CN115807130A - Method for rapidly detecting monkeypox virus - Google Patents

Method for rapidly detecting monkeypox virus Download PDF

Info

Publication number
CN115807130A
CN115807130A CN202211436074.0A CN202211436074A CN115807130A CN 115807130 A CN115807130 A CN 115807130A CN 202211436074 A CN202211436074 A CN 202211436074A CN 115807130 A CN115807130 A CN 115807130A
Authority
CN
China
Prior art keywords
detection
primer
rpa
virus
monkeypox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211436074.0A
Other languages
Chinese (zh)
Inventor
汪付兵
郜梦露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN202211436074.0A priority Critical patent/CN115807130A/en
Publication of CN115807130A publication Critical patent/CN115807130A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention belongs to the field of microbial detection application, and relates to a method for quickly detecting a monkeypox virus, which comprises the following steps: 1) Obtaining a sample to be detected, wherein the sample to be detected is vesicle, pustule liquid or dry scab of skin lesion of a patient; 2) Preparing an amplification detection system comprising a monkey pox virus detection primer; 3) Placing the sample to be detected obtained in the step 1) in a detection system for rapid detection to obtain whether the sample to be detected has the monkeypox virus. The invention provides a method for quickly detecting monkeypox virus, which has strong specificity and high sensitivity.

Description

猴痘病毒快速检测方法Rapid detection method for monkeypox virus

技术领域technical field

本发明属于微生物检测应用领域,涉及一种猴痘病毒快速检测方法,尤其涉及一种基于CRISPR/Cas12a及RPA的猴痘病毒快速检测方法。The invention belongs to the field of microbial detection applications, and relates to a rapid detection method for monkeypox virus, in particular to a rapid detection method for monkeypox virus based on CRISPR/Cas12a and RPA.

背景技术Background technique

猴痘病毒(Monkeypox virus)是一种包膜双链DNA病毒,属于痘病毒科的正痘病毒属,可导致传染性疾病猴痘。其主要编码基因包括包膜蛋白基因(B6R)、特异性靶标序列(F3L)。由于猴痘病毒传染性强,患者染病后初期症状有发烧、头痛、肌肉酸痛、淋巴肿大、打寒战和疲惫等,其与天花病毒症状相似,且会通过人、动物、血液、体液、飞沫等传播。其临床后果严重,在感染初期检测出猴痘病毒对患者及时治疗,及采取有效隔离措施,控制疫情传播极为重要。其检测要求“快、准、简”,即快速检测,准确分析,操作流程简单。Monkeypox virus (Monkeypox virus) is an enveloped double-stranded DNA virus belonging to the Orthopoxvirus genus of the Poxviridae family that causes the infectious disease monkeypox. Its main coding genes include envelope protein gene (B6R) and specific target sequence (F3L). Because monkeypox virus is highly contagious, the initial symptoms of patients after infection include fever, headache, muscle aches, swollen lymph nodes, chills, and fatigue. Foam spreads. Its clinical consequences are serious. It is extremely important to treat the patients in time if the monkeypox virus is detected in the early stage of infection, and to take effective isolation measures to control the spread of the epidemic. Its detection requirements are "fast, accurate, and simple", that is, rapid detection, accurate analysis, and simple operation process.

目前,猴痘病毒被推荐并广泛应用的检测方法为实时荧光定量PCR技术核酸检测,具有快速、灵敏的优势,满足了“准”的要求,但其耗时较长,且仪器设备价格昂贵,难以在基层检验机构普及,在“快”和“简”方面仍待提升。重组酶聚合酶扩增(RecombinasePolymerase Amplification,RPA),被称为是可以替代PCR的核酸检测技术。在37-42℃条件下,通过能结合单链核酸(寡核苷酸引物)的重组酶与引物结合形成的蛋白-DNA复合物在双链DNA中寻找同源序列进行发生链交换在链置换DNA聚合酶的作用下启动DNA合成,接着被替换的DNA链与单链DNA结合蛋白(SSB)结合防止进一步替换。RPA体系可在十分钟内实现可检测水平的扩增产物,具有高灵敏性、反应快速的特点,满足猴痘病毒检测中的“快”要求。At present, the recommended and widely used detection method for monkeypox virus is real-time fluorescence quantitative PCR technology for nucleic acid detection, which has the advantages of fast and sensitive, and meets the requirements of "accuracy", but it takes a long time and the equipment is expensive. It is difficult to popularize in grassroots inspection institutions, and it still needs to be improved in terms of "fast" and "simple". Recombinase Polymerase Amplification (RPA) is known as a nucleic acid detection technology that can replace PCR. Under the condition of 37-42°C, the protein-DNA complex formed by the combination of the recombinase capable of binding single-stranded nucleic acid (oligonucleotide primer) and the primer searches for homologous sequences in the double-stranded DNA to perform strand exchange in strand replacement DNA synthesis is initiated by DNA polymerase, and then the replaced DNA strand binds to single-strand DNA binding protein (SSB) to prevent further replacement. The RPA system can achieve a detectable level of amplification products within ten minutes, and has the characteristics of high sensitivity and fast response, which meets the "fast" requirements in the detection of monkeypox virus.

CRISPR/Cas12a(clustered regularly interspaced short palindromicrepeats crispr associated gene)是一种在特定RNA引导下可实现DNA切割功能的内切酶,可被用作基因组编辑,同时具有非特异性侧枝切割活性可实现荧光探针的切割产生荧光,可在常温条件下作为生物分子体外检测的工具,可满足猴痘病毒检测中的“准”要求。其引导RNA需要与靶目标序列相结合,并且要求靶目的序列5’端具有前间隔序列邻近基序(protospacer adjacent motif,PAM序列)从而最大程度激发酶活性,实现对特定核酸的检测。CRISPR/Cas12a (clustered regularly interspaced short palindromicrepeats crispr associated gene) is an endonuclease that can achieve DNA cutting function under the guidance of specific RNA, which can be used as genome editing. The cleavage produces fluorescence, which can be used as a tool for in vitro detection of biomolecules at room temperature, and can meet the "quasi" requirements in the detection of monkeypox virus. Its guide RNA needs to be combined with the target target sequence, and the 5' end of the target target sequence is required to have a protospacer adjacent motif (PAM sequence) so as to stimulate the enzyme activity to the greatest extent and realize the detection of specific nucleic acids.

利用RPA常温扩增结合CRISPR/Cas12a对猴痘病毒进行特异性快捷检测,借助简便的紫外成像方式,可实现猴痘病毒在基层卫生机构、机场、火车站等场所的快速筛查检测。Using RPA normal temperature amplification combined with CRISPR/Cas12a for specific and rapid detection of monkeypox virus, with the help of a simple ultraviolet imaging method, rapid screening and detection of monkeypox virus can be realized in primary health institutions, airports, railway stations and other places.

发明内容Contents of the invention

为了解决背景技术中存在的上述技术问题,本发明提供了一种特异性强以及灵敏度高的猴痘病毒快速检测方法。In order to solve the above-mentioned technical problems in the background technology, the present invention provides a rapid detection method for monkeypox virus with strong specificity and high sensitivity.

为了实现上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:

一种猴痘病毒检测用引物,其特征在于:所述猴痘病毒检测用引物包括用于扩增猴痘病毒特异性靶标序列F3L的特异性引物F3L-RPA,所述特异性引物F3L-RPA的正向引物F是TCCAACGATACTCCTCCTCGT;所述特异性引物F3L-RPA的反向引物R是AGGCCCCACTGATTCAATACG。A primer for detection of monkeypox virus, characterized in that: the primer for detection of monkeypox virus includes a specific primer F3L-RPA for amplifying the specific target sequence F3L of monkeypox virus, and the specific primer F3L-RPA The forward primer F of the specific primer F3L-RPA is TCCAACGATACTCCTCTCTCGT; the reverse primer R of the specific primer F3L-RPA is AGGCCCCACTGATTCAATACG.

作为优选,本发明所采用的猴痘病毒特异性靶标序列F3L的crRNA8序列是:Preferably, the crRNA8 sequence of the monkeypox virus-specific target sequence F3L used in the present invention is:

UAAUUUCUACUAAGUGUAGAUGCGGGAUACAUCAUCUAUUAUAGC。UAAUUUCUACUAAGUGUAGAUGCGGGAUACAUCAUCUAUUAUAUAGC.

作为优选,本发明所采用的猴痘病毒检测用引物还包括用于扩增猴痘病毒包膜蛋白基因B6R的特异性引物B6R-RPA-6,所述特异性引物B6R-RPA-6的正向引物F是CGTTGTTATGCGTACTACCTGC;所述特异性引物B6R-RPA-6的反向引物R是GCAACTTAGTGTCATGGTGGAA。Preferably, the monkeypox virus detection primers used in the present invention also include a specific primer B6R-RPA-6 for amplifying the monkeypox virus envelope protein gene B6R, and the positive expression of the specific primer B6R-RPA-6 is The direction primer F is CGTTGTTATGCGTACTACCTGC; the reverse primer R of the specific primer B6R-RPA-6 is GCAACTTAGTGTCATGGTGGAA.

作为优选,本发明所采用的猴痘病毒包膜蛋白基因B6R的crRNA1序列是:As preferably, the crRNA1 sequence of the monkeypox virus envelope protein gene B6R used in the present invention is:

UAAUUUCUACUAAGUGUAGAUUUCAACAUGUACUGUACCCACUAUGA。UAAUUUCUACUAAGUGUAGAUUUCAACAUGUACUGUACCCACUAUGA.

作为优选,本发明所采用的猴痘病毒检测用引物还包括用于扩增猴痘病毒包膜蛋白基因B6R的特异性引物B6R-RPA-4,所述特异性引物B6R-RPA-4的正向引物F是CCATCATCCACATGTATCGACGGTAA;所述特异性引物B6R-RPA-4的反向引物R是CACGGTAGCAATTTATGGAACTTATATTGGTCA。Preferably, the monkeypox virus detection primers used in the present invention also include a specific primer B6R-RPA-4 for amplifying the monkeypox virus envelope protein gene B6R, and the positive expression of the specific primer B6R-RPA-4 is The forward primer F is CCATCATCCACATGTATCGACGGTAA; the reverse primer R of the specific primer B6R-RPA-4 is CACGGTAGCAATTTATGGAACTTATATTGGTCA.

作为优选,本发明所采用的猴痘病毒包膜蛋白基因B6R的crRNA6序列是:As preferably, the crRNA6 sequence of the monkeypox virus envelope protein gene B6R used in the present invention is:

UAAUUUCUACUAAGUGUAGAUAUCCAGUGGAUGAUGGUCCCGACG。UAAUUUCUACUAAGUGUAGAUAUCCAGUGGAUGAUGGUCCCGACG.

如前所述的猴痘病毒检测用引物在检测猴痘病毒时的应用,尤其是在快速检测猴痘病毒时的应用。The application of the aforementioned primers for detection of monkeypox virus in the detection of monkeypox virus, especially the application in the rapid detection of monkeypox virus.

如前所述的猴痘病毒检测用引物作为猴痘病毒检测试剂盒时的应用。Application of the monkeypox virus detection primers as described above as a monkeypox virus detection kit.

一种基于如前所述的猴痘病毒检测用引物的猴痘病毒快速检测方法,其特征在于:所述猴痘病毒快速检测方法包括以下步骤:A monkeypox virus rapid detection method based on the aforementioned monkeypox virus detection primers, characterized in that: the monkeypox virus rapid detection method comprises the following steps:

1)获取待测样本,所述待测样本是患者皮肤病变的囊泡、脓疱液体或干燥的结痂;1) Obtain the sample to be tested, which is the vesicle of the patient's skin lesions, pustular fluid or dry scab;

2)配置包括猴痘病毒检测用引物的扩增检测体系;2) configuring an amplification detection system comprising primers for detection of monkeypox virus;

3)将步骤1)获取得到的待测样本置于检测体系中进行快速检测,得到待测样本是否具有猴痘病毒。3) Put the sample to be tested obtained in step 1) into the detection system for rapid detection to obtain whether the sample to be tested has monkeypox virus.

作为优选,本发明所采用的检测体系还包括缓冲液1、LbaCas12a、crRNA、F-Q荧光淬灭探针、无菌无酶去离子水、

Figure BDA0003946727600000031
Rehydration、
Figure BDA0003946727600000032
冻干粉以及
Figure BDA0003946727600000033
Magnesium Acetate(MgOAC);Preferably, the detection system used in the present invention also includes buffer 1, LbaCas12a, crRNA, FQ fluorescence quenching probe, sterile enzyme-free deionized water,
Figure BDA0003946727600000031
Rehydration,
Figure BDA0003946727600000032
lyophilized powder and
Figure BDA0003946727600000033
Magnesium Acetate (MgOAC);

所述缓冲液1中各组分含量分别是:500mM NaCl、100mM Tris-HCl、100mM MgCl2以及100μg/ml Recombinant Albumin,所述缓冲液1的pH是7.9;The contents of each component in the buffer 1 are: 500mM NaCl, 100mM Tris-HCl, 100mM MgCl 2 and 100μg/ml Recombinant Albumin, and the pH of the buffer 1 is 7.9;

所述F-Q荧光淬灭探针是:5’-FAM-TTATT-Quencher-3’;The F-Q fluorescence quenching probe is: 5'-FAM-TTATT-Quencher-3';

所述crRNA是猴痘病毒特异性靶标序列F3L的cr RNA8、猴痘病毒包膜蛋白基因B6R的cr RNA1或猴痘病毒包膜蛋白基因B6R的cr RNA6;The crRNA is crRNA8 of monkeypox virus specific target sequence F3L, crRNA1 of monkeypox virus envelope protein gene B6R or crRNA6 of monkeypox virus envelope protein gene B6R;

所述步骤2)中配置检测体系的具体实现方式是:The specific implementation of configuring the detection system in the step 2) is:

2.1)获取扩增产物:取29.5ul

Figure BDA0003946727600000034
Rehydration buffer、
Figure BDA0003946727600000035
冻干粉,2.4ul10mM RPA上游引物、2.4ul10mM RPA下游引物;所述RPA上游引物以及RPA下游引物均是如前所记载的猴痘病毒检测用引物;在
Figure BDA0003946727600000036
Rehydration buffer中加入
Figure BDA0003946727600000037
冻干粉并溶解
Figure BDA0003946727600000038
冻粉末,加入如前所记载的猴痘病毒检测用引物,混合后在3000g的条件下离心10s;加入无菌无酶去离子水10ul,加入待测样本3.5ul,充分混匀;加入2.5ul
Figure BDA0003946727600000039
MgOAC溶液37℃金属浴加热启动扩增10分钟,获取扩增产物;2.1) Obtain the amplification product: take 29.5ul
Figure BDA0003946727600000034
Rehydration buffer,
Figure BDA0003946727600000035
Freeze-dried powder, 2.4ul10mM RPA upstream primer, 2.4ul10mM RPA downstream primer; the RPA upstream primer and RPA downstream primer are all monkeypox virus detection primers as previously described;
Figure BDA0003946727600000036
Added to Rehydration buffer
Figure BDA0003946727600000037
Freeze-dried powder and dissolved
Figure BDA0003946727600000038
Frozen powder, add the monkeypox virus detection primers as described above, mix and centrifuge at 3000g for 10s; add 10ul of sterile enzyme-free deionized water, add 3.5ul of the sample to be tested, and mix well; add 2.5ul
Figure BDA0003946727600000039
MgOAC solution was heated in a metal bath at 37°C to start the amplification for 10 minutes to obtain the amplification product;

2.2)配置检测用试剂:取1uM crRNA1ul、1uM LbaCas12a1ul、3ul缓冲液1、20ul无菌无酶去离子水以及10uMF-Q荧光淬灭探针1.5ul充分混合,将混合物在25±0.5℃的条件下预孵育10分钟,获取检测用试剂;所述crRNA分别与猴痘病毒检测用引物相匹配;2.2) Prepare reagents for detection: Take 1uM crRNA1ul, 1uM LbaCas12a1ul, 3ul buffer 1, 20ul sterile enzyme-free deionized water and 1.5ul of 10uMF-Q fluorescence quenching probe and mix thoroughly, and put the mixture at 25±0.5℃ pre-incubating for 10 minutes to obtain detection reagents; the crRNAs are respectively matched with monkeypox virus detection primers;

所述步骤3)的具体实现方式是:The concrete implementation of described step 3) is:

在步骤2.2)所得到的检测用试剂中加入步骤2.1)获取得到的扩增产物3.5ul,在37℃的条件下加热60分钟后,置于485nm激发光下观察发光效果,若具有荧光出现,则待测样本呈阳性;若无荧光出现,则待测样本呈阴性。Add 3.5ul of the amplification product obtained in step 2.1) to the detection reagent obtained in step 2.2), heat at 37°C for 60 minutes, and observe the luminescence effect under 485nm excitation light. If there is fluorescence, The sample to be tested is positive; if no fluorescence appears, the sample to be tested is negative.

与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:

本发明提供了一种猴痘病毒快速检测方法,是通过联合RPA扩增技术以及CRISPR/Cas12a反应体系的产生猴痘分子检测试剂盒和检测方法。本发明通过基于CRISPR/Cas12a的侧枝切割功能,分别针对猴痘病毒的F3L基因、B6R基因设计crRNA序列、RPA引物实现快捷、简便、灵敏、特异的检测,本发明有利于猴痘病毒在海关、机场、火车站或者偏远地区的便携检测及推广应用。The invention provides a rapid detection method for monkeypox virus, which is a monkeypox molecular detection kit and detection method by combining RPA amplification technology and CRISPR/Cas12a reaction system. Through the side branch cutting function based on CRISPR/Cas12a, the present invention designs crRNA sequences and RPA primers respectively for the F3L gene and B6R gene of monkeypox virus to realize fast, simple, sensitive and specific detection. Portable detection and promotion application in airports, railway stations or remote areas.

附图说明Description of drawings

图1各个F3L/crRNA在CRISPR/Cas12a检测中的时间/荧光变化曲线;Fig. 1 Time/fluorescence curves of each F3L/crRNA in CRISPR/Cas12a detection;

图2是在60分钟时图1中各个F3L/crRNA检测结果在485nm激发光下的可视化效果图;Figure 2 is a visualization effect diagram of each F3L/crRNA detection result in Figure 1 under 485nm excitation light at 60 minutes;

图3是各个B6R/crRNA在CRISPR/Cas12a检测中的时间/荧光变化曲线;Figure 3 is the time/fluorescence curve of each B6R/crRNA in CRISPR/Cas12a detection;

图4是在60分钟时图1中各个B6R/crRNA检测结果在485nm激发光下的可视化效果图;Fig. 4 is a visualization effect diagram of each B6R/crRNA detection result in Fig. 1 under 485nm excitation light at 60 minutes;

图5是各个猴痘病毒F3LRPA引物的扩增产物用于F3L/crRNA7-CRISPR/Cas12a检测中的时间/荧光变化曲线;Figure 5 is the time/fluorescence curve of the amplification products of each monkeypox virus F3LRPA primer used in the detection of F3L/crRNA7-CRISPR/Cas12a;

图6是各个猴痘病毒F3LRPA引物的扩增产物用于F3L/crRNA8-CRISPR/Cas12a检测中的时间/荧光变化曲线;Figure 6 is the time/fluorescence curve of the amplification products of each monkeypox virus F3LRPA primer used in the detection of F3L/crRNA8-CRISPR/Cas12a;

图7是各个猴痘病毒B6RRPA引物的扩增产物用于B6R/crRNA1-CRISPR/Cas12a检测中的时间/荧光变化曲线;Figure 7 is the time/fluorescence curve of the amplification products of each monkeypox virus B6RRPA primer used in the detection of B6R/crRNA1-CRISPR/Cas12a;

图8是各个猴痘病毒B6RRPA引物的扩增产物用于B6R/crRNA6-CRISPR/Cas12a检测中的时间/荧光变化曲线;Figure 8 is the time/fluorescence curve of the amplification products of each monkeypox virus B6RRPA primer used in the detection of B6R/crRNA6-CRISPR/Cas12a;

图9是猴痘病毒B6R重组质粒在不同浓度(1*1011copies/ul、1*1010copies/ul、1*109copies/ul、1*108copies/ul、1*107copies/ul、1*106copies/ul、1*105copies/ul、1*104copies/ul、1*103copies/ul)的B6R-RPA6的扩增产物用于B6R/crRNA1-CRISPR/Cas12a检测中的时间/荧光变化曲线;Figure 9 shows the monkeypox virus B6R recombinant plasmid at different concentrations (1*10 11 copies/ul, 1*10 10 copies/ul, 1*10 9 copies/ul, 1*10 8 copies/ul, 1*10 7 copies /ul, 1*10 6 copies/ul, 1*10 5 copies/ul, 1*10 4 copies/ul, 1*10 3 copies/ul) the amplification product of B6R-RPA6 is used for B6R/crRNA1-CRISPR /Time/fluorescence curve in Cas12a detection;

图10是在60分钟时图9中各浓度的检测结果在485nm激发光下的可视化效果图;Figure 10 is a visualization effect diagram of the detection results of each concentration in Figure 9 under 485nm excitation light at 60 minutes;

图11是猴痘病毒B6R重组质粒在不同浓度(1*1011copies/ul、1*1010copies/ul、1*109copies/ul、1*108copies/ul、1*107copies/ul、1*106copies/ul、1*105copies/ul、1*104copies/ul、1*103copies/ul)的B6R-RPA4的扩增产物用于B6R/crRNA6-CRISPR/Cas12a检测中的时间/荧光变化曲线;Figure 11 shows the monkeypox virus B6R recombinant plasmid at different concentrations (1*10 11 copies/ul, 1*10 10 copies/ul, 1*10 9 copies/ul, 1*10 8 copies/ul, 1*10 7 copies /ul, 1*10 6 copies/ul, 1*10 5 copies/ul, 1*10 4 copies/ul, 1*10 3 copies/ul) of B6R-RPA4 amplification products for B6R/crRNA6-CRISPR /Time/fluorescence curve in Cas12a detection;

图12是在60分钟时图11中各浓度的检测结果在485nm激发光下的可视化效果图;Figure 12 is a visualization effect diagram of the detection results of each concentration in Figure 11 under 485nm excitation light at 60 minutes;

图13是猴痘病毒F3L重组质粒在不同浓度(1*1011copies/ul、1*1010copies/ul、1*109copies/ul、1*108copies/ul、1*107copies/ul、1*106copies/ul、1*105copies/ul、1*104copies/ul、1*103copies/ul)的F3L-RPAncb3的扩增产物用于F3L/crRNA7-CRISPR/Cas12a检测中的时间/荧光变化曲线;Figure 13 shows the monkeypox virus F3L recombinant plasmid at different concentrations (1*10 11 copies/ul, 1*10 10 copies/ul, 1*10 9 copies/ul, 1*10 8 copies/ul, 1*10 7 copies /ul, 1*10 6 copies/ul, 1*10 5 copies/ul, 1*10 4 copies/ul, 1*10 3 copies/ul) the amplification product of F3L-RPAncb3 is used for F3L/crRNA7-CRISPR /Time/fluorescence curve in Cas12a detection;

图14是在60分钟时图13中各浓度的检测结果在485nm激发光下的可视化效果图;Figure 14 is a visualization effect diagram of the detection results of each concentration in Figure 13 under 485nm excitation light at 60 minutes;

图15是猴痘病毒F3L重组质粒在不同浓度(1*1011copies/ul、1*1010copies/ul、1*109copies/ul、1*108copies/ul、1*107copies/ul、1*106copies/ul、1*105copies/ul、1*104copies/ul、1*103copies/ul)的F3L-RPAncb3的扩增产物用于F3L/crRNA8-CRISPR/Cas12a检测中的时间/荧光变化曲线;Figure 15 shows the monkeypox virus F3L recombinant plasmid at different concentrations (1*10 11 copies/ul, 1*10 10 copies/ul, 1*10 9 copies/ul, 1*10 8 copies/ul, 1*10 7 copies /ul, 1*10 6 copies/ul, 1*10 5 copies/ul, 1*10 4 copies/ul, 1*10 3 copies/ul) the amplification product of F3L-RPAncb3 is used for F3L/crRNA8-CRISPR /Time/fluorescence curve in Cas12a detection;

图16是在60分钟时图15中各浓度的检测结果在485nm激发光下的可视化效果图;Figure 16 is a visualization effect diagram of the detection results of each concentration in Figure 15 under 485nm excitation light at 60 minutes;

图17是猴痘B6R假病毒B6R-RPA6的扩增产物在B6R/crRNA1、B6R-RPA4的扩增产物在B6R/crRNA6的CRISPR/Cas12a检测中的时间/荧光变化曲线;Figure 17 is the time/fluorescence curve of the amplification product of monkeypox B6R pseudovirus B6R-RPA6 in the CRISPR/Cas12a detection of B6R/crRNA1 and B6R-RPA4;

图18是在60分钟时图17中各浓度的检测结果在485nm激发光下的可视化效果图;Figure 18 is a visualization effect diagram of the detection results of each concentration in Figure 17 under 485nm excitation light at 60 minutes;

图19是猴痘F3L假病毒F3L–RPAncb3的扩增产物在F3L/crRNA7、F3L/crRNA8的CRISPR/Cas12a检测中的时间/荧光变化曲线;Figure 19 is the time/fluorescence curve of the amplification product of monkeypox F3L pseudovirus F3L-RPAncb3 in the CRISPR/Cas12a detection of F3L/crRNA7 and F3L/crRNA8;

图20是在60分钟时图19中各浓度的检测结果在485nm激发光下的可视化效果图;Figure 20 is a visualization effect diagram of the detection results of each concentration in Figure 19 under 485nm excitation light at 60 minutes;

图21是猴痘(MP)B6R假病毒、HSV1(单纯疱疹病毒1型)以及HSV2(单纯疱疹病毒2型)的B6R–RPA6的扩增产物在B6R/crRNA1的CRISPR/Cas12a检测中的时间/荧光变化曲线;Figure 21 is the time/time of the amplification product of B6R-RPA6 of monkeypox (MP) B6R pseudovirus, HSV1 (herpes simplex virus type 1) and HSV2 (herpes simplex virus type 2) in the CRISPR/Cas12a detection of B6R/crRNA1 Fluorescence change curve;

图22是在60分钟时图21中各浓度的检测结果在485nm激发光下的可视化效果图;Figure 22 is a visualization effect diagram of the detection results of each concentration in Figure 21 under 485nm excitation light at 60 minutes;

图23是猴痘(MP)B6R假病毒、HSV1(单纯疱疹病毒1型)以及HSV2(单纯疱疹病毒2型)的B6R–RPA4的扩增产物在B6R/crRNA6的CRISPR/Cas12a检测中的时间/荧光变化曲线;Figure 23 is the time/time of the amplification product of B6R-RPA4 of monkeypox (MP) B6R pseudovirus, HSV1 (herpes simplex virus type 1) and HSV2 (herpes simplex virus type 2) in the CRISPR/Cas12a detection of B6R/crRNA6 Fluorescence change curve;

图24是在60分钟时图23中各浓度的检测结果在485nm激发光下的可视化效果图;Figure 24 is a visualization effect diagram of the detection results of each concentration in Figure 23 under 485nm excitation light at 60 minutes;

图25是猴痘(MP)F3L假病毒、HSV1(单纯疱疹病毒1型)以及HSV2(单纯疱疹病毒2型)的F3L–RPAncb3的扩增产物在F3L/crRNA7的CRISPR/Cas12a检测中的时间/荧光变化曲线;Figure 25 is the time/time of the amplification product of F3L-RPAncb3 of monkeypox (MP) F3L pseudovirus, HSV1 (herpes simplex virus type 1) and HSV2 (herpes simplex virus type 2) in the CRISPR/Cas12a detection of F3L/crRNA7 Fluorescence change curve;

图26是在60分钟时图25中各浓度的检测结果在485nm激发光下的可视化效果图;Figure 26 is a visualization effect diagram of the detection results of each concentration in Figure 25 under 485nm excitation light at 60 minutes;

图27是猴痘(MP)F3L假病毒、HSV1(单纯疱疹病毒1型)以及HSV2(单纯疱疹病毒2型)的F3L–RPAncb3的扩增产物在F3L/crRNA8的CRISPR/Cas12a检测中的时间/荧光变化曲线;Figure 27 is the time/time of the amplification product of F3L-RPAncb3 of monkeypox (MP) F3L pseudovirus, HSV1 (herpes simplex virus type 1) and HSV2 (herpes simplex virus type 2) in the CRISPR/Cas12a detection of F3L/crRNA8 Fluorescence change curve;

图28在60分钟时图27中各浓度的检测结果在485nm激发光下的可视化效果图。Fig. 28 is a visualization effect diagram of the detection results of each concentration in Fig. 27 under 485nm excitation light at 60 minutes.

具体实施方式Detailed ways

下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的试验材料,如无特殊说明,均为从商业渠道购买得到的。本实验所用的crRNA、DNA引物,重组质粒均来自金斯瑞生物公司合成。The experimental methods in the following examples are conventional methods unless otherwise specified. The test materials used in the following examples were purchased from commercial sources unless otherwise specified. The crRNA, DNA primers, and recombinant plasmids used in this experiment were all synthesized by GenScript Biotech.

实施例1:特异性RPA引物设计Example 1: Design of specific RPA primers

从NCBI(http://www.ncbi.nlm.nih.gov/genome/)中下载猴痘病毒F3L、B6R基因组序列。GenBank>NC_003310.1:164845-165798设计B6R特异引物,GeneID:MT250197.1(46192..466539)设计F3L特异引物。根据RPA引物设计原则设计RPA引物,并在BLAST检索确认其特异性和鉴定可用性。Monkeypox virus F3L, B6R genome sequences were downloaded from NCBI (http://www.ncbi.nlm.nih.gov/genome/). GenBank>NC_003310.1:164845-165798 designed B6R-specific primers, GeneID: MT250197.1 (46192..466539) designed F3L-specific primers. RPA primers were designed according to the principles of RPA primer design, and their specificity and identification availability were confirmed by BLAST search.

实验设计的RPA引物序列如下:The sequence of the RPA primers designed for the experiment is as follows:

F3L基因F3L gene

F3L-RPA-1F:ATGGAGAAGCGAGAAGTTAATAAAGCF3L-RPA-1F: ATGGAGAAGCGAGAAGTTAATAAAGC

F3L-RPA-1R:ACTAAGAAGTTTATCTACAGCCAATTF3L-RPA-1R: ACTAAGAAGTTTTATCTACAGCCAATT

F3L-RPA-2F:AGCTCTGTATGATCTTCAACGTAGTGCTATGF3L-RPA-2F: AGCTCTGTATGATCTTCAACGTAGTGCTATG

F3L-RPA-2R:GATGACATAACTAAGAAGTTTATCTACAGCF3L-RPA-2R: GATGACATAACTAAGAAGTTTATCTACAGC

F3L-RPA-ncb1F:TGCTGATACACGGCCTACAGF3L-RPA-ncb1F: TGCTGATACACGGCCTACAG

F3L-RPA-ncb1R:GGAGAGTTACTAGGCCCCACF3L-RPA-ncb1R: GGAGAGTTACTAGGCCCCAC

F3L-RPA-ncb2F:GGATGCTGATACACGGCCTAF3L-RPA-ncb2F: GGATGCTGATACACGGCCTA

F3L-RPA-ncb2R:AGGCCCCACTGATTCAATACGF3L-RPA-ncb2R: AGGCCCCACTGATTCAATACG

F3L-RPA-ncb3F:TCCAACGATACTCCTCCTCGTF3L-RPA-ncb3F: TCCAACGATACTCCTCTCTCGT

F3L-RPA-ncb3R:AGGCCCCACTGATTCAATACGF3L-RPA-ncb3R: AGGCCCCACTGATTCAATACG

B6R基因B6R gene

B6R-RPA-1F:CGATTTCCGTTGTTACGTTGTTATGCGTACB6R-RPA-1F: CGATTTCCGTTGTTACGTTGTTATGCGTAC

B6R-RPA-1R:CAGACAGCATTTGGATCCAAAGAATGATATB6R-RPA-1R: CAGACAGCATTTGGATCCAAAGAATGATAT

B6R-RPA-4F:CCATCATCCACATGTATCGACGGTAAB6R-RPA-4F: CCATCATCCACATGTATCGACGGTAA

B6R-RPA-4R:CACGGTAGCAATTTATGGAACTTATATTGGTCAB6R-RPA-4R: CACGGTAGCAATTTATGGAACTTATATTGGTCA

B6R-RPA-5F:TGCGTACTACCTGCTGTTGTTTB6R-RPA-5F: TGCGTACTACCTGCTGTTGTTT

B6R-RPA-5R:CGTTGCAACTTAGTGTCATGGTB6R-RPA-5R: CGTTGCAACTTAGTGTCATGGT

B6R-RPA-6F:CGTTGTTATGCGTACTACCTGCB6R-RPA-6F: CGTTGTTATGCGTACTACCTGC

B6R-RPA-6R:GCAACTTAGTGTCATGGTGGAAB6R-RPA-6R: GCAACTTAGTGTCATGGTGGAA

B6R-RPA-ncb1F:TGCGTACTACCTGCTGTTGTB6R-RPA-ncb1F: TGCGTACTACCTGCTGTTGT

B6R-RPA-ncb1R:CGCATTAGGACACGTGACAGB6R-RPA-ncb1R: CGCATTAGGACACGTGACAG

B6R-RPA-ncb2F:TGCGTACTACCTGCTGTTGTTB6R-RPA-ncb2F: TGCGTACTACCTGCTGTTGTT

B6R-RPA-ncb2R:TGAAGAGGTTGACATTCCGCAB6R-RPA-ncb2R: TGAAGAGGTTGACATTCCGCA

B6R-RPA-ncb3F:CACTAACGGGGTCTCCATCAB6R-RPA-ncb3F: CACTAACGGGGTCTCCATCA

B6R-RPA-ncb3R:ACGTCTTTCGAGAGTTTGCTCAB6R-RPA-ncb3R: ACGTCTTTCGAGAGTTTGCTCA

B6R-RPA-ncb4F:CACTAACGGGGTCTCCATCAB6R-RPA-ncb4F: CACTAACGGGGTCTCCATCA

B6R-RPA-ncb4R:ACCCATAATTGTCAACGCCATB6R-RPA-ncb4R: ACCCATAATTGTCAACGCCAT

实施例2:筛选验证F3L、B6R最佳的Cas12acrRNAExample 2: Screening and verification of the best Cas12acrRNA for F3L and B6R

根据CRISPR/Cas12a引物设计原则,以TTTNPAM模式设计了4条针对B6R基因的crRNA:According to the principles of CRISPR/Cas12a primer design, four crRNAs targeting the B6R gene were designed in TTTNPAM mode:

crRNA1:UAAUUUCUACUAAGUGUAGAUUUCAACAUGUACUGUACCCACUAUGAcrRNA1: UAAUUUCUACUAAGUGUAGAUUUCAACAUGUACUGUACCCACUAUGA

crRNA3:UAAUUUCUACUAAGUGUAGAUCACGUGUCAAAGACUAAUACAGAGcrRNA3: UAAUUUCUACUAAGUGUAGAUCACGUGUCAAAGACUAAUACAGAG

crRNA6:UAAUUUCUACUAAGUGUAGAUAUCCAGUGGAUGAUGGUCCCGACGcrRNA6: UAAUUUCUACUAAGUGUAGAUAUCCAGUGGAUGAUGGUCCCGACG

crRNA7:UAAUUUCUACUAAGUGUAGAUUGAUUAUGUCUCUGAACUAUAUGAcrRNA7: UAAUUUCUACUAAGUGUAGAUUGAUUAUGUCUCUGAACUAUAUGA

设计了6条针对F3L基因的crRNA:Six crRNAs targeting the F3L gene were designed:

crRNA3:UAAUUUCUACUAAGUGUAGAUGUUACUCUCUCCUAGUAUUCAGAAcrRNA3: UAAUUUCUACUAAGUGUAGAUGUUACUCUCUCCUAGUAUUCAGAA

crRNA5:UAAUUUCUACUAAGUGUAGAUUUGAUCCUCUCUAACCAGAAAAGCcrRNA5: UAAUUUCUACUAAGUGUAGAUUUGAUCCUCUCUAACCAGAAAAGC

crRNA7:UAAUUUCUACUAAGUGUAGAUACCGGAAUAACAUCAUCAAAAGACcrRNA7: UAAUUUCUACUAAGUGUAGAUACCGGAAUAACAUCAUCAAAAGAC

crRNA8:UAAUUUCUACUAAGUGUAGAUGCGGGAUACAUCAUCUAUUAUAGCcrRNA8: UAAUUUCUACUAAGUGUAGAUGCGGGAUACAUCAUCAUAUUAUAGC

crRNA9:UAAUACGACUCACUAUAGGGUAAUUUCUACUAAGUGUAGAUCAUCUGCCUUAUCGAAUACUCUUCcrRNA9: UAAUACGACUCACUAUAGGGUAAUUUCUACUAAGUGUAGAUCAUCUGCCUUAUCGAAUACUCUUC

crRNA10:UAAUACGACUCACUAUAGGGUAAUUUCUACUAAGUGUAGAUGUUGUGAAGAAAAAAAUGGAAAUAcrRNA10: UAAUACGACUCACUAUAGGGUAAUUUCUACUAAGUGUAGAUGUUGUGAAGAAAAAAAUGGAAAUA

配置如下反应体系:CRISPR/Cas12a反应体系:终浓度是33nMcrRNA、终浓度是33nMLbaCas12a、3ul反应缓冲液1、无核酸酶水、终浓度是50nMF-Q荧光淬灭探针:5’-FAM-TTATT-Quencher-3’。具体的反应过程是:将3ul缓冲液1、LbaCas12a、crRNA、F-Q荧光淬灭探针以及20ul无菌无酶去离子水充分混合,室温预孵育10分钟。加入重组B6R、F3L质粒3.5ul,37℃在透明管内反应60分钟后置于485nm激发光下观察发光效果。Configure the following reaction system: CRISPR/Cas12a reaction system: final concentration is 33nMcrRNA, final concentration is 33nMLbaCas12a, 3ul reaction buffer 1, nuclease-free water, final concentration is 50nMF-Q fluorescence quenching probe: 5'-FAM-TTATT -Quencher-3'. The specific reaction process is: fully mix 3ul of buffer solution 1, LbaCas12a, crRNA, F-Q fluorescence quenching probe and 20ul of sterile enzyme-free deionized water, and pre-incubate at room temperature for 10 minutes. Add 3.5ul of recombinant B6R and F3L plasmids, react in a transparent tube at 37°C for 60 minutes, and then place it under 485nm excitation light to observe the luminescent effect.

如图1-图4,所示CRISPR/Cas12a检测体系的crRNA筛选结果显示,在F3L检测体系中,crRNA7和crRNA8产生可见荧光,且在激发波长为485nm的透射光源下crRNA8可产生更加明亮的荧光,所以采用F3L-crRNA8用于后续试验的检测。在B6R检测体系中,crRNA1、crRNA6和crRNA7产生可见荧光,其中crRNA1以及crRNA6荧光强度较高,用于后续B6R基因检测。本发明中,荧光强度随着检测时间的增加而上升,最快在20分钟左右达到可以区分的荧光。As shown in Figure 1-Figure 4, the crRNA screening results of the CRISPR/Cas12a detection system show that in the F3L detection system, crRNA7 and crRNA8 produce visible fluorescence, and crRNA8 can produce brighter fluorescence under the transmission light source with an excitation wavelength of 485nm , so F3L-crRNA8 was used for the detection of subsequent experiments. In the B6R detection system, crRNA1, crRNA6 and crRNA7 produce visible fluorescence, among which crRNA1 and crRNA6 have higher fluorescence intensity and are used for subsequent B6R gene detection. In the present invention, the fluorescence intensity increases as the detection time increases, and reaches distinguishable fluorescence in about 20 minutes at the fastest.

实施例3:筛选验证crRNA最合适的RPA引物及灵敏性检测Example 3: Screening and verification of the most suitable RPA primers and sensitivity detection for crRNA

3.1F3L/B6RcrRNA最合适的RPA引物筛选3.1 Screening of the most suitable RPA primers for F3L/B6RcrRNA

将实施例1中的RPA引物用于CRISPR/Cas12a检测。配置如下扩增反应体系:29.5ul

Figure BDA0003946727600000071
Rehydration buffer、
Figure BDA0003946727600000072
冻干粉,2.4ul10mM RPA上游引物、2.4ul10mM RPA下游引物。将Rehydration buffer加入冻干粉溶解粉末,加入上下游引物,混合后3000g10s离心,加入无菌无酶去离子水10ul,加入待扩增底物即重组质粒3.2ul,充分混匀,加入2.5ul
Figure BDA0003946727600000081
MgOAC溶液37℃金属浴加热启动扩增10分钟;CRISPR/Cas12a反应体系:终浓度是33nM crRNA、终浓度是33nM LbaCas12a、3ul反应缓冲液1、无核酸酶水、终浓度是50nMF-Q荧光淬灭探针:5’-FAM-TTATT-Quencher-3’。分别配置F3L-crRNA8、B6R-crRNA1、B6R-crRNA6检测体系:将3ul缓冲液1、LbaCas12a、crRNA(分别是F3L-crRNA8、B6R-crRNA1、B6R-crRNA6)、F-Q荧光淬灭探针以及20ul无菌无酶去离子水后充分混合,室温预孵育10分钟。取RPA产物3.5ul,其中F3L crRNA8的检测体系分别给予RPA1、RPA2、ncb1、ncb2以及ncb3五种RPA产物;其中B6R crRNA1检测体系分别给予RPA1、RPA5、RPA6、ncb1以及ncb2五种RPA产物;其中B6R crRNA6检测体系分别给予RPA4、ncb3以及ncb4三种RPA产物。37℃,60分钟加热,监测荧光强度。The RPA primers in Example 1 were used for CRISPR/Cas12a detection. Configure the amplification reaction system as follows: 29.5ul
Figure BDA0003946727600000071
Rehydration buffer,
Figure BDA0003946727600000072
Freeze-dried powder, 2.4ul10mM RPA upstream primer, 2.4ul10mM RPA downstream primer. Add Rehydration buffer to freeze-dried powder to dissolve the powder, add upstream and downstream primers, mix and centrifuge at 3000g for 10s, add 10ul of sterile enzyme-free deionized water, add 3.2ul of the recombinant plasmid to be amplified, mix well, and add 2.5ul
Figure BDA0003946727600000081
MgOAC solution was heated in a metal bath at 37°C to start amplification for 10 minutes; CRISPR/Cas12a reaction system: final concentration of 33nM crRNA, final concentration of 33nM LbaCas12a, 3ul reaction buffer 1, nuclease-free water, final concentration of 50nMF-Q fluorescence quenching Killing probe: 5'-FAM-TTATT-Quencher-3'. Configure F3L-crRNA8, B6R-crRNA1, B6R-crRNA6 detection system respectively: 3ul buffer 1, LbaCas12a, crRNA (respectively F3L-crRNA8, B6R-crRNA1, B6R-crRNA6), FQ fluorescence quenching probe and 20ul no Mix well after deionized water without enzymes, and pre-incubate at room temperature for 10 minutes. Take 3.5ul of RPA products, among which five RPA products of RPA1, RPA2, ncb1, ncb2 and ncb3 were given to the detection system of F3L crRNA8; five kinds of RPA products of RPA1, RPA5, RPA6, ncb1 and ncb2 were given respectively to the detection system of B6R crRNA1; The B6R crRNA6 detection system gave RPA4, ncb3 and ncb4 three RPA products respectively. Heat at 37°C for 60 minutes and monitor the fluorescence intensity.

如图5-图8,F3L crRNA8最适RPA引物为RPA-ncb3,B6R crRNA1最适RPA引物为RPA6,B6R crRNA6最适RPA引物为RPA4。以上引物可在20分钟内实现阴性阳性区分,被用于后续灵敏性检测及假病毒样本检测。As shown in Figure 5-8, the optimal RPA primer for F3L crRNA8 is RPA-ncb3, the optimal RPA primer for B6R crRNA1 is RPA6, and the optimal RPA primer for B6R crRNA6 is RPA4. The above primers can distinguish between negative and positive within 20 minutes, and are used for subsequent sensitivity detection and pseudovirus sample detection.

3.2检测体系灵敏度验证3.2 Sensitivity verification of detection system

配置不同的浓度的F3L、B6R质粒(1×103、1×104、1×105、1×106、1×107、1×108、1×109、1×1010、1×1011copies/ul),参照实施例1体系分别进行F3L-RPA-ncb3、B6R-RPA6、B6R-RPA4扩增反应。Configure different concentrations of F3L and B6R plasmids (1×10 3 , 1×10 4 , 1×10 5 , 1×10 6 , 1×10 7 , 1×10 8 , 1×10 9 , 1×10 10 , 1×10 11 copies/ul), referring to the system in Example 1, the amplification reactions of F3L-RPA-ncb3, B6R-RPA6, and B6R-RPA4 were respectively carried out.

将F3L-RPA-ncb3、B6R-RPA6以及B6R-RPA4产物分别用于F3L-crRNA、B6R-crRNA1以及B6R-crRNA6的Cas12a检测反应,反应体系参照实施例2。在透明管内反应60分钟后置于485nm激发光下观察发光效果。The F3L-RPA-ncb3, B6R-RPA6, and B6R-RPA4 products were used in the Cas12a detection reactions of F3L-crRNA, B6R-crRNA1, and B6R-crRNA6, respectively, and the reaction system was referred to in Example 2. After reacting in a transparent tube for 60 minutes, place it under 485nm excitation light to observe the luminescent effect.

如图9-图16,F3L-RPA-CRISPR/Cas12a鉴定体系的灵敏度检测结果显示,本发明中的B6RcrRNA1鉴定体系的灵敏度为1×107Copies/uL,B6RcrRNA6鉴定体系的灵敏度为1×108Copies/uL质粒,且在20分钟内具有良好的区分效果。F3L-crRNA8鉴定体系的灵敏度为1×103Copies/uL,在40分钟内具有良好的区分效果。As shown in Figure 9-Figure 16, the sensitivity detection results of the F3L-RPA-CRISPR/Cas12a identification system show that the sensitivity of the B6RcrRNA1 identification system in the present invention is 1×10 7 Copies/uL, and the sensitivity of the B6RcrRNA6 identification system is 1×10 8 Copies/uL plasmid with good discrimination within 20 minutes. The sensitivity of the F3L-crRNA8 identification system is 1×10 3 Copies/uL, and it has a good discrimination effect within 40 minutes.

3.3猴痘假病毒样本检测效果的验证3.3 Validation of the detection effect of monkeypox pseudovirus samples

使用F3L以及B6R猴痘假病毒样本(翌圣12099ES03、12100ES03)95℃、5分钟,加热灭活,释放核酸。参照实施例3体系分别进行F3L-RPA-ncb3、B6R-RPA6以及B6R-RPA4核酸扩增反应。将F3L-RPA-ncb3、B6R-RPA6以及B6R-RPA4产物分别用于F3L-crRNA8、B6R-crRNA1以及B6R-crRNA6的Cas12a检测反应,反应体系参照实施例2。Use F3L and B6R monkeypox pseudovirus samples (Yisheng 12099ES03, 12100ES03) to inactivate by heating at 95°C for 5 minutes to release the nucleic acid. Referring to the system of Example 3, the nucleic acid amplification reactions of F3L-RPA-ncb3, B6R-RPA6 and B6R-RPA4 were respectively carried out. The F3L-RPA-ncb3, B6R-RPA6, and B6R-RPA4 products were used in the Cas12a detection reactions of F3L-crRNA8, B6R-crRNA1, and B6R-crRNA6, respectively, and the reaction system was referred to in Example 2.

如图17-图20,本发明中,猴痘RPA-CRISPR/Cas12a鉴定体系在假病毒中得到了验证。表明了该检测方法可以运用病毒样品检测,且该检测方便快捷,较高灵敏度,并且能够直观,肉眼可见的观察检测结果。As shown in Figures 17-20, in the present invention, the monkeypox RPA-CRISPR/Cas12a identification system has been verified in pseudoviruses. It shows that the detection method can be used for detection of virus samples, and the detection is convenient, fast, and has high sensitivity, and the detection results can be observed intuitively and visible to the naked eye.

3.4RPA-CRISPR/Cas12a鉴定体系特异性验证3.4 RPA-CRISPR/Cas12a identification system specificity verification

使用F3L以及B6R猴痘假病毒样本(翌圣12099ES03、12100ES03)95℃、5分钟,加热灭活,释放核酸。单纯疱疹病毒1型、单纯疱疹病毒2型样本根据天根病毒DNA提取试剂盒(货号:YDP438)进行核酸提取,提取方式详见说明书。使用单纯疱疹病毒1型、单纯疱疹病毒2型的样本核酸,及猴痘假病毒,参照实施例3体系分别进行F3L-RPA-ncb3、B6R-RPA6以及B6R-RPA4核酸扩增反应。将RPA产物分别用于F3L-crRNA8、B6R-crRNA1以及B6R-crRNA6的Cas12a检测反应,反应体系参照实施例3。如图21-图28,本发明中,猴痘RPA-CRISPR/Cas12a鉴定体系在仅猴痘假病毒中显示荧光,在其他病毒样本及阴形对照中无荧光产生,表明了该检测方法适用于猴痘病毒样品检测,且该检测具有特异性。Use F3L and B6R monkeypox pseudovirus samples (Yisheng 12099ES03, 12100ES03) to inactivate by heating at 95°C for 5 minutes to release the nucleic acid. For herpes simplex virus type 1 and herpes simplex virus type 2 samples, the nucleic acid was extracted according to Tiangen virus DNA extraction kit (article number: YDP438). See the instructions for the extraction method for details. Using sample nucleic acids of herpes simplex virus type 1, herpes simplex virus type 2, and monkeypox pseudovirus, the F3L-RPA-ncb3, B6R-RPA6, and B6R-RPA4 nucleic acid amplification reactions were respectively performed with reference to the system of Example 3. The RPA products were used in the Cas12a detection reactions of F3L-crRNA8, B6R-crRNA1 and B6R-crRNA6 respectively, and the reaction system was referred to Example 3. As shown in Figure 21-Figure 28, in the present invention, the monkeypox RPA-CRISPR/Cas12a identification system shows fluorescence only in monkeypox pseudoviruses, and no fluorescence occurs in other virus samples and negative controls, indicating that the detection method is applicable to Monkeypox virus sample detection, and the detection is specific.

Claims (10)

1. A monkey pox virus detection primer is characterized in that: the primer for detecting the monkeypox virus comprises a specific primer F3L-RPA for amplifying a specificity target sequence F3L of the monkeypox virus, wherein a forward primer F of the specific primer F3L-RPA is TCCAACGATACTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTG; the reverse primer R of the specific primer F3L-RPA is AGGCCCCACTGATTCAATACG.
2. The monkey pox virus detection primer according to claim 1, characterized in that: the crRNA8 sequence of the monkey pox virus specific target sequence F3L is:
UAAUUUCUACUAAGUGUAGAUGCGGGAUACAUCAUCUAUUAUAGC。
3. the monkey pox virus detection primer according to claim 1 or 2, characterized in that: the monkey pox virus detection primer also comprises a specific primer B6R-RPA-6 for amplifying a monkey pox virus envelope protein gene B6R, wherein a forward primer F of the specific primer B6R-RPA-6 is CGTTGTTATGCGTACTACCTGC; the reverse primer R of the specific primer B6R-RPA-6 is GCAACTTAGTGTCATGGAA.
4. The monkey pox virus detection primer according to claim 3, characterized in that: the sequence of the crRNA1 of the monkey pox virus envelope protein gene B6R is as follows:
UAAUUUCUACUAAGUGUAGAUUUCAACAUGUACUGUACCCACUAUGA。
5. the monkeypox virus detection primer according to claim 4, characterized in that: the primer for detecting the monkeypox virus also comprises a specific primer B6R-RPA-4 for amplifying a monkeypox virus envelope protein gene B6R, wherein a forward primer F of the specific primer B6R-RPA-4 is CCATCACCAATGTATCGACGGAGCGTAA; the reverse primer R of the specific primer B6R-RPA-4 is CACGGTAGCAATTATGGAACTTATATTGGTCA.
6. The monkeypox virus detection primer according to claim 5, characterized in that: the sequence of the crRNA6 of the monkey pox virus envelope protein gene B6R is as follows:
UAAUUUCUACUAAGUGUAGAUAUCCAGUGGAUGAUGGUCCCGACG。
7. the use of the primer for monkey pox virus detection according to any one of claims 1 to 6 for the detection of monkey pox virus, in particular for the rapid detection of monkey pox virus.
8. Use of the monkey pox virus detection primers according to any of claims 1 to 6 as a monkey pox virus detection kit.
9. A method for rapidly detecting a monkeypox virus based on the primer for detecting a monkeypox virus according to any one of claims 1 to 6, characterized in that: the method for rapidly detecting the monkeypox virus comprises the following steps:
1) Obtaining a sample to be detected, wherein the sample to be detected is vesicle, pustule liquid or dry scab of skin lesion of a patient;
2) Configuring an amplification detection system comprising the simian pox virus detection primer according to any one of claims 1 to 6;
3) Placing the sample to be detected obtained in the step 1) in a detection system for rapid detection to obtain whether the sample to be detected has the monkeypox virus.
10. The monkeypox virus rapid detection method according to claim 9, characterized in that: the detection system also comprises buffer solution 1, lbaCas12a, crRNA, F-Q fluorescent quenching probes, sterile enzyme-free deionized water, twistAmp Rehydration, twistAmp freeze-dried powder and TwistAmp Magnesium Acetate;
the buffer solution 1 comprises the following components in percentage by weight: 500mM NaCl, 100mM Tris-HCl, 100mM MgCl 2 And 100 μ g/ml Recombinant Albumin, the pH of buffer 1 is 7.9;
the F-Q fluorescence quenching probe is as follows: 5'-FAM-TTATT-Quencher-3';
the crRNA is crRNA8 of a monkey pox virus specific target sequence F3L, crRNA1 of a monkey pox virus envelope protein gene B6R or crRNA6 of a monkey pox virus envelope protein gene B6R;
the specific implementation manner of the detection system configured in the step 2) is as follows:
2.1 Obtaining an amplification product: 29.5ul twist Amp Rehydration buffer, twist Amp freeze-dried powder, 2.4ul10mM RPA upstream primer and 2.4ul10mM RPA downstream primer; the RPA upstream primer and the RPA downstream primer are both the monkey pox virus detection primers of any one of claims 1 to 6; according to the technical scheme, twistAmp freeze-dried powder is added into TwistAmp Rehydation buffer, twistAmp freeze-dried powder is dissolved, the primers for detecting the monkey pox virus of any one of claims 1 to 6 are added, and after mixing, the mixture is centrifuged for 10s under the condition of 3000 g; adding 10ul of sterile enzyme-free deionized water, adding 3.5ul of a sample to be detected, and fully and uniformly mixing; adding 2.5ul twist Amp MgOAC solution into the mixture, heating the mixture in a metal bath at 37 ℃ to start amplification for 10 minutes to obtain an amplification product;
2.2 Preparation of detection reagent: fully mixing 1uM crRNA1ul, 1uM LbaCas12a1ul, 3ul buffer solution 1, 20ul sterile enzyme-free deionized water and 1.5ul 10uMF-Q fluorescent quenching probe, and pre-incubating the mixture for 10 minutes at the temperature of 25 +/-0.5 ℃ to obtain a reagent for detection; the crRNAs are matched with the monkeypox virus detection primers of any one of claims 1 to 6 respectively;
the specific implementation manner of the step 3) is as follows:
adding 3.5ul of the amplification product obtained in the step 2.1) into the detection reagent obtained in the step 2.2), heating at 37 ℃ for 60 minutes, and then placing under 485nm exciting light to observe the luminous effect, wherein if fluorescence appears, the sample to be detected is positive; if no fluorescence appears, the sample to be detected is negative.
CN202211436074.0A 2022-11-16 2022-11-16 Method for rapidly detecting monkeypox virus Pending CN115807130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211436074.0A CN115807130A (en) 2022-11-16 2022-11-16 Method for rapidly detecting monkeypox virus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211436074.0A CN115807130A (en) 2022-11-16 2022-11-16 Method for rapidly detecting monkeypox virus

Publications (1)

Publication Number Publication Date
CN115807130A true CN115807130A (en) 2023-03-17

Family

ID=85483244

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211436074.0A Pending CN115807130A (en) 2022-11-16 2022-11-16 Method for rapidly detecting monkeypox virus

Country Status (1)

Country Link
CN (1) CN115807130A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110129485A (en) * 2019-06-10 2019-08-16 中国农业科学院上海兽医研究所(中国动物卫生与流行病学中心上海分中心) A detection kit and detection method for rapid identification of African swine fever virus
CN113481327A (en) * 2021-07-10 2021-10-08 中国人民解放军疾病预防控制中心 Novel coronavirus ORF1ab gene detection method based on RAA amplification and CRISPR-Cas12a
WO2021236987A2 (en) * 2020-05-20 2021-11-25 The Administrators Of The Tulane Educational Fund Crispr-based assay for detecting pathogens in samples
CN115161414A (en) * 2022-06-10 2022-10-11 艾康生物技术(杭州)有限公司 Specificity detection target of monkeypox virus, oligonucleotide and kit thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110129485A (en) * 2019-06-10 2019-08-16 中国农业科学院上海兽医研究所(中国动物卫生与流行病学中心上海分中心) A detection kit and detection method for rapid identification of African swine fever virus
WO2021236987A2 (en) * 2020-05-20 2021-11-25 The Administrators Of The Tulane Educational Fund Crispr-based assay for detecting pathogens in samples
CN113481327A (en) * 2021-07-10 2021-10-08 中国人民解放军疾病预防控制中心 Novel coronavirus ORF1ab gene detection method based on RAA amplification and CRISPR-Cas12a
CN115161414A (en) * 2022-06-10 2022-10-11 艾康生物技术(杭州)有限公司 Specificity detection target of monkeypox virus, oligonucleotide and kit thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERIC SEITI YAMANAKA等: "Low-cost genotyping method based on allele-specific recombinase polymerase amplification and colorimetric microarray detection", MICROCHIM ACTA, vol. 184, pages 1453, XP036217300, DOI: 10.1007/s00604-017-2144-0 *
YU LI 等: "Detection of monkeypox virus with real-time PCR assays", JOURNAL OF CLINICAL VIROLOGY, vol. 36, pages 197 *
李晓红;冯佳;谢芳莘;王蓓蕊;何苗;张勇刚;马峰;陈强;: "重组酶聚合酶扩增结合Cas12a输血相关病原体核酸检测方法的可行性", 中国输血杂志, no. 05, pages 41 - 46 *

Similar Documents

Publication Publication Date Title
CN111270012B (en) CRISPR nucleic acid detection kit for detecting novel coronavirus (2019-nCoV)
CN111004870B (en) Novel coronavirus N gene nucleic acid detection kit
CN106947838B (en) African swine fever virus non-structural gene real-time fluorescence LAMP (loop-mediated isothermal amplification) detection primer group, kit and detection method
WO2020259210A1 (en) Method and kit for detecting african swine fever virus
CN106957927B (en) African swine fever fluorescent PCR detection reagent, African swine fever fluorescent PCR detection kit and its application
CN113215164B (en) Methods for detecting novel coronavirus variants and subtypes
CN115466800B (en) Multiplex fluorescence quantitative PCR kit for detecting monkey poxvirus and subtype thereof
CN105925728A (en) Seneca valley virus real-time fluorescence quantification PCR detection primer and kit
CN111286559B (en) Primer, probe and kit for detecting African swine fever virus
CN107686863A (en) The method that loop-mediated isothermal amplification technique detects three kinds of Urogenital Mycoplasmas
CN111534514A (en) Novel coronavirus detection kit based on Crisper
CN113637798A (en) Primer and probe for detecting delta 69/70HV deletion mutation site of S gene of new coronavirus Alpha strain and application of primer and probe
CN108220480A (en) A kind of RPA fluorescent quantitations primer pair, probe and kit for specific detection HPV18
CN107119110A (en) The primer of the TaqMan probe real-time PCR detection of human genome DNA's sry gene in trace sample
CN111926113B (en) Primer group, probe, kit and method for rapidly detecting avian reovirus
WO2024169753A1 (en) Nucleic acid molecule, kit and method for detecting monkey pox virus
CN115807130A (en) Method for rapidly detecting monkeypox virus
CN117431340A (en) Kit and method for detecting monkey pox virus at constant temperature based on CRISPR-Cas
CN115247206B (en) Method for detecting nucleic acid markers based on ligase chain reaction and gene editing technology
CN110373503B (en) Complete set of nucleic acid, kit and detection method for detecting Hancheng virus by RPA
CN116855638A (en) Cas12a-based differential diagnosis method for PRV field strains and gE/TK gene deletion vaccine strains
CN115820818A (en) One-step nucleic acid detection method and application thereof
CN104278106B (en) Duplex fluorescence quantitative RT-PCR (reverse transcription-polymerase chain reaction) detection kit for duck tembusu virus and egg drop syndrome virus
Wei Detection of BVDV-comparative evaluation of RT-qPCR, PCR and RT-LAMP
EP3885455A1 (en) Method and kit for the detection of sars-cov-2 virus in a sample based on reverse transcription loop-mediated isothermal amplification (rt-lamp)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20230317