方法估算电池SOH,其一般步骤为利用传感器测量量(如电压、电流、温度等)与 SOH建立模型,再根据电池充放电数据训练模型参数,最后用训练出的模型估算电池SOH,这类方法的缺点是,训练模型需要比较大的数据量,而且由于各种原因,训练集与预测数据不一定同分布。
综上,如何对电池SOH值进行较为准确的进行预测,是目前急需解决的问题。
本申请实施例提供一种电池SOH值计算方法、控制装置和电池管理系统,该方法中通过多个不同的第一模型构建第二模型,用第二模型计算电池SOH值,相比于单独使用不同的第一模型,第二模型通过综合不同的第一模型计算电池SOH值,能提高计算电池SOH值的准确性。
第一方面,本申请实施例提供一种电池SOH值计算方法,请参阅图 1,该方法包括:
步骤S10:获取n组电池的n个第一SOH值,其中,n≥1;
在本申请实施例中,n个第一SOH值为对应的电池在当前时刻实际的SOH值。
电池是指任何类型的,用于存储电能的储能组件。例如,可以是单个的电池单体,也可以是多个电池单体组成的电池模组,还可以是包含了一个或者多个电池模组的电池包。电池的外形可以根据实际情况的需要而具有相应的形状,比如,圆柱体、长方体等。
电池可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等中的电池。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
在一些实施例中,电池模组中的多个电池单体之间可串联或并联或混联,混联是指多个电池单体中既有串联又有并联。组成电池包的电池模组之间也可以是串联或并联或混联。电池包或者电池模组中还可以包括除电池单体以外的其他结构,例如,用于实现多个电池单体之间的电连接的汇流部件。
步骤S20:获取m个第一模型,并得到所述n组电池在所述m个第一模型下的第二SOH值,其中,m≥1;
在本申请实施例中,(m*n)个第二SOH值为n组电池对应在m个第一模型下的SOH估计值。
步骤S30:根据所述m个第一模型、所述n个第一SOH值和(m*n) 个所述第二SOH值,确定第二模型;
步骤S40:基于所述第二模型,计算待测电池的SOH值。
在本申请实施例中,可以通过n个第一SOH值、(m*n)个第二SOH 值和m个第一模型构建出第二模型,该第二模型包括了不同影响因子与 SOH值的对应关系;最后,可利用第二模型对待测电池的SOH值进行计算。
在本申请实施例中,通过不同的第一模型构建出对电池SOH值预测估计的第二模型,后续在对电池SOH值进行估计时,能够综合利用不同第一模型所提供的信息,相比于单独使用不同的第一模型进行估计电池 SOH值,本申请实施例提供的计算电池SOH值的方法能提高估算电池SOH 值的精确度和可靠性。
在其中一些实施例中,请参阅图2,所述步骤S30包括:
步骤S31:根据所述n个第一SOH值和所述(m*n)个第二SOH值,得到各所述电池在m个所述第一模型下的拟合误差平方;
步骤S32:以各所述拟合误差平方和最小为目标、并采用最小二乘法得到各所述权重系数;
步骤S33:根据所述m个第一模型和各所述权重系数,得到所述第二模型。
具体的,通过n个第一SOH值和(m*n)个第二SOH值,可以得到拟合误差矩阵:
Figure RE-GDA0003614786630000091
其中,
Figure RE-GDA0003614786630000092
yit为第t组电池的第一SOH值,
Figure RE-GDA0003614786630000093
为第t组电池在第i个第一模型下的第二SOH值,eit为第t组电池的第一SOH值与第t组电池在第i个第一模型下的第二SOH值的拟合误差,i为大于等于1 且小于等于m的整数,t为大于等于1且小于等于n的整数。
接着,建立目标函数如下:
Figure RE-GDA0003614786630000094
其中,Q为目标函数。
以及,建立约束条件如下:
Figure RE-GDA0003614786630000095
定义R=[1,1,...1]T,记P=[p1,p2,...pm];
那么,由约束条件
Figure RE-GDA0003614786630000096
可以得到:
Figure RE-GDA0003614786630000101
Figure RE-GDA0003614786630000102
对上式采用拉格朗日乘子法,从而求得最优权重向量为:
Figure RE-GDA0003614786630000103
目标函数最小值为
Figure RE-GDA0003614786630000104
在本申请实施例中,通过对拟合误差平方和在最下二乘原理下求解数学规划,得到最优权重向量,该最优权重向量包括m个第一模型在第二模型中的最优权重系数,上述方式能有效降低不同第一模型在进行估计电池SOH值时的偏差,能够优化对待测电池SOH值估计的结果,提高了计算电池SOH值的精度和稳健性。并且,通过
Figure RE-GDA0003614786630000105
可快速计算不同第一模型的权重系数,后续应用中可快速根据第一SOH值、第二SOH值和不同的第一模型、得到不同第一模型的权重系数,从而提高构建第二模型的速度,加快估计待测电池SOH值的速度。
在其中一些实施例中,所述根据所述m个第一模型和各所述权重系数,得到所述第二模型,包括:通过以下公式构建所述第二模型Y:
Figure RE-GDA0003614786630000106
其中,yi为第i个所述第一模型,pi为第i个所述第一模型在所述第二模型中的权重系数。
在本申请实施例中,提供了一种构建组合预测模型的方式,将不同的第一模型通过适当加权组合得到第二模型,使第二模型可以综合不同的第一模型,后续利用该第二模型进行计算待测电池的SOH值时,可提高估算电池SOH值的准确性。
在其中一些实施例中,请参阅图3,所述步骤S10包括:
步骤S11:通过电池循环电量法获取所述n个第一SOH值。
具体的,通过以下公式计算第i组电池的第一SOH值SOH1:
SOH1=1-Q/(5Qt);
其中,Q为第i组电池的累计放电量,Qt为第i组电池在生命周期范围内的放电量。累计放电量即为第i组电池在截止到当前时间前电池放电电量的累加和。第i组电池在生命周期范围内的放电量可以通过安时积分法计算得到,生命周期范围可以是指电池SOH值从100%下降至 80%的时间范围。实际应用中,生命周期范围可根据实际需要进行设置,在此不需拘泥于本实施例中的限定。
在本申请实施例中,通过使用电池循环电量法计算得到n组电池对应的n个第一SOH值,可以提高计算电池实际的SOH值的精度,从而获取较为准确的实际SOH值,有利于后续进行标定,从而能提高后续构建计算电池的第二模型的准确性。
在其中一些实施例中,所述第一模型表征至少一个影响因子与SOH 的对应关系。本申请通过用第一模型表征影响因子与SOH的对应关系,可以通过m个第一模型来求得在不同影响因子下的SOH估计值。
具体的,在其中一些实施例中,影响因子可以为电池开路电压、欧姆内阻、极化电阻、极化电容、电池温度、电流倍率、电池荷电状态(State of Charge,SOC)、电池湿度中的其中一种。
其中,电池开路电压是指电池的开路电压等于电池在断路时(即没有电流通过两极时)电池的正极电极电势与负极的电极电势之差。电池内阻包括欧姆电阻和电极在电化学反应时所表现的极化电阻。欧姆电阻与极化电阻之和为电池内阻。欧姆电阻由电极材料、电解液、隔膜电阻及各部分零件的接触电阻组成。极化电阻是指电化学反应时由于极化引起的电阻,包括电化学极化和浓差极化引起的电阻。极化电容是表示电池在极化过程中所产生的容抗。电池温度是指电池所处环境的温度。电池湿度是指电池所处环境的湿度。电流倍率一般是指在某规定电压平台之上锂电最大放电电流与电池容量之比。SOC是用来反映电池的剩余容量状况的物理量,其数值定义为电池剩余容量占电池容量的比值,即 SOC=Qc/CI,其中,Qc为电池剩余的容量,CI为电池以恒定电流大小I 放电时所具有的容量。
在本申请实施例中,通过提供多种影响因子,可提高构建m个第一模型时的灵活性,从而提高构建计算电池SOH值的第二模型的灵活性和适应性。
可以理解的是,在对电池的SOH值进行预测时,电池内阻是电池最为重要的特性参数之一,即可以通过电池内阻来计算SOH值。电池内阻是表征电池SOH以及电池运行状态的重要参数,是衡量电子和离子在电极内传输难易程度的主要标志。因此,可以建立电路等效模型,基于内阻法对SOH值进行估计,在该内阻法下可以选取四个影响因子分别为:开路电压、欧姆内阻、极化电阻和极化电容,那么,SOH值可通过测量开路电压、欧姆内阻、极化电阻和极化电容后进行计算得到。
接着,可以选取四个第一模型,分别为第一模型y1、第一模型y2、第一模型y3和第一模型y4。具体的,第一模型y1表征在开路电压影响下,欧姆内阻、极化电阻和极化电容与SOH的对应关系;第一模型y2 表征在欧姆内阻影响下,开路电压、极化电阻和极化电容与SOH的对应关系;第一模型y3表征在极化电阻影响下,开路电压、欧姆内阻和极化电容与SOH的对应关系;第一模型型y4表征在极化电容影响下,开路电压、欧姆内阻和极化电阻与SOH的对应关系。
接着,在得到n组电池的第一SOH值后,分别根据第一模型y1、第一模型y2、第一模型y3和第一模型y4计算得到n组电池的4n个第二 SOH值;然后,根据各第一SOH值和各第二SOH值计算得到拟合误差矩阵,并以拟合误差平方和最小为目标、采用最小二乘法得到第一模型y1 的第一权重系数p1、第一模型y2的第二权重系数p2、第一模型y3的第三权重系数p3、第一模型y4的第四权重系数p4。最后,得到第二模型为Y=p1y1+p2y2+p3y3+p4y4。在该第二模型中,表明了SOH与电池开路电压、欧姆内阻、极化电阻和极化电容的对应关系,那么,后续可以测量待测电池的开路电压、欧姆内阻、极化电阻和极化电容后,输入至该第二模型中,即可得到待测电池的SOH值。
通过上述方式构建出不同影响因子下、电池内阻与SOH值的关系,相比于直接利用内阻法进行计算电池SOH值,该第二模型综合利用不同影响因子下的第一模型进行计算电池SOH值,从而能提高用内阻法衡量电池SOH值的准确性。在本申请实施例中基于电池内阻法测量SOH值的基础上,通过不同的影响因子下的内阻法第一模型构建第二模型,可以提高利用内阻法测量SOH值的准确性,后续有利于电池高效工作。实际应用中,影响因子可根据实际需要进行选取,在此不需拘泥于本实施例中的限定。
第二方面,本申请实施例还提供一种控制装置,请参阅图4,该控制装置10包括:至少一个处理器11;以及,与所述至少一个处理器11 通信连接的存储器12,图4中以一个处理器11为例。所述存储器12存储有可被所述至少一个处理器11执行的指令,所述指令被所述至少一个处理器11执行,以使所述至少一个处理器11能够执行上述图1至图4所述的电池SOH值计算方法。所述处理器11和所述存储器12可以通过总线或者其他方式连接,图4中以通过总线连接为例。
存储器12作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本申请实施例中的电池SOH值计算方法对应的程序指令/模块。处理器11通过运行存储在存储器12中的非易失性软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例电池SOH值计算方法。
存储器12可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据像素校正装置的使用所创建的数据等。此外,存储器12可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在其中一些实施例中,存储器12可选包括相对于处理器11远程设置的存储器,这些远程存储器可以通过网络连接至控制装置。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器12中,当被所述一个或者多个处理器11执行时,执行上述任意方法实施例中的电池SOH值计算方法,例如,执行以上描述的图1至图4的方法步骤。
上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
第三方面,本申请实施例还提供一种电池管理系统,该电池管理系统包括如第二方面所述的控制装置。该电池管理系统是指用于管理电池,确保电池能够正常运行的电子系统。该电池管理系统中的控制装置通过不同的第一模型构建出对电池SOH值计算的第二模型,能够综合利用不同第一模型所提供的信息,从而提高估算电池SOH值的精确度和可靠性。
在其中一些实施例中,该电池管理系统还包括至少一组电池。控制装置分别与所述电池进行连接。
第四方面,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如第一方面任意一项所述的方法。
第五方面,本申请实施例还提供了一种计算机程序产品,包括存储在非易失性计算机可读存储介质上的计算程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时时,使所述计算机执行上述任意方法实施例中的电池SOH值计算方法,例如,执行以上描述的图1至图4的方法步骤。
需要说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用至少一台计算机设备(可以是个人计算机,服务器,或者网络设备等) 执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (10)

1.一种电池SOH值计算方法,其特征在于,包括:
获取n组电池的n个第一SOH值,其中,n≥1;
获取m个第一模型,并得到所述n组电池在所述m个第一模型下的第二SOH值,其中,m≥1;
根据所述m个第一模型、所述n个第一SOH值和(m*n)个所述第二SOH值,确定第二模型;
基于所述第二模型,计算待测电池的SOH值。
2.根据权利要求1所述的方法,其特征在于,所述根据所述m个第一模型、所述n个第一SOH值和(m*n)个所述第二SOH值,确定第二模型,包括:
根据所述n个第一SOH值和所述(m*n)个第二SOH值,得到各所述电池在m个所述第一模型下的拟合误差平方;
以各所述拟合误差平方和最小为目标、并采用最小二乘法得到各所述权重系数;
根据所述m个第一模型和各所述权重系数,得到所述第二模型。
3.根据权利要求2所述的方法,其特征在于,所述根据所述m个第一模型和各所述权重系数,得到所述第二模型,包括:
通过以下公式构建所述第二模型Y:
Figure FDA0003535056540000011
其中,yi为第i个所述第一模型,pi为第i个所述第一模型在所述第二模型中的权重系数。
4.根据权利要求3所述的方法,其特征在于,所述以各所述拟合误差平方和最小为目标、并采用最小二乘法得到各所述权重系数,包括:
通过以下公式计算得到各所述权重系数:
Figure FDA0003535056540000021
其中,
R=[1,1,...1]T
Figure FDA0003535056540000022
Figure FDA0003535056540000023
yit为第t组电池的所述第一SOH值,
Figure FDA0003535056540000024
为第t组电池在第i个所述第一模型下的所述第二SOH值,eit为第t组电池的所述第一SOH值与第t组电池在第i个所述第一模型下的所述第二SOH值的拟合误差,i为大于等于1且小于等于m的整数,t为大于等于1且小于等于n的整数。
5.根据权利要求1-4任意一项所述的方法,其特征在于,所述获取n组电池的n个第一SOH值,包括:
通过电池循环电量法获取所述n个第一SOH值。
6.根据权利要求1-4任意一项所述的方法,其特征在于,所述第一模型表征至少一个影响因子与SOH的对应关系。
7.根据权利要求1-4任意一项所述的方法,其特征在于,所述影响因子为电池开路电压、欧姆内阻、极化电阻、极化电容、电池温度、电流倍率、电池荷电状态中的其中一种。
8.一种控制装置,其特征在于,包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1-7任意一项所述的方法。
9.一种电池管理系统,其特征在于,包括如权利要求9所述的控制装置。
10.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如权利要求1-7任意一项所述的方法。
CN202210216543.1A 2022-03-07 2022-03-07 一种电池soh值计算方法、控制装置和电池管理系统 Pending CN115825743A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210216543.1A CN115825743A (zh) 2022-03-07 2022-03-07 一种电池soh值计算方法、控制装置和电池管理系统
PCT/CN2023/075285 WO2023169134A1 (zh) 2022-03-07 2023-02-09 电池soh值计算模型生成方法、计算方法、装置和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210216543.1A CN115825743A (zh) 2022-03-07 2022-03-07 一种电池soh值计算方法、控制装置和电池管理系统

Publications (1)

Publication Number Publication Date
CN115825743A true CN115825743A (zh) 2023-03-21

Family

ID=85522470

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210216543.1A Pending CN115825743A (zh) 2022-03-07 2022-03-07 一种电池soh值计算方法、控制装置和电池管理系统

Country Status (2)

Country Link
CN (1) CN115825743A (zh)
WO (1) WO2023169134A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117406125B (zh) * 2023-12-15 2024-02-23 山东派蒙机电技术有限公司 电池健康状态确认方法、装置、设备及存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118080A1 (ja) * 2010-03-23 2011-09-29 古河電気工業株式会社 電池内部状態推定装置および電池内部状態推定方法
CN106842045B (zh) * 2017-01-20 2023-04-28 北京理工大学 一种基于自适应权重方法的电池多模型融合建模方法和电池管理系统
CN107015155B (zh) * 2017-03-24 2019-09-17 汉宇集团股份有限公司 一种电动车电池soh的测算方法及装置
CN109725266B (zh) * 2018-12-29 2021-05-11 蜂巢能源科技有限公司 一种电池健康状态soh的计算方法及装置
CN111337832B (zh) * 2019-12-30 2023-01-10 南京航空航天大学 一种动力电池多维度融合soc和soh在线联合估算的方法
CN111948560A (zh) * 2020-07-30 2020-11-17 西安工程大学 基于多因子评估模型的锂电池健康状态估算方法
CN112858918B (zh) * 2021-01-15 2022-10-28 长沙理工大学 基于优化多因子的动力锂离子电池健康状态在线估计方法
CN113009349B (zh) * 2021-04-09 2024-01-05 哈尔滨工业大学 一种基于深度学习模型的锂离子电池健康状态诊断方法

Also Published As

Publication number Publication date
WO2023169134A1 (zh) 2023-09-14

Similar Documents

Publication Publication Date Title
Liu et al. Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system
Xiong et al. An electrochemical model based degradation state identification method of Lithium-ion battery for all-climate electric vehicles application
CN109946623B (zh) 一种锂电池的soc在线估测方法
KR102219397B1 (ko) 원격 파라미터 추정을 구비한 2차 전지 관리 시스템
Lyu et al. A lead-acid battery's remaining useful life prediction by using electrochemical model in the Particle Filtering framework
Eddahech et al. Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks
Li et al. Battery degradation diagnosis with field data, impedance-based modeling and artificial intelligence
US8306781B2 (en) Professional diagnosis method of battery performance analysis
CN102565710B (zh) 用于估计蓄电池健康状态的方法和装置
CN102468521B (zh) 用于估计蓄电池健康状态的方法和装置
US11366171B2 (en) Battery state estimation method
Leng et al. A practical framework of electrical based online state-of-charge estimation of lithium ion batteries
US8340934B2 (en) Method of performance analysis for VRLA battery
US11965935B2 (en) Method and apparatus for operating a system for providing predicted states of health of electrical energy stores for a device using machine learning methods
US20110208451A1 (en) Method and apparatus for detecting cell deterioration in an electrochemical cell or battery
Li et al. On-line estimation method of lithium-ion battery health status based on PSO-SVM
EP1859523A1 (en) Apparatus and method for estimating battery state of charge
EP3940405A1 (en) Method for estimating state of health of battery
CN110673037B (zh) 基于改进模拟退火算法的电池soc估算方法及系统
CN115994441A (zh) 基于机理信息的大数据云平台在线电池寿命预测方法
CN113945302B (zh) 一种电池内部温度的确定方法及其确定装置
CN115825743A (zh) 一种电池soh值计算方法、控制装置和电池管理系统
Cao et al. Non-invasive characteristic curve analysis of lithium-ion batteries enabling degradation analysis and data-driven model construction: a review
EP4270033A1 (en) Method and apparatus for estimating state of health of battery
CN115629314B (zh) 基于改进Jaya的电池参数与状态联合估计方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination